
No-Arbitrage Taylor Rules∗

Andrew Ang†

Columbia University and NBER

Sen Dong
Lehman Brothers

Monika Piazzesi‡

University of Chicago, FRB Minneapolis, NBER and CEPR

September 2007

∗We thank Ruslan Bikbov, Sebastien Blais, Dave Chapman, Mike Chernov, John Cochrane, Charlie
Evans, Michael Johannes, Andy Levin, David Marshall, Thomas Philippon, Tom Sargent, Martin
Schneider, George Tauchen, and John Taylor for helpful discussions. We especially thank Bob Hodrick
for providing detailed comments. We also thank seminar participants at the American Economics
Association, American Finance Association, a CEPR Financial Economics meeting, the CEPR Summer
Institute, the European Central Bank Conference on Macro-Finance, the Federal Reserve Bank of
San Francisco Conference on Fiscal and Monetary Policy, an NBER Monetary Economics meeting,
the Society of Economic Dynamics, the Western Finance Association, the World Congress of the
Econometric Society, Bank of Canada, Carnegie Mellon University, Columbia University, European
Central Bank, Federal Reserve Board of Governors, Lehman Brothers, Morgan Stanley, PIMCO, and the
University of Southern California for comments. Andrew Ang and Monika Piazzesi both acknowledge
financial support from the National Science Foundation. The views expressed herein are those of the
authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve
System.

†Columbia Business School, 3022 Broadway 805 Uris, New York, NY 10027; ph: (212) 854-9154;
fax: (212) 662-8474; email: aa610@columbia.edu; WWW: http://www.columbia.edu/∼aa610

‡University of Chicago, Graduate School of Business, 5807 S. Woodlawn, Chicago, IL 60637;
ph: (773) 834-3199; email: piazzesi@uchicago.edu; WWW: http://faculty.chicagogsb.edu/monika.
piazzesi/research/



No-Arbitrage Taylor Rules

Abstract

We estimate Taylor (1993) rules and identify monetary policy shocks using no-arbitrage

pricing techniques. Long-term interest rates are risk-adjusted expected values of future short

rates and thus provide strong over-identifying restrictions about the policy rule used by the

Federal Reserve. The no-arbitrage framework also accommodates backward-looking and

forward-looking Taylor rules. We find that inflation and output gap account for over half

of the variation of time-varying excess bond returns and most of the movements in the term

spread. Taylor rules estimated with no-arbitrage restrictions differ from Taylor rules estimated

by OLS, and the resulting monetary policy shocks are somewhat less volatile than their OLS

counterparts.



1 Introduction

Most central banks, including the U.S. Federal Reserve (Fed), conduct monetary policy to only

influence the short end of the yield curve. However, the entire yield curve responds to the

actions of the Fed because long-term interest rates are conditional expected values of future

short rates, after adjusting for risk premia. These risk-adjusted expectations of long yields are

formed based on a view of how the Fed conducts monetary policy. Thus, the whole yield curve

reflects the monetary actions of the Fed, so the entire term structure of interest rates can be

used to estimate monetary policy rules and extract estimates of monetary policy shocks.

According to the Taylor (1993) rule, the Fed sets the short-term interest rate by reacting to

CPI inflation and the output gap. To exploit the cross-equation restrictions on yield movements

implied by the assumption of no arbitrage, we place the Taylor rule into a term structure model.

The no-arbitrage assumption is reasonable in a world of large investment banks and active

hedge funds, who take positions eliminating arbitrage opportunities arising in bond prices that

are inconsistent with each other in either the cross-section or their expected movements over

time. Moreover, the absence of arbitrage is a necessary condition for an equilibrium in most

macroeconomic models. Imposing no arbitrage, therefore, can be viewed as a useful first step

towards a fully specified general equilibrium model.

We describe expectations of future short rates by versions of the Taylor rule and a Vector

Autoregression (VAR) for macroeconomic variables. Following the approach taken in many

papers in macro (see, for example, Fuhrer and Moore, 1995), we could infer the values of long

yields from these expectations by imposing the Expectations Hypothesis (EH). However, there

is strong empirical evidence against the EH (see, for example, Campbell and Shiller, 1991;

Cochrane and Piazzesi, 2005, among many others). Term structure models can account for

deviations from the EH by explicitly incorporating time-varying risk premia (see, for example,

Dai and Singleton, 2002) .

We present a setup that embeds Taylor rules in an affine term structure model with time-

varying risk premia. The structure accommodates standard Taylor rules, backward-looking

Taylor rules that allow multiple lags of inflation and output gap to influence the actions of the

Fed (for example, Eichenbaum and Evans, 1995; Christiano, Eichenbaum and Evans, 1996),

and forward-looking Taylor rules where the Fed responds to anticipated inflation and output

gap (Clarida, Galı́ and Gertler, 2000). The framework also accommodates monetary policy

shocks that are serially correlated but uncorrelated with macro factors. The model specifies

standard VAR dynamics for the macro indicators, inflation and output gap, together with an
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additional latent factor that drives interest rates. This latent factor captures other movements in

yields that may be correlated with inflation and output gap, including monetary policy shocks.

Our framework also allows risk premia to depend on the state of the macroeconomy.

By combining no-arbitrage pricing with the Fed’s policy rule, we extract information from

the entire term structure about monetary policy, and vice versa, use our knowledge about

monetary policy to model the term structure of interest rates. The model allows us to efficiently

measure how different yields respond to systematic changes in monetary policy, and how they

respond to unsystematic policy shocks. Interestingly, the model implies that a large amount of

interest rate volatility is explained by systematic changes in policy that can be traced back to

movements in macro variables. For example, 74% of the variance of the 1-quarter yield and

66% of the variance of the 5-year yield can be attributed to movements in inflation and the

output gap. Over 78% of the variance of the 5-year term spread is due to time-varying output

gap and output gap risk. The estimated model also captures the counter-cyclical properties of

time-varying expected excess returns on bonds.

We estimate Taylor rules following the large macro literature that uses low frequencies (we

use quarterly data) at which the output gap and inflation are reported. Under the cross-equation

restrictions for yields implied by the no-arbitrage model, we estimate a flexible specification

for the macro and latent factors. This setup offers a natural solution to the usual identification

problem in VAR dynamics that contain financial data, such as bond yields (for example, Evans

and Marshall 1998, 2001; Piazzesi 2005). The Fed’s endogenous policy reactions are described

by the Taylor rule as movements in the short rate which can be traced to movements in the

macro variables that enter the rule: inflation and output. While the Fed may take current yield

data into account, it does so only because current yields contain information about future values

of these macro variables.

Our paper is related to a growing literature on linking the dynamics of the term structure

with macro factors. However, the other papers in this literature are less interested in estimating

various Taylor rules, rather than embedding a particular form of a Taylor rule, sometimes

pre-estimated, in a macroeconomic model. For example, Bekaert, Cho, and Moreno (2003),

Gallmeyer, Hollifield, and Zin (2005), Rudebusch and Wu (2005), and Hördahl, Tristani,

and Vestin (2006) estimate structural models with interest rates and macro variables. In

contrast to these studies, we do not impose any structural restrictions other than the absence

of arbitrage. This makes our approach more closely related to the identified VAR literature in

macroeconomics (for a survey, see Christiano, Eichenbaum and Evans, 1999) and this provides

us additional flexibility in matching the dynamics of the term structure. Other non-structural
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term structure models with macro factors, like Ang and Piazzesi (2003), and Dewachter and

Lyrio (2006), among many others, also do not investigate how no-arbitrage restrictions can

help estimate different policy rules.

We do not claim that no-arbitrage techniques are superior to estimating monetary policy

rules using structural models. Rather, we believe that estimating policy rules using no-arbitrage

restrictions are a useful addition to existing methods. Our framework enables the entire

cross-section and time-series of yields to be modeled and provides a unifying framework to

jointly estimate standard, backward-, and forward-looking Taylor rules in a single, consistent

framework. Indeed, we show that many formulations of policy rules imply term structure

dynamics that are observationally equivalent. Naturally, our methodology can be used in more

structural approaches that effectively constrain the factor dynamics and risk premia.

The rest of the paper is organized as follows. Section 2 outlines the model and develops

the methodology showing how Taylor rules can be identified with no-arbitrage conditions. We

briefly discuss the estimation strategy in Section 3. In Section 4, we lay out the empirical

results. After describing the parameter estimates, we attribute the time-variation of yields and

expected excess holding period returns of long-term bonds to economic sources. We describe in

detail the implied Taylor rule estimates from the model and contrast them with OLS estimates.

Section 5 concludes.

2 The Model

We describe the setup of the model in Section 2.1. Section 2.2 derives closed-form solutions

for bond prices (yields) and expected returns. In Sections 2.3 to 2.8, we explain how various

Taylor rules can be identified in the no-arbitrage model.

2.1 General Set-up

Our state variables are the output gap at quarter t, gt; the continuously compounded year-on-

year inflation rate from quarter t − 4 to t, πt; and a latent term structure state variable, fu
t . We

measure year-on-year inflation using the GDP deflator. Our system uses four lags of the output

gap and year-on-year inflation variables but parsimoniously captures the dynamics of the latent

factor with only one lag. This specification is flexible enough to match the autocorrelogram of

year-on-year inflation and the output gap at a quarterly frequency. We assume that in the full
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state vector, Xt−1, potentially up to four lags of the output gap and inflation Granger-cause gt

and πt, but only the first lag of the variables, gt−1, πt−1, fu
t−1, Granger-cause the latent factor fu

t .

Below we show that this assumption is not restrictive (for example, in the sense of matching

impulse responses.) Thus, we can write the dynamics of the state variables as:

fo
t = μ1 +

(
Φ11 Φ12

)(fo
t−1

fu
t−1

)
+
(
Φ13 Φ14 Φ15

)
⎛
⎜⎜⎝

fo
t−2

fo
t−3

fo
t−4

⎞
⎟⎟⎠ + vo

t

fu
t = μ2 +

(
Φ21 Φ22

)(fo
t−1

fu
t−1

)
+ vu

t , (1)

for fo
t = [gt πt]

� the vector of observable macro variables, the output gap and inflation, fu
t the

latent factor, and

vt =

(
vo

t

vu
t

)
∼ IIDN(0, ΣvΣ

�
v ).

For ease of notation, we collect the four lags of all the state variables in a vector of K = 12

elements:

Xt =
[
gt πt fu

t . . . gt−3 πt−3 fu
t−3

]�
,

and write the VAR in equation (1) in companion form as:

Xt = μ + ΦXt−1 + Σεt, (2)

where

εt =

(
vt

09×1

)
Σ =

(
Σv 03×9

09×3 09×9

)

and μ and Φ collect the appropriate conditional means and autocorrelation matrices of the VAR

in equation (1), respectively.

We use only one latent state variable because this is the most parsimonious set-up with

Taylor rule residuals (as the next section makes clear). This latent factor, fu
t , is a standard

latent factor in the tradition of the term-structure literature. Our focus is to show how this

factor is related to monetary policy and how the no-arbitrage restrictions can identify various

policy rules.

We specify the short rate equation to be:

rt = δ0 + δ�1 Xt, (3)
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for δ0 a scalar and δ1 a K ×1 vector. To keep the model tractable, our baseline system has only

contemporaneous values of gt, πt and fu
t and no lags of these factors determining rt, so only

the first three elements of δ1 are non-zero.

To complete the model, we specify the pricing kernel to take the standard form:

mt+1 = exp

(
−rt − 1

2
λ�

t λt − λ�
t εt+1

)
, (4)

with the prices of risk:

λt = λ0 + λ1Xt, (5)

for the K ×1 vector λ0 and the K ×K matrix λ1. To keep the number of parameters down, we

only allow the rows of λt that correspond to current variables to differ from zero. We specify

λ0 =

(
λ̄0

09×1

)
,

where λ̄0 is a 3×1 vector. Likewise, we specify that the time-varying components of the prices

of risk λ1, depends on current and past values of macro variables, but only the contemporaneous

value of the latent factor: [gt πt fu
t gt−1 πt−1 gt−2 πt−2 gt−3 πt−3]

�
. That is, we can write:

λ1 =

(
λ̄1

09×12

)
,

where λ̄1 is a 3 × 12 matrix with zero columns corresponding to fu
t−1, fu

t−2 and fu
t−3.

The pricing kernel determines the prices of zero-coupon bonds in the economy from the

recursive relation:

P
(n)
t = Et[mt+1P

(n−1)
t+1 ], (6)

where P
(n)
t is the price of a zero-coupon bond of maturity n quarters at time t. Equivalently,

we can solve the price of a zero-coupon bond as:

P
(n)
t = EQ

t

[
exp

(
−

n−1∑
i=0

rt+i

)]
,

where EQ
t denotes the expectation under the risk-neutral probability measure, under which

the dynamics of the state vector Xt are characterized by the risk-neutral constant and

autocorrelation matrix:

μQ = μ − Σλ0

ΦQ = Φ − Σλ1.

If investors are risk-neutral, λ0 = 0 and λ1 = 0, and no risk adjustment is necessary.
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2.2 Bond Prices and Expected Returns

The model (2)-(5) belongs to the Duffie and Kan (1996) affine class of term structure models,

but incorporates both latent and observable macro factors. The model implies that bond yields

take the form:

y
(n)
t = an + b�n Xt, (7)

where y
(n)
t is the yield on an n-period zero coupon bond at time t that is implied by the model,

which satisfies P
(n)
t = exp(−ny

(n)
t ).

The scalar an and the K × 1 vector bn are given by an = −An/n and bn = −Bn/n, where

An and Bn satisfy the recursive relations:

An+1 = An + B�
n (μ − Σλ0) +

1

2
B�

n ΣΣ�Bn − δ0

B�
n+1 = B�

n (Φ − Σλ1) − δ�1 , (8)

where A1 = −δ0 and B1 = −δ1. The recursions (8) are derived by Ang and Piazzesi (2003).

In terms of notation, the one-period yield y
(1)
t is the same as the short rate rt in equation (3).

Since yields take an affine form and the conditional mean of the state vector is affine,

expected holding period returns on bonds are also affine in Xt. We define the one-period

excess holding period return as:

rx
(n)
t+1 = log

(
P

(n−1)
t+1

P
(n)
t

)
− rt

= ny
(n)
t − (n − 1)y

(n−1)
t+1 − rt. (9)

The conditional expected excess holding period return can be computed using:

Et[rx
(n)
t+1] = −1

2
B�

n−1ΣΣ�Bn−1 + B�
n−1Σλ0 + B�

n−1Σλ1Xt

≡ Ax
n + Bx�

n Xt, (10)

which again takes an affine form for the scalar Ax
n = −1

2
B�

n−1ΣΣ�Bn−1 + B�
n−1Σλ0 and

the K × 1 vector Bx
n = λ1Σ

�Bn−1. From equation (10), we can see directly that the expected

excess return comprises three terms: (i) a Jensen’s inequality term, (ii) a constant risk premium,

and (iii) a time-varying risk premium. The time variation is governed by the parameters in

the matrix λ1. Since both bond yields and the expected holding period returns of bonds are

affine functions of Xt, we can easily compute variance decompositions following standard

VAR methods.
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2.3 The Benchmark Taylor Rule

The Taylor (1993) rule describes the Fed as adjusting short-term interest rates in response to

movements in inflation and real activity. The rule is consistent with a monetary authority that

minimizes a quadratic loss function that tries to stabilize inflation and output around a long-

run inflation target and the natural output rate (see, for example, Svensson 1997). Following

Taylor’s original specification, we define the benchmark Taylor rule to be:

rt = γ0 + γ1,ggt + γ1,ππt + εMP,T
t , (11)

where the short rate is set by the Federal Reserve in response to current output and inflation.

The basic Taylor rule (11) can be interpreted as the short rate equation (3) in a standard affine

term structure model, where the unobserved monetary policy shock εMP,T
t corresponds to a

latent term structure factor, εMP,T
t = γ1,uf

u
t . This corresponds to the short rate equation (3) in

the term structure model with

δ1 ≡

⎛
⎜⎜⎜⎜⎝

δ1,g

δ1,π

δ1,u

09×1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γ1,g

γ1,π

γ1,u

09×1

⎞
⎟⎟⎟⎟⎠ ,

which has zeros for all coefficients on lagged g and π.

The Taylor rule (11) can be estimated consistently using OLS under the assumption that

εMP,T
t , or fu

t , is contemporaneously uncorrelated with the output gap and inflation. This

assumption is satisfied if the output gap and inflation only react slowly to policy shocks.

However, there are several advantages to estimating the policy coefficients, γ1,g and γ1,π, and

extracting the monetary policy shock, εMP,T
t , using no-arbitrage restrictions rather than simply

running OLS on equation (11). First, no-arbitrage restrictions can free up the contemporaneous

correlation between the macro and latent factors. Second, even if the macro and latent

factors are conditionally uncorrelated, OLS is consistent but not efficient. By imposing

no arbitrage, we use cross-equation restrictions that produce more efficient estimates by

exploiting information contained in the whole term structure in the estimation of the Taylor

rule coefficients, while OLS only uses data on the short rate. Third, the term structure model

provides estimates of the effect of a policy or macro shock on any segment of the yield

curve, which an OLS estimation of equation (11) cannot provide. Finally, our term structure

model allows us to trace the predictability of risk premia in bond yields to macroeconomic or

monetary policy sources.
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The Taylor rule in equation (11) does not depend on the past level of the short rate.

Therefore, OLS regressions typically find that the implied series of monetary policy shocks

from the benchmark Taylor rule, εMP,T
t , is highly persistent (see, for example, Rudebusch

and Svensson, 1999). The statistical reason for this finding is that the short rate is highly

autocorrelated, and its movements are not well explained by the right-hand side variables

in equation (11). This causes the implied shock to inherit the dynamics of the level of the

persistent short rate. In affine term structure models, this finding is reflected by the properties

of the implied latent variables. In particular, εMP,T
t corresponds to δ1,uf

u
t , which is the scaled

latent term structure variable. For example, Ang and Piazzesi (2003) show that the first latent

factor implied by an affine model with both latent factors and observable macro factors closely

corresponds to the traditional first, highly persistent, latent factor in term structure models with

only unobservable factors. This latent variable also corresponds closely to the first principal

component of yields, or the average level of the yield curve, which is highly autocorrelated.

2.4 Backward-Looking Taylor Rules

Eichenbaum and Evans (1995), Christiano, Eichenbaum and Evans (1996), Clarida, Galı́ and

Gertler (1998), among others, consider modified Taylor rules that include current as well as

lagged values of macro variables and the previous short rate:

rt = γ0 + γ1,ggt + γ1,ππt + γ2,ggt−1 + γ2,ππt−1 + γ2,rrt−1 + εMP,B
t , (12)

where εMP,B
t is the implied monetary policy shock from the backward-looking Taylor rule. This

formulation has the statistical advantage that we compute monetary policy shocks recognizing

that the short rate is a highly persistent process. The economic mechanism behind such a

backward-looking rule may be that the objective of the central bank is to smooth interest rates

(see Goodfriend, 1991).

In the setting of our model, we can modify the short rate equation (3) to take the same

form as equation (12). Using the notation fo
t and fu

t to refer to the observable macro and latent

factors, respectively, we can rewrite the short rate dynamics (3) as:

rt = δ0 + δ�1,of
o
t + δ1,uf

u
t , (13)

where

δ1 ≡

⎛
⎜⎜⎝

δ1,o

δ1,u

09×1

⎞
⎟⎟⎠ .
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Using equation (1), we can substitute for fu
t in equation (13) to obtain:

rt = (1 − Φ22)δ0 + δ1,uμ2 + δ�1,of
o
t + (δ1,uΦ

�
21 − δ1,oΦ

�
22)

�fo
t−1 + Φ22rt−1 + εMP,B

t , (14)

where we substitute for the dynamics of fu
t and define the backward-looking monetary policy

shock to be εMP,B
t ≡ δ1,uv

u
t . Equation (14) expresses the short rate as a function of current

and lagged macro factors, fo
t and fo

t−1, the lagged short rate, rt−1, and a monetary policy shock

εMP,B
t . Equating the coefficients in equations (12) and (14) allows us to identify the structural

coefficients as:

γ0 = (1 − Φ22)δ0 + δ1,uμ2(
γ1,g

γ1,π

)
= δ1,o

(
γ2,g

γ2,π

)
= (δ1,uΦ

�
21 − δ1,oΦ

�
22)

γ2,r = Φ22. (15)

Interestingly, the response to contemporaneous output gap and inflation captured by the δ1,o

coefficient on fo
t in the backward-looking Taylor rule (14) is identical to the response in the

benchmark Taylor rule (11), because the δ1,o coefficient is unchanged. The intuition behind

this result is that the short rate equation (3) describes the response of the short rate to current

macro factors. The latent factor, however, contains a predictable component that depends on

past values of the short rate and the macro factors. The backward-looking Taylor rule makes

this dependence explicit. Importantly, the backward-looking Taylor rule in equation (14) and

the benchmark Taylor rule (11) lead to observationally equivalent reduced-form dynamics for

interest rates and macro variables.

The implied monetary policy shocks from the backward-looking Taylor rule, εMP,B
t , are

potentially very different from the benchmark shocks, εMP,T
t . In the no-arbitrage model, the

backward-looking monetary policy shock εMP,B
t is identified as the scaled shock to the latent

term structure factor, δ1,uv
u
t . In the set-up of the factor dynamics in equation (1), the vu

t

shocks are IID. In comparison, the shocks in the standard Taylor rule (11), εMP,T
t are highly

autocorrelated. Note that the coefficients on lagged macro variables in the extended Taylor

rule (14) are equal to zero only if δ1,uΦ
�
21 = δ1,oΦ

�
22. Under this restriction, the combined

movements of the past macro factors must exactly offset the movements in the lagged term

structure latent factor so that the short rate is affected only by unpredictable shocks.

Once our model is estimated, we can easily back out the implied extended Taylor rule (12)

from the estimated coefficients. This is done by using the implied dynamics of fu
t in the factor
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dynamics (1):

vu
t = fu

t − μ2 − Φ21f
o
t−1 − Φ22f

u
t−1.

Again, if εMP,B
t = δ1,uv

u
t is unconditionally correlated with the shocks to the macro factors fo

t ,

then OLS does not provide efficient estimates of the monetary policy rule, and may provide

biased estimates of the Taylor rule in small samples.

2.5 Taylor Rules with Serially Correlated Policy Shocks

Backward-looking Taylor rules are observationally equivalent to a policy rule where the Fed

reacts to the entire history of macro variables, but with serially correlated errors. To see this,

we recursively substitute for rt−j , for j ≥ 1, in equation (14) to obtain:

rt = ct + Ψt(L)fo
t + εMP,AR

t , (16)

where ct is a scalar, Ψt(L) is a polynomial of lag operators, and εMP,AR
t is a serially correlated

shock. The variables ct, Ψt(L), and εMP,AR
t are given by:

ct = δ0 + δ1,u

t−2∑
i=0

Φi
22μ,

Ψt(L) = δ1,0 + δ1,u

t−2∑
i=0

Φi
22Φ21L

i+1,

εMP,AR
t =

t−1∑
i=0

Φi
22δ1,uv

u
t−i,

where vu
t are the innovations to the latent factor in the VAR in equation (1). The shock εMP,AR

t

is orthogonal to the macro variables, fo, and follows an AR(1) process:

εMP,AR
t = Φ22ε

MP,AR
t−1 + δ1,uv

u
t .

Whereas in the backward-looking Taylor rule (14), the policy shocks are scaled innovations

of the latent factor, εMP,B
t = δ1,uv

u
t , the autocorrelated policy errors εMP,AR

t are linear

combinations of current and past latent factor innovations in equation (16).1

1 Bikbov and Chernov (2005) use a projection procedure to also decompose latent factors into a macro-related

component and an innovation component with different statistical properties that can apply to models with more

than one latent factor.
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2.6 Forward-Looking Taylor Rules

Finite-Horizon, Forward-Looking Taylor Rules

Clarida and Gertler (1997) and Clarida, Galı́ and Gertler (2000) propose a forward-looking

Taylor rule, where the Fed sets interest rates based on the expected future output gap and

expected future inflation over the next few quarters. For example, a forward-looking Taylor

rule using expected output gap and inflation over the next quarter takes the form:

rt = γ0 + γ1,gEt(gt+1) + γ1,πEt(πt+1) + εMP,F
t , (17)

where we define εMP,F
t to be the forward-looking Taylor rule monetary policy shock.

We can map the forward-looking Taylor rule (17) into the framework of an affine term

structure model as follows. The conditional expectations of future output gap and inflation are

simply a function of current Xt that can be computed from the state dynamics (2):

Et(Xt+1) = μ + ΦXt.

Denoting ei as a vector of zeros with a one in the ith position, we can write equation (17) as:

rt = γ0 + (γ1,ge1 + γ1,πe2)
�μ + (γ1,ge1 + γ1,πe2)

�ΦXt + εMP,F
t , (18)

as gt and πt are ordered as the first and second elements in Xt.

Equation (18) is an affine short rate equation where the short rate coefficients are a function

of the parameters of the dynamics of Xt:

rt = δ̄0 + δ̄�1 Xt, (19)

where

δ̄0 = γ0 + (γ1,ge1 + γ1,πe2)
�μ

δ̄�1 = Φ�(γ1,ge1 + γ1,πe2) + γ1,ue
�
3 ,

and εMP,F
t ≡ γ1,uf

u
t with γ1,u = δ1,u. Hence, we can identify a forward-looking Taylor rule by

redefining the bond price recursions in equation (8) in terms of the new δ̄0 and δ̄1 coefficients.

The complete term structure model is defined by the same set-up as equations (2)-(5), except

we use the new short rate equation (19) that embodies the forward-looking structure in place of

the basic short rate equation (3). To the extent that lagged values of the output gap and inflation

help forecast their own future values, the vector δ̄1 now has nonzero elements corresponding to
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the coefficients on lagged macro variables. The relations in equation (19) explicitly show that

the forward-looking Taylor rule structural coefficients (γ0, γ1,g, γ1,π) impose restrictions on the

parameters of an affine term structure model.

The new no-arbitrage bond recursions using the restricted coefficients δ̄0 and δ̄1 reflect

the conditional expectations of output gap and inflation that enter in the short rate equation

(19). Furthermore, the conditional expectations Et(gt+1) and Et(πt+1) are those implied by the

underlying dynamics of gt and πt in the VAR process (2). The monetary policy shocks in the

forward-looking Taylor rule (17) or (18), εMP,F
t , can only be consistently estimated by OLS if

fu
t is orthogonal to the dynamics of gt and πt.

Since k-period ahead conditional expectations of output gap and inflation remain affine

functions of the current state variables Xt, we can also specify a more general forward-looking

Taylor rule based on expected output gap or inflation over the next k quarters:

rt = γ0 + γ1,gEt(gt+k,k) + γ1,πEt(πt+k,k) + εMP,F
t , (20)

where gt+k,k and πt+k,k represent output gap and inflation over the next k periods:

gt+k,k =
1

k

k∑
i=1

gt+i and πt+k,k =
1

k

k∑
i=1

πt+i.

The forward-looking Taylor rule monetary policy shock εMP,F
t is the scaled latent term

structure factor, εMP,F
t = γ1,uf

u
t . As Clarida, Galı́ and Gertler (2000) note, the general

case (20) also nests the benchmark Taylor rule (11) as a special case by setting k = 0.

Appendix A details the appropriate transformations required to map equation (20) into an affine

term structure model and discusses the estimation procedure for a forward-looking Taylor rule

based on a k-quarter horizon.

Infinite-Horizon, Forward-Looking Taylor Rules

An alternative approach to fixing some forecasting horizon k is to view the Fed as discounting

the entire expected path of future economic conditions. For simplicity, we assume that the Fed

discounts both expected future output gap and expected future inflation at the same discount

rate, β. In this formulation, the forward-looking Taylor rule takes the form:

rt = γ0 + γ1,ĝĝt + γ1,π̂π̂t + εMP,F
t , (21)

where ĝt and π̂t are infinite sums of expected future output gap and inflation, respectively, both

discounted at rate β per period. Many papers have set β at one, or very close to one, sometimes
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motivated by calibrating it to an average real interest rate (see, among others, Rudebusch and

Svenson, 1999).

We can estimate the discount rate β as part of a standard term structure model by using the

dynamics of Xt in equation (2) to write ĝt as:

ĝt ≡
∞∑
i=0

βie�1 Et(Xt+i)

= e�1 (Xt + βμ + βΦXt + β2(I + Φ)μ + β2Φ2Xt + · · · )
= e�1 (μβ + (I + Φ)μβ2 + · · · ) + e�1 (I + Φβ + Φ2β2 + · · · )Xt

=
β

(1 − β)
e�1 (I − Φβ)−1μ + e�1 (I − Φβ)−1Xt.

Similarly, we can also write discounted future inflation, π̂t, in a similar fashion as:

π̂t ≡
∞∑
i=0

βie�2 Et(Xt+i) =
β

(1 − β)
e�2 (I −Φβ)−1μ + e�2 (I − Φβ)−1Xt.

To place the forward-looking rule with discounting in a term structure model, we re-write

the short rate equation (3) as:

rt = δ̂0 + δ̂�1 Xt, (22)

where

δ̂0 = γ0 + [γ1,ĝ e1 γ1,π̂ e2]
�
(

β

(1 − β)
(I − Φβ)−1μ

)
,

δ̂�1 = [γ1,ĝ e1 γ1,π̂ e2]
�(I − Φβ)−1 + γ1,u e�3 .

Similarly, we modify the bond price recursions for the standard affine model in equation (8) by

using the new δ̂0 and δ̂1 coefficients that embody restrictions on β, γ0, γ1,ĝ, γ1,π̂, μ, and Φ.

2.7 Forward- and Backward-Looking Taylor Rules

As a final case, we combine the forward- and backward-looking Taylor rules, so that the

monetary policy rule is computed taking into account forward-looking expectations of macro

variables, lagged realizations of macro variables, while also controlling for lagged short rates.

We illustrate the rule considering expectations for inflation and output gap over the next quarter

(k = 1), but similar rules apply for other horizons.

We start with the standard forward-looking Taylor rule in equation (17):

rt = γ0 + γ�
1,oEt(f

o
t+1) + εMP,F

t ,
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where Et(f
o
t+1) = [Et(gt+1) Et(πt+1)]

� and εMP,F
t = γ1,uf

u
t . We substitute for fu

t using

equation the implied short rate equation (19) that is implied by the forward-looking Taylor rule

(17):

rt = γ0 + γ1,uμ2 − γ1,uΦ22δ̄0

δ̄1,u

+ γ�
1,oEt(f

o
t+1) +

γ1,uΦ22

δ̄1,u

rt−1 (23)

+ γ1,uΦ
�
21f

o
t−1 +

γ1,uΦ22

δ̄1,u

(δ̄�1 Xt−1 − δ̄1,uf
u
t−1) + εMP,FB

t ,

where δ̄1,u is the coefficient on fu
t in δ̄1.

Equation (23) expresses the short rate as a function of both expected future macro factors

and lagged macro factors, the lagged short rate, rt−1, and a forward- and backward-looking

monetary policy shock, εMP,FB
t = γ1,uv

u
t . The forward- and backward-looking Taylor rule

(23) is an equivalent representation of the forward-looking Taylor rule in (17). Similar to how

the coefficients on contemporaneous macro variables in the backward-looking Taylor rule (14)

are identical to the coefficients in the benchmark Taylor rule (11), the coefficients on future

expected macro variables in the forward- and backward-looking Taylor rule are exactly the

same as the corresponding coefficients in the forward-looking Taylor rule.

2.8 Summary of Taylor Rules

We can identify several structural policy rules from the same reduced-form term structure

model. Table 1 summarizes the various specifications. The benchmark, backward-looking

Taylor rules, and the Taylor rule with serially correlated shocks are different structural rules

that give rise to the same term structure dynamics. Similarly, the forward-looking and the

backward- and forward-looking Taylor rules produce observationally equivalent term structure

models. In all cases, the monetary policy shocks are transformations of either levels or

innovations of the latent term structure variable. Finally, the last column of Table 1 reports if the

no-arbitrage model requires additional restrictions. The forward-looking specifications require

parameter restrictions in the short rate equation to ensure that we compute the expectations of

the macro variables consistent with the dynamics of the VAR.

3 Data and Econometric Methodology

The objective of this section is to briefly discuss the data and the econometric methodology

used to estimate the model. We relegate all technical issues to Appendix B.
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3.1 Data

To estimate the model, we use continuously compounded yields of maturities 1, 4, 8, 12, 16,

and 20 quarters, at a quarterly frequency. The bond yields of one year maturity and longer are

from the CRSP Fama-Bliss discount bond files, while the short rate (one-quarter maturity) is

taken from the CRSP Fama risk-free rate file. The sample period is June 1952 to December

2004. The consumer price index and real GDP numbers are taken from the Federal Reserve

Database (FRED) at Saint Louis. The output gap is computed by applying the Hodrick and

Prescott (1997) filter on quarterly real GDP using a smoothing parameter of 1,600. When we

estimate the model, we divide the Hodrick-Prescott output gap measure by 4 so that all the

variables are expressed in per quarter units.

In Figure 1, we plot the output gap, inflation and the short rate (all expressed in annual

units) over time and indicate recessions in solid bars defined by the NBER. As expected, each

recession coincides with decreases in the output gap. Inflation and the short rate are strongly

positively correlated, at 70%, with both inflation and the short rate peaking during the early

and mid-1970s and the monetary targeting period from 1979-1983. In contrast, the short rate

is weakly correlated with the output gap, at 19%. Unconditionally, the output gap and inflation

are almost uncorrelated, with a correlation of 1%, but this does not capture the stronger lead-lag

effects of output and inflation in the VAR, which we show below.

3.2 Estimation and Identification

The VAR dynamics for the state vector in equation (1) are homoskedastic, and since bond

yields (7) in our model are linear in the state vector, they are also Gaussian. We deal with

potential time variation in volatilities and other parameters such as policy-rule coefficients

(as documented by Clarida, Galı́ and Gertler, 2000) by estimating the model over different

subsamples. This approach assumes that bond investors form their expectations in equation

(6) based on recent data. They do not take into account that the economy may return to a

previously observed “regime.” For example, investors during the high-inflation Volcker years

did not anticipate that there would be a return to a low-inflation regime under Greenspan.

We estimate the term structure model using Markov Chain Monte Carlo (MCMC) and

Gibbs sampling methods. We assume that all yields are observed with error, so that the equation

for each yield is:

ŷ
(n)
t = y

(n)
t + η

(n)
t , (24)
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where y
(n)
t is the model-implied yield from equation (7) and η

(n)
t is the zero-mean observation

error is IID across time and yields. We specify η
(n)
t to be normally distributed and denote the

standard deviation of the error term as σ
(n)
η .

A major advantage of the Bayesian estimation method is that it provides a posterior

distribution of the time-series path of fu
t and monetary policy shocks. That is, we can

compute the mean of the posterior distribution of the time-series of fu
t through the sample, and,

consequently, we can obtain a best estimate of implied monetary policy shocks. Importantly,

by not assigning one arbitrary yield to have zero measurement error (and the other yields to

have non-zero measurement error), we do not bias our estimated monetary policy shocks to

have undue influence from only one particular yield. Instead, the extracted latent factor reflects

the dynamics of the entire cross-section of yields.

Another advantage of our estimation method is tractability. Although the likelihood

function of yields and related variables can be written down, the model has high dimension

and is non-linear in the parameters. The maximum likelihood estimator involves a difficult

optimization problem, whereas the Bayesian algorithm is based on a series of simulations that

are computationally much more tractable. In a Bayesian estimation setting, we can also specify

priors on reasonable regions of the parameter space that effectively rule out parameter values

that are economically implausible. In our estimation, the only informative prior we impose is

to constrain our state-space system to be stationary.

4 Empirical Results

Section 4.1 discusses the parameter estimates and the fit of the model to data. Section 4.2

investigates the driving determinants of the yield curve. We compare benchmark, backward-

looking and forward-looking Taylor rules in Section 4.3. Section 4.4 discusses the implied

no-arbitrage monetary policy shocks.

4.1 Parameter Estimates

Table 2 presents the parameter estimates of the term structure model (1)-(5). The first row

of the companion form Φ shows that the output gap is significantly forecasted by the first

lag of inflation. Similarly, a high lagged output gap significantly Granger-causes high current

inflation. In the third row of Φ, both the lagged output gap and lagged inflation significantly
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predict the latent factor. This is consistent with results in Ang and Piazzesi (2003), who show

that adding macro variables improves out-of-sample forecasts of interest rates. Naturally, the

diagonal coefficients on the first lag reveal that all the variables are highly autocorrelated.

With four lags of the output gap and inflation, many coefficients for the output gap and

inflation corresponding to lags 3 to 4 are insignificant. Including the four lag structure is,

however, necessary for the model to provide sufficient flexibility for the model to fit year-

on-year inflation with a quarterly frequency model. For example, the effect of the relatively

large negative coefficient on the second lag of inflation predicting current inflation can only be

captured by adding complicated moving average error terms to a VAR system with only one

lag.

In Table 2, the estimated covariance matrix ΣvΣ
�
v shows that the innovations to inflation

and the output gap are lowly correlated. The conditional covariances between the latent factor

and the macro factors are not significant. This implies that the common recursive identification

strategy in low-frequency VARs (see, for example, Christiano, Eichenbaum and Evans, 1996) –

where macro factors do not respond contemporaneously to policy shocks – is automatically

satisfied, but not a priori imposed, and therefore not restrictive at our parameter estimates.

The short-rate coefficients in δ1 are all positive, so higher inflation and output gap lead to

increases in the short rate, which is consistent with the basic Taylor-rule intuition. In particular,

a 1 percent increase in the output gap leads to an increase a 51 basis point (bp) increase in the

short rate, while the effect of a 1 percent increase in contemporaneous inflation leads to a 24bp

increase of the short rate. Below, we compare these magnitudes with OLS estimates of the

Taylor rule.

The risk premia parameters λ̄0 and λ̄1 indicate that macro-factor risk is significantly priced

by the yield curve. There are significant constant prices of risk for g and π in λ̄0. There are

also many significant prices of time-varying risk in the λ̄1 matrix for all three factors. Hence,

the output gap, inflation, and the latent factor will play important roles in driving time-varying

expected excess returns, as we show below.

The standard deviations of the measurement errors are fairly large. For example, the

measurement-error standard deviation of the one-quarter yield (20-quarter yield) is 18bp (6bp)

per quarter. This is not surprising, because our system only has one latent factor. Interestingly,

short rates have the largest measurement-error variance. This finding suggests that the standard

approach of backing out latent factors from data on selected yields by constraining these yields

to have zero measurement errors may lead to misspecification, especially at the short end of the
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yield curve. Indeed, Piazzesi (2005) documents evidence for such misspecification by showing

that short rates implied by standard three-factor models are only weakly correlated with those

in the data.

Finally, to summarize the dynamics of the VAR, we plot impulse responses of (gt πt rt)
�

implied by the model in the left column of Figure 2. Note that the model VAR is specified

in terms of (gt πt f
u
t )�, so to compute the effects of a 1-percent shock on rt, we invert the

appropriate shock to fu
t so that the shocks from (gt πt f

u
t )� sum to 1-percent in the short rate

equation (3) using a Cholesky decomposition that orders the variables as (gt πt f
u
t )�. For

comparison, we contrast the model-implied impulse responses with the impulse responses

computed from an empirical VAR(4) on (gt πt rt)
� in the right column of Figure 2. The

empirical VAR allows all lags of rt to be non-zero, unlike the model-implied VAR, which

constrains lags 2 to 4 of fu
t to be zero (see equation (1)).

The impulse responses generated by our model and the empirical VAR are very similar.

In both the model and the empirical VAR, inflation and the short rate increase after a positive

shock to the output gap, while the short rate increases after an inflation shock. However,

inflation dampens immediately after a 1% shock to r in the responses generated by our model,

while the empirical VAR has a very weak price puzzle (see comments by Sims, 1992) as

inflation initially slightly increases and then drops below zero about 10 quarters later. There

is no price puzzle in the model-implied VAR dynamics. Overall, we conclude that limiting

the model VAR to exclude lags of the latent factor as in equation (1) is inconsequential as it

captures the same macro variable dynamics.

Latent Factor Dynamics

The monetary policy shocks identified by no arbitrage depend crucially on the behavior of the

latent factor, fu
t . Figure 3 plots the latent factor together with the OLS Taylor rule residual and

the demeaned short rate. We plot the time-series of the latent factor posterior mean produced

from the Gibbs sampler. The plot illustrates the strong relationship between these three series.

The correlation of the time-series of the posterior mean of the latent factor with output gap

(inflation) is -0.10 (0.61). The corresponding correlation implied by the model posterior mean

point estimates is -0.08 (0.61), which is very similar to the correlations computed using the

posterior mean of the latent factor. These strong correlations suggest that simple OLS estimates

of the Taylor rule (11) may be biased in small samples, which we investigate below. The

correlations between fu
t and the yields range between 94% (the short rate) and 98% (the 20-
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quarter yield). Hence, fu
t can be interpreted as level factor, similar to the findings of Ang and

Piazzesi (2003). In comparison, the correlation between fu
t and term spreads is near zero.

Matching Moments of Yields and Macro Variables

Table 3 reports the first and second unconditional moments of yields and macro variables

computed from data and implied by the model. We compute standard errors of the data

estimates using GMM. We also report posterior standard deviations of the model-implied

moments. The moments computed from the model are well within two standard deviations

from their counterparts in data for macro variables (Panel A), yields (Panel B), and correlations

(Panel C). Panel A shows that the model provides an almost exact match with the unconditional

moments of inflation and output gap.

Panel B shows that the autocorrelations in data increase from 0.932 for the short rate to

0.962 for the 5-year yield. In comparison, the model-implied autocorrelations exhibit a smaller

range in point estimates from 0.964 for the short rate to 0.962 for the 2-year yield. However, the

model-implied estimates are well within two standard deviations of the data point estimates.

The smaller range of yield autocorrelations implied by the model is due to having only one

latent factor.

Panel C shows that the model is able to match the correlation of the short rate with output

gap and inflation present in the data. The correlation of the short rate with fu
t implied by the

model is 0.941. This implies that using the short rate to identify monetary policy shocks may

potentially lead to different estimates than the no-arbitrage shocks identified through fu
t .

4.2 What Drives the Dynamics of the Yield Curve?

From the yield equation (7), the variables in Xt explain all yield dynamics in our model. To

understand the role of each state variable in Xt, we compute variance decompositions from

the model and the data. These decompositions are based on Cholesky decompositions of the

innovation variance in the order [gt πt f
u
t ].

Yield Levels

Panel A of Table 4 reports unconditional variance decompositions of yield levels for various

forecasting horizons. The columns under the heading “Risk Premia” report the proportion of
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the forecast variance attributable to time-varying risk premia. The remainder is the proportion

of the variance implied by the predictability embedded in the VAR dynamics without risk

premia, under the EH.

To compute the variance of yields due to risk premia, we partition the bond coefficient bn

on Xt in equation (7) into an EH term and into a risk-premia term:

bn = bEH
n + bRP

n ,

where we compute the bEH
n bond pricing coefficient by setting the prices of risk λ1 = 0. We let

ΩF,h represent the forecast variance of the factors Xt at horizon h, where ΩF,h = var(Xt+h −
Et(Xt+h)). Since yields are given by y

(n)
t = bn + b�n Xt, the forecast variance of the n-maturity

yield at horizon h is given by b�n ΩF,hbn. We compute the unconditional forecast variance using

a horizon of h = 100 quarters.

We decompose the forecast variance of yields as follows:

Risk Premia Proportion =
bRP�
n ΩF,hbRP

n

b�n ΩF,hbn
.

Note that this risk premia proportion reports only the pure risk premia term and ignores any

covariances of the risk premia with the state variables. Panel A of Table 4 shows that risk

premia play important roles in explaining the level of yields. Unconditionally, the pure risk

premia proportion of the 20-quarter yield is 30%. As the maturity increases, the importance of

the risk premia increases. Panel B shows that risk premia matter even more for yield spreads.

Over one half of the variance of yield spreads is due to time-varying risk premia.

The numbers under the line “Variance Decompositions” report the variance decompositions

for the total forecast variance, b�n ΩF,hbn and the pure risk premia variance, bRP�
n ΩF,hbRP

n ,

respectively. The total variance decompositions reveal that, unconditionally, the shocks to

macro variables explain about 65-75% of the total variance of yield levels. Shocks to inflation

are slightly more important than shocks to output gap in explaining the forecast variance of

yield levels. In the pure risk premia term, the proportion of variance attributable to output gap

and inflation is also around 50%.
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Yield Spreads

Panel B of Table 4 reports variance decompositions of yield spreads of maturity n quarters in

excess of the one-quarter yield, y(n)
t − y

(1)
t . The variance decompositions in Panel B document

that shocks to the macro variables are by far the main driving force of yield spreads, with the

unexplained latent factor portion being generally less than 10%. In particular, shocks to output

gap explain more than 62% of the variance of yield spreads and inflation shocks account for

approximately 20% of the unconditional variance of the 5-year spread.

Expected Excess Holding Period Returns

Panel C of Table 4 examines variance decompositions of expected excess holding period

returns. By definition, time-varying expected excess returns must be due only to time-varying

risk premia, which is why the total and pure risk premia variance decompositions are identical.

Panel C shows that the proportion of the expected excess return variance explained by macro

variables is about 50% for all maturities. Inflation is a little more important for explaining

time-varying excess returns than output gap, with the proportion for inflation reaching close to

33% for the 20-quarter bond. Thus, inflation and inflation risk impressively account for over

one half of the dynamics of expected excess returns.2

Table 5 further characterizes conditional expected excess returns. Panel A reports the means

and standard deviations of the approximate excess returns computed from data and implied by

the model. To compute the one-quarter excess returns on holding, say, the 20-quarter bond

from t to t + 1, we would need data on the price of the 19-quarter bond at t + 1. Because of

data availability, we implement the approximation by Campbell and Shiller (1991):

arxt+1 = log
P

(n)
t+1

P
(n)
t

− rt. (25)

Panel A shows that the moments of excess returns computed from the model are nearly identical

to their (approximate) counterparts in data. Hence, our model matches unconditional excess

returns almost exactly. The time-varying prices of risk are essential in this good fit. If λ1 is set

2 We also estimated a simpler system using quarter-on-quarter GDP growth, quarter-on-quarter inflation

(measured using the GDP deflator), and a latent factor with only one lag in the VAR. This system produces similar

variance decomposition attributions for yield levels and expected excess holding period returns, but assigns higher

variance decompositions to inflation than Table 4. This is because the output gap is more persistent than GDP

growth. Nevertheless, the proportion of the risk premia for yield levels, yield spreads, or excess returns, are very

similar using either output gaps or GDP growth.
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to zero, the model’s ability to match excess returns deteriorates substantially, with the model

implied mean (standard deviation) of the excess return on the 20-quarter bond changing to

0.63% (2.78%), compared to 0.23% (3.30%) in the data.

Panel B reports regressions of (approximate) excess returns onto macro factors and yield

variables both in data and implied by the model. We choose the 20-quarter yield to be

representative of a level factor. The predictability of one-quarter excess returns is fairly weak,

compared to the results for longer holding periods reported by Cochrane and Piazzesi (2005).

Nevertheless, comparing the model-implied coefficients with the data reveals that the model

is able to closely match the predictability patterns in the data. In particular, for the excess

returns of longer maturity bonds, the significantly negative (positive) coefficients on inflation

(the 20-quarter yield) are well within one standard deviation of their counterparts in data. The

point estimates of the loadings on the output gap and inflation both increase in magnitude with

maturity, indicating that long bond excess returns are more affected by macro factor variation.

Note that if λ1 were set to zero, the coefficients in the Panel B regressions would be zero,

ignoring approximation and Jensen’s inequality terms.

Panel C reports the coefficients of the conditional (exact) expected excess holding period

return defined in equation (10). To make the coefficients easier to interpret, we report the

summed coefficients on all lags of g and π. The Bx
n coefficients on the contemporaneous and

lagged output gap and inflation are negative, indicating that conditional expected excess returns

are counter-cyclical. High output gaps and high inflation rates are more likely to occur during

the peaks of economic expansions, so excess returns of holding long-term bonds are lowest

during the peaks of economic expansions. The exposure to this counter-cyclical risk premium

also increases as the maturity of the bond increases.

Figure 4 plots the time-series of one-period expected excess holding period returns for the

4-quarter and 20-quarter bond. We compute the expected excess returns using the posterior

mean of the latent factors through the sample. Expected excess returns are much more volatile

for the long maturity bond, reaching a high of over 12% per year during the 1982 recession

and drop below -5% during 1953, 1973 and, 1978. In contrast, expected excess returns for

the 4-quarter bond lie in a more narrow range between -1.3% and 3.8% per year. During

every recession, expected excess returns increase. In particular, the increase in expected excess

returns for the 20-quarter bond at the onset of the 1981 recession is dramatic, rising from 4.0%

per year in March 1981 to 12.9% per year in December 1981.3

3 At 1981:Q4, the 12.9% expected excess return for the 20-quarter bond can be broken down into the various

proportions: 174% to the constant term premium, 10% to the output gap, -65% to inflation, and -19% to the latent
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4.3 A Comparison of Taylor Rules

We now compare the benchmark, backward-looking, and forward-looking Taylor rules

estimated by no-arbitrage techniques. We first discuss the estimates of each Taylor rule in

turn, and then compare the monetary policy shocks computed from various specifications.

The Benchmark Taylor Rule

Panel A of Table 6 contrasts the OLS and model-implied estimates of the benchmark Taylor

rule in equation (11). Over the full sample, the OLS estimate of the output coefficient is 0.34,

and this is highly significant. The model-implied coefficient is similar in magnitude at 0.51.

The OLS estimate of the inflation coefficient is over twice as large at 0.90 and also strongly

significant. In contrast, the model-implied coefficient on πt of 0.24 is much smaller than the

OLS estimate. Hence, OLS over-estimates the response of the Fed on the short rate by over

two-thirds compared to the model-implied estimate.

There are two main reasons for the differences between the standard OLS estimate and

the model-implied coefficients. First, the model accounts for the endogenous fluctuations in

inflation and output, which are correlated with monetary policy shocks. This contemporaneous

correlation causes OLS coefficients to be biased in small samples. Second, the model

estimation extracts information about the policy rule from the entire panel of yield data and

not only the time series of the short rate. This approach increases efficiency, which we can

see from the number in brackets reported below the model and OLS estimates in Table 6.

These numbers must be carefully compared since OLS regressions produce classical standard

errors, while Bayesian estimations produce posterior standard deviations, but we see that our

estimation produces tighter posterior standard deviations than regular OLS standard errors.

To further investigate the difference between OLS and model estimates, we compute the

OLS coefficients and the OLS R2 of the benchmark Taylor rule implied by the model, i.e.,

the model-implied OLS coefficients on gt and πt while omitting the latent factor fu
t from

the equation. These coefficients are 0.005 for the constant, 0.37 (0.91) for the output gap

(inflation) – almost identical to the OLS regression coefficients. Moreover, the model-implied

OLS regression R2 is 57%, very similar to the OLS R2 of 52%. These results suggest that the

larger magnitude of the OLS regression estimate of the inflation coefficient in the benchmark

factor. Note that there is a large exposure, in absolute values, to the macro factors. Although the exposure to

the latent factor is large at this date, the implied monetary policy shock is much smaller, as it is the scaled latent

factor, δ1,ufu
t . We discuss this below in further detail.
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Taylor rule compared to the model-implied coefficient is due to an omitted variable that is

correlated with output gap and inflation.

By estimating the model over the full sample, we follow Christiano, Eichenbaum and Evans

(1996), and others, who all assume that the Taylor rule relationships are stable. Interestingly,

our results for the benchmark Taylor rule are indeed fairly stable when we estimate the

model across different subsamples. (Below we show that this result does not apply to other

specifications of the Taylor rule.) Panel A of Table 6 reports estimates of both OLS Taylor rules

and the benchmark Taylor rule estimated by no-arbitrage restrictions over the pre-1982 and

post-1983 monetary policy regimes.4 For example, the model (OLS) coefficient on inflation

is 0.23 (0.98) over the pre-1982 sample and 0.52 (1.83) over the post-1983 sample, compared

with 0.24 (0.90) over the whole sample. The model coefficients on output gap are also fairly

stable, at 0.41 (0.46) over the pre-1982 (post-1982) period. In contrast, the OLS coefficient

on output gap differs widely across the samples, ranging from 0.28 in the pre-1982 sample

to 0.55 in the post-1982 sample. Hence, the OLS coefficients of output gap are much more

dissimilar across the pre-1982 and post-1983 samples compared to the no-arbitrage Taylor rule

estimation.

The Backward-Looking Taylor Rule

Panel B of Table 6 reports the estimation results for the backward-looking Taylor rule.

Consistent with equation (14), the model coefficients on gt and πt are unchanged from the

benchmark Taylor rule in Panel A at 0.51 and 0.24, respectively. The corresponding OLS

estimates of the backward-looking Taylor rule coefficients on output gap and inflation are

0.38 and 0.32, respectively. Here, OLS estimates of the backward-looking rule are closer

to the model-implied estimates compared to the benchmark Taylor rule, particularly for

contemporaneous and lagged inflation.

As expected, the coefficients on the lagged short rate in both the OLS estimates and the

model-implied estimates are similar to the autocorrelation of the short rate (0.93 in Table 3).

The large and significant coefficient on the lagged short rate reflects interest-rate smoothing.

We can rewrite the backward-looking Taylor rule in partial-adjustment format as follows:

rt = (1 − 0.911)(5.719gt + 2.674πt − 4.180gt−1 − 1.393πt−1) + 0.911rt−1 + εMP,B
t .

4 Several recent studies have emphasized that the linear policy coefficients on the output gap and inflation

potentially vary over time (see, among others, Cogley and Sargent, 2001). However, other authors like Sims and

Zha (2006) find either little or no evidence for time-varying policy rules.
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Hence, our model implies a long-run response to inflation of 2.674 − 1.393 = 1.281. This is

consistent with the Taylor principle that the coefficient on inflation should be larger than one

(see comments by Taylor, 1999).

As already mentioned above, we find that the estimates of the backward-looking Taylor

rule change across subsamples. Panel B in Table 6 shows that interest-rate smoothing is more

important in the post-1983 sample than in the pre-1982 sample. The coefficient on the lagged

interest rate goes up from 0.87 to 0.94 in the model estimation. We also find that the model

estimation finds a higher long-run response to inflation in the more recent sample than in the

earlier sample. These findings – more recently, both interest-rate smoothing and the inflation

response have become stronger – are consistent with those by Clarida, Galı́ and Gertler (2000).

The Taylor Rule with Serially Correlated Shocks

Figure 5 plots the monetary policy shocks of the Taylor rule with serially correlated errors (see

equation (16)) as well as the OLS Taylor rule residual for comparison. Not surprisingly, the

serially correlated shocks are much smoother. As a measure of how much predictable variation

is contained in the short rate as it responds to contemporaneous and lagged macro variables,

we plot the fitted short rate implied from the serially correlated Taylor rule in the bottom panel.

From equation (16), we can construct a fitted short rate, rAR
t , where

rAR
t = ct + Ψt(L)fo

t

is the predictable variation in the short rate from the entire past history of macro factors. The

fitted short rate bears a very high resemblance to the level of the short rate in data, and the

R2 of regressing the short rate in data onto rAR
t is over 71%. Thus, although short rates do

not resemble contemporaneous output gap or inflation, in a serially correlated Taylor rule, the

entire past history of output gap and inflation contains a lot of information about the level of

the short rate.

The Finite-Horizon, Forward-Looking Taylor Rule

In Panel C of Table 6, we list the estimates of the forward-looking Taylor rule coefficients

γ1,g and γ1,π in equation (20) for various horizons k. For all the forward-looking Taylor rules,

we re-estimate the term structure model holding the μ, Φ, and Σ in equation (2) fixed to the

same values as the benchmark estimation, but only report the forward-looking Taylor rule

coefficients for comparison. A different estimation is performed for each horizon k. By holding
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the VAR parameters constant across the specifications, we concentrate only on the effect of

different horizons in the forward-looking Taylor rule, but allow best fits to the prices of risk

across the term structure.

For a one-quarter ahead forward-looking Taylor rule, the coefficient on expected output gap

(inflation) is 0.59 (0.29). These are larger than the contemporaneous responses for output gap

and inflation over the past quarter in the benchmark Taylor rule, which are 0.51 and 0.24,

respectively. For a one-year (k = 4) horizon, the short interest rate responds even more

aggressively to output gap and inflation expectations, with γ1,g = 0.74 and γ1,π = 0.37. The

response of the Fed to future inflation expectations increases quickly as the horizon increases.

As k increases, the posterior standard deviations increase so that the γ1,g and γ1,π

coefficients become less precisely estimated. As k becomes large, the conditional expectations

approach their unconditional expectations, or Et(gt+k,k) → E(gt) and Et(πt+k,k) → E(πt).

Econometrically, this makes γ1,g and γ1,π hard to identify for large k, and unidentified in the

limit as k → ∞. The intuition behind this result is that as k → ∞, the only variable driving

the dynamics of the short rate in equation (20) is the latent monetary policy shock:

rt = γ0 + γ1,gE(gt) + γ1,πE(πt) + εMP,F
t ,

and in the limit as k → ∞, it is impossible to differentiate the (scaled) effect of output gap or

inflation expectations from γ0.

The Infinite-Horizon, Forward-Looking Taylor Rule

We report the estimates of the infinite-horizon, forward-looking Taylor rule (21) in Panel D of

Table 6. The coefficient on future discounted output gap (inflation) is 0.17 (0.05). The discount

rate β = 0.857, which implies an effective horizon of 1/(1 − 0.857) quarters, or 1.75 years.

This estimate is much lower than the discount rates close to 0.99 used in the literature (see,

for example, Rudebusch and Svenson, 1999; Favero and Rovelli, 2003), but still much higher

than the estimate of 0.76 calibrated by Collins and Siklos (2004). The effective horizon of

approximately two years is consistent with transcripts of FOMC meetings, which indicate that

the Fed often weighs forecasts and policy scenarios of up to three to five years ahead.

The Forward- and Backward-Looking Taylor Rule

For completeness, Panel E of Table 6 reports the estimates of the forward- and backward-

looking Taylor rule for horizons of k = 1 and k = 4 quarters. These are the same restricted
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estimations as the forward-looking Taylor rules in Panel C for the corresponding horizons and,

hence, have the same coefficients on Et(gt+k,k) and Et(πt+k,k) as explained in Section 2.7.

Naturally, the lagged short rate continues to play a large role. The summed coefficients on

the lagged output gap and inflation variables cannot be as easily interpreted as the coefficients

on the first lag of macro variables in the backward-looking rule. Nevertheless, the relatively

large magnitude of these coefficients suggest that for traditional forward-looking Taylor rule

estimates which use instruments for Et(gt+k,k) and Et(πt+k,k), long lags of macro variables

would still be necessary to capture the endogenous correlated effects of latent monetary policy

shocks.

4.4 An Example of No-Arbitrage Monetary Policy Shocks

The monetary policy shocks identified by no arbitrage are transformations of either levels or

innovations of the latent factor. There are different no-arbitrage policy shocks depending on the

chosen structural specification, like benchmark, forward-looking, or backward-looking Taylor

rules. Note that the implied policy shock is a choice of a particular structural rule, and the same

reduced-form no-arbitrage model can produce several versions of monetary policy shocks (see

Table 1).

As an example, we graph the model-implied monetary policy shocks based on the

backward-looking Taylor rule in Figure 6 and contrast them with OLS estimates of the

backward Taylor rule. We plot the OLS estimate in the top panel and the model-implied shocks,

εMP,B
t , from equation (14) in the bottom panel. We compute εMP,B

t using the posterior mean

estimates of the latent factor through time. Figure 6 shows that the model-implied shocks

are much smaller than the shocks estimated by OLS. In particular, during the early 1980s,

the OLS shocks range from below -6% to above 4%. In contrast, the model-implied shocks

lie between -3% and 2% during this period. This indicates that according to the no-arbitrage

estimates, the Volcker-experience was not as big a surprise as suggested by OLS. These results

are consistent with our findings that the pre-1982 and post-1983 estimates of the Taylor rule

using no-arbitrage identification techniques are quite similar.

5 Conclusion

We exploit information from the entire term structure to estimate monetary policy rules. The

framework accommodates original Taylor (1993) rules that describe the Fed as reacting to
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current values of output gap and inflation; backward-looking Taylor rules where the Fed reacts

to current and lagged macro variables and lagged policy rates; and forward-lookingTaylor rules

where the Fed takes into account conditional expectations of future real activity and inflation.

The framework also accommodates Taylor rules with serially correlated policy shocks. An

advantage of this approach is that all these types of Taylor rules can be estimated jointly in a

unified system that provides consistent expectations of future interest rates and macro factors.

Our methodology embeds the Taylor rules in a term structure model with time-varying risk

premia that excludes arbitrage opportunities. The absence of arbitrage implies that long yields

are expected values of future short rates after adjusting for risk. The tractability of the system is

based on flexible VAR dynamics for the macro and latent state variables and by specifying risk

premia that are also linear combinations of the VAR state variables. In our model, monetary

policy shocks are transformations of either levels or innovations to the latent factor, depending

on the Taylor rule specification. The cross-equation restrictions implied by no arbitrage help

us to estimate this shock more efficiently.

We find that output gap and inflation shocks account for over half of the time-variation

of time-varying excess bond returns and almost all of the movements in the term spread.

Macro factors induce a counter-cyclical risk premium for holding long-term bonds. We

find that monetary policy rules identified by no-arbitrage are more stable over time than

classical estimates of Taylor (1993) rule coefficients. Monetary policy shocks implied by

backward-looking policy rules estimated with no-arbitrage restrictions are less volatile than

their counterparts estimated by OLS. Interesting extensions of our approach are to impose

more structure on the VAR dynamics, to expand the state space to include other macro factors,

or to embed the no-arbitrage identification techniques in more structural models.
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Appendix

A Forward-Looking Taylor Rules

In this appendix, we describe how to compute δ̄0, δ̄1 in equation (19) of a forward-looking Taylor rule for a k-
quarter horizon. From the dynamics of Xt in equation (2), the conditional expectation of k-quarter ahead GDP
growth and inflation can be written as:

Et(gt+k,k) = Et

(
1
k

k∑
i=1

gt+i

)
=

1
k

e�1

(
k∑

i=1

Φ̃iμ + Φ̃kΦXt

)

Et(πt+k,k) = Et

(
1
k

k∑
i=1

πt+i

)
=

1
k

e�2

(
k∑

i=1

Φ̃iμ + Φ̃kΦXt

)
, (A-1)

where ei is a vector of zeros with a 1 in the ith position, and Φ̃i is given by:

Φ̃i =
i−1∑
j=0

Φj = (I − Φ)−1(I − Φi). (A-2)

The bond price recursions for the standard affine model in equation (8) are thus based on the short rate equation
rt = δ̄0 + δ̄�1 Xt, where:

δ̄0 = γ0 +
1
k

[γ1,ge1 γ1,πe2]�
(

k∑
i=1

Φ̃i

)
μ,

δ�1 =
1
k

[γ1,ge1 γ1,πe2]�Φ̃kΦ + γ1,ue�3 . (A-3)

As k → ∞, both Et(gt+k,k) and Et(πt+k,k) approach their unconditional means and there is no state-
dependence. Hence, the limit of the short rate equation in equation (20) as k → ∞ is:

rt = γ0 + [γ1,ge1 γ1,πe2]�(I − Φ)−1μ + γ1,ufu
t , (A-4)

which implies that when k is large, the short rate effectively becomes a function only of fu
t , and gt and πt can only

indirectly affect the term structure through the feedback in the VAR equation (2). In the limiting case k = ∞, the
coefficients γ1,g and γ1,π are unidentified because they act exactly like the constant term γ0.

B Estimating the Model

We estimate the model by MCMC with a Gibbs sampling algorithm. The parameters of the model are Θ =
(μ, Φ, Σ, δ0, δ1, μQ, ΦQ, ση), where μQ and ΦQ are parameters governing the state variable process under the

risk neutral probability measure, ση denotes the vector of observation error volatilities {σ(n)
η }. We draw μQ and

ΦQ, but invert λ0 and λ1 using λ0 = Σ−1(μ − μQ), and λ1 = Σ−1(Φ − ΦQ). The latent factor fu = {fu
t } is

also generated in each iteration of the Gibbs sampler. We simulate 50,000 iterations of the Gibbs sampler after an
initial burn-in period of 10,000 observations.

We now detail the procedure for drawing each of these variables. We denote the factors X = {Xt} and the

set of yields for all maturities in data as Ŷ = {ŷ(n)
t }. Note that the model-implied yields Y = {y(n)

t } differ from
the yields in data, Ŷ by observation error. Note that observing X is equivalent to observing the term structure Y
through the bond recursions in equation (8).
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Drawing the Latent Factor fu

The factor dynamics (2), together with the yield equations (24), imply that the term structure model can be written
as a state-space system. The state and observation equations for the system are linear in fu

t , but also involve the
macro variables gt and πt. To generate fu , we use the Carter and Kohn (1994) forward-backward algorithm.
We first run the Kalman filter forward taking the macro variables (gt, πt) to be exogenous variables, and then
sample fu backwards. We use a Kalman filter algorithm that includes time-varying exogenous variables in the
state equation. Since we specify the mean of fu to be zero for identification, we set each generated draw of fu to
have a mean of zero.

Drawing μ and Φ

We follow Johannes and Polson (2005) and explicitly differentiate between {μ, Φ} and {μQ, ΦQ}. As Xt follows
a VAR in equation (2), the draw of μ and Φ is standard Gibbs sampling with conjugate normal priors and
posteriors. We note that the posterior of μ and Φ conditional on X, Ŷ and the other parameters is:

P (μ, Φ | Θ−, X, Ŷ ) ∝ P (Ŷ | Θ, X)P (X | μ, Φ, Σ)P (μ, Φ) (B-1)

∝ P (Ŷ | Σ, δ0, δ1, μ
Q, ΦQ, ση, X)P (X | μ, Φ, Σ)P (μ, Φ)

∝ P (X | μ, Φ, Σ)P (μ, Φ),

where Θ− denotes the set of all parameters except μ and Φ. P (X|μ, Φ, Σ) is the likelihood function, which is
normally distributed from the assumption of normality for the errors in the VAR. The validity of going from the
first line to the second line is ensured by the bond recursion in equation (8): given μQ and ΦQ, the bond price is
independent of μ and Φ. We specify the prior P (μ, Φ) to be N(0, 1000), so, consequently, the posterior of (μ, Φ)
is a natural conjugate normal distribution and the draw of μ and Φ is standard Gibbs sampling. We draw μ and Φ
separately for each equation in the VAR system (2).

Drawing ΣΣ�

To draw ΣΣ�, we note that the posterior of ΣΣ� conditional on X, Ŷ and the other parameters is:

P (ΣΣ� | Θ−, X, Ŷ ) ∝ P (Ŷ | Θ, X)P (X | μ, Φ, Σ)P (ΣΣ�), (B-2)

where Θ− denotes the set of all parameters except Σ. This posterior suggests an Independence Metropolis draw.
We draw ΣΣ� from the proposal density q(ΣΣ�) = P (X | μ, Φ, Σ)P (ΣΣ�), which is an Inverse Wishart (IW )
distribution if we specify the prior P (ΣΣ�) to be IW , so that q(ΣΣ�) is an IW natural conjugate. The proposal
draw (ΣΣ�)m+1 for the (m + 1)th draw is then accepted with probability α, where

α = min

{
P ((ΣΣ�)m+1 | Θ−, X, Ŷ )
P ((ΣΣ�)m | Θ−, X, Ŷ )

q((ΣΣ�)m)
q((ΣΣ�)m+1)

, 1

}

= min

{
P (Ŷ | (ΣΣ�)m+1 , Θ−, X)
P (Ŷ | (ΣΣ�)m, Θ−, X)

, 1

}
, (B-3)

where P (Ŷ |μ, Φ, Θ−, X) is the likelihood function, which is normally distributed from the assumption of
normality for the observation errors η(n). From equation (B-3), α is just the ratio of the likelihoods of the new
draw of ΣΣ� relative to the old draw.

Drawing δ1

We draw δ1 using a Random Walk Metropolis step:

δm+1
1 = δm

1 + ζδ1v (B-4)

where v ∼ N(0, 1) and ζδ1 is the scaling factor used to adjust the acceptance rate. The acceptance probability α

30



for δ1 is given by:

α = min

{
P (δm+1

1 | Θ−, X, Ŷ )
P (δm

1 | Θ−, X, Ŷ )
q(δm

1 | δm+1
1 )

q(δm+1
1 | δm

1

, 1

}

= min

{
P (δm+1

1 | Θ−, X, Ŷ )
P (δm

1 | Θ−, X, Ŷ )
, 1

}
, (B-5)

where the posterior P (δ1|Θ−, X, Ŷ ) is given by:

P (δ1|Θ−, X, Ŷ ) ∝ P (Ŷ |δ1, Θ−, X)P (δ1).

Thus, in the case of the draw for δ1, α is the posterior ratio of the new and old draws of δ1. We set δ0 to match the
sample mean of the short rate.

To draw γ1 in the forward-looking Taylor rule system, we rewrite the short rate in data as a regression:

ŷ
(1)
t = γ0 + γ�

1 X̄t + η
(1)
t ,

where X̄t = [Et(gt+k,k Et(πt+k,k) fu
t ]�, and we can compute the conditional expectations for GDP growth and

inflation implied from the VAR parameters at every date t. We generate a proposal draw from the regression for
γ1, and then accept/reject based on the likelihood of the bond yields. We first draw a proposal for the (m + 1)th
value of γ1 from the proposal density:

q(γ1) ∝ P (ŷ(1)
t | γ0, γ1, X, η(1))P (γ1),

where we specify the prior P (γ1) to be normally distributed, so, consequently, q(γ1) is a natural conjugate normal
distribution. The proposal draw γm+1

1 , is then accepted with probability α, where

α = min

{
P (γm+1

1 | Θ−, X, Ŷ )
P (γm

1 | Θ−, X, Ŷ )
q(γm

1 )
q(γm+1

1 )
, 1

}

= min

{
P (Ŷ− | γm+1

1 , Θ−, X)
P (Ŷ− | γm

1 , Θ−, X)
, 1

}
, (B-6)

where P (Ŷ−|γ1, Θ−, X) is the likelihood function of yields other than the short rate r̂, which is normally
distributed from the assumption of normality for the observation errors η(n). We set γ0 to match the sample
mean of the short rate.

Drawing μQ and ΦQ

We draw μQ and ΦQ with a Random Walk Metropolis algorithm. We assume a flat prior. We draw each parameter
separately in μQ, and each row in ΦQ. The accept/reject probability for the draws of μQ and ΦQ is similar to
equation (B-5). In each iteration, we invert λ0 and λ1 and report the estimates of the prices of risk instead of μQ

and ΦQ, as it is easier to interpret market prices of risk than parameters under the risk-neutral measure.

Drawing ση

Drawing the variance of the observation errors, σ2
η, is straightforward, because we can view the observation errors

η as regression residuals from equation (24). We draw the observation variance (σ(n)
η )2 separately from each yield.

We specify a conjugate prior IG(0, 0.00001), so that the posterior distribution of σ2
η is a natural conjugate Inverse

Gamma distribution. The prior information roughly translates into a 30bp bid-ask spread in Treasury securities,
which is consistent with studies on the liquidity of spot Treasury market yields(see, for example, Fleming, 2000).

Drawing β

For the case of the forward-looking Taylor rule over an infinite horizon with discounting, we augment the
parameter space to include the discount rate, β. To draw β, we use an Independence Metropolis-Hastings step.
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The candidate draw, βm+1 , is drawn from a proposal density, q(βm+1 | βm) = q(βm+1), which we specify to
be a doubly truncated normal distribution, with mean 0.95 and standard deviation 0.03 but truncated at 0.8 from
below and at 0.99 from above.

Assuming a flat prior, the acceptance probability α for βm+1 is given by:

α = min

{
P (βm+1 | Θ−, X, Ŷ )
P (βm | Θ−, X, y)

q(βm)
q(βm+1)

, 1

}

= min

{
P (Ŷ | βm+1 , Θ−, X)
P (Ŷ | βm, Θ−, X)

q(βm)
q(βm+1)

, 1

}
, (B-7)

where Θ− represents all the parameters except the β parameter that is being drawn and P (Ŷ |β, Θ−, X) is the
likelihood function.

Scaling Factors and Accept Ratios

The table below lists the scaling factors and acceptance ratios used in the Random Walk Metropolis steps for the
benchmark Taylor rule and backward-looking Taylor rule estimation.

Scaling Acceptance Scaling Acceptance
Parameter Factor Ratio Parameter Factor Ratio

δ1 0.00500 0.296 μQ
1 0.000015 0.408

μQ
2 0.00002 0.324 μQ

3 0.000007 0.368
ΦQ

1,. 0.00070 0.389 ΦQ
2,. 0.001000 0.257

ΦQ
3,. 0.00030 0.362

where μQ = (μQ
1 μQ

2 μQ
3 )� and ΦQ

i,. denotes the element of ΦQ in the ith row.

Checks for Convergence

To check the reliability of our estimation approach, we perform several exercises. First, we tried starting the chain
from many different initial values on real data and we obtained almost exactly the same results for the posterior
means and standard deviations of the parameters. We also check that the posterior distributions for the parameters
Θ are unimodal.

Second, we compute the Raftery and Lewis (1992) minimum burn-in and the minimum number of runs
required to estimate the 0.025 quantile to within ±0.025 with probability 0.95, using every draw in the MCMC-
Gibbs algorithm, which is conservative. For all the parameters (with one exception) and the complete time-series
of the latent factors fu , the minimum required burn-in is only several hundred and the minimum number of runs
is several thousand. This is substantially below the burn-in sample (10,000) and the number of iterations (50,000)
for our estimation.

The third, and probably most compelling check of the estimation method is that the MCMC-Gibbs sampler
works very well on simulated data. We take the posterior means of the parameters in Table 2 as the population
values and simulate a small sample of 203 quarterly observations, which is the same length as our data. Applying
our MCMC algorithm to the simulated small sample, we find that the draws of the VAR parameters (μ, Φ, Σ),
the short rate parameters (δ0, δ1), the constant prices of risk (λ0), and the observation error standard deviations
(σ(n)

η ) converge extremely fast. After our estimation procedure, the posterior means for these parameters are
all well within one posterior standard deviation of the population parameters. We find that a burn-in sample of
only 1,000 observations is sufficient to start drawing values for these parameters that closely correspond to the
population distributions. The time-varying prices of risk (λ1) were estimated less precisely on the simulated data,
but the posterior means of eight out of nine prices of risk were also within one posterior standard deviation of the
population parameters. The algorithm is also successful in estimating the time-series of the latent factor fu, where
the true series of fu in the simulated sample lies within one posterior standard deviation bound of the posterior
mean of the generated fu from the Gibbs sampler.
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In summary, these results verify that we can reliably estimate the parameters of the term structure model
given our sample size and, thus, we are very confident about the convergence of our algorithm.

Econometric Identification

For our benchmark model, our identification strategy is to set the mean of fu
t to be zero and to pin down δ1,u

while the conditional variance matrix ΣΣ� is unconstrained. To ensure that fu
t is mean zero, we parameterize

μ = [μg μπ μf ]� so that μf solves the equation:

e�3 (I − Φ)−1μ = 0,

where e3 is a vector of zeros with a one in the third position. We set δ1,u = 1. We find that fixing δ1,u to other
values does not change the estimates of δ1,o because the latent factor can be arbitrarily scaled.

To match the mean of the short rate in the sample, we set δ0 in each Gibbs iteration so that:

δ0 = r̄ − δ�1 X̄, (B-8)

where r̄ is the average short rate from data and X̄ is the time-series average of the factors Xt, which change
because fu

t is drawn in each iteration. This means that δ0 is not individually drawn as a separate parameter, but
δ0 changes its value in each Gibbs iteration because it is a function of δ1 and the draws of the latent factor fu

t .
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Table 2: PARAMETER ESTIMATES

Factor Dynamics
Companion Form Φ

μ gt−1 πt−1 fu
t−1 gt−2 πt−2 gt−3 πt−3 gt−4 πt−4

gt 0.022 1.037 0.333 0.011 -0.141 -0.453 -0.153 0.298 -0.069 -0.206
(0.032) (0.072) (0.189) (0.031) (0.103) (0.326) (0.102) (0.319) (0.072) (0.183)

πt 0.014 0.060 1.443 -0.012 0.005 -0.449 -0.007 -0.048 0.015 0.040
(0.000) (0.028) (0.073) (0.012) (0.040) (0.127) (0.039) (0.124) (0.028) (0.071)

fu
t -0.081 0.091 0.093 0.911 0 0 0 0 0 0

(0.025) (0.032) (0.026) (0.024) – – – – – –

ΣvΣ�
v × 100, 000

g π fu

g 0.395 0.013 -0.035
(0.041) (0.011) (0.035)

π 0.013 0.057 -0.007
(0.011) (0.006) (0.012)

fu -0.035 -0.007 0.268
(0.035) (0.012) (0.030)

Short Rate Equation
δ1

δ0 gt πt fu
t

0.011 0.509 0.238 1.000
(0.001) (0.044) (0.079) –

Risk Premia Parameters
λ̄1

λ̄0 gt πt fu
t gt−1 πt−1 gt−2 πt−2 gt−3 πt−4

g -1.39 84.3 59.7 -74.5 81.6 20.9 -59.6 -42.2 -116 -8.32
(0.38) (47.7) (98.8) (21.0) (55.3) (164) (53.2) (161) (68.6) (92.8)

π 1.29 25.7 -20.0 -53.5 -143 205 -92.4 -18.4 179 -99.8
( 0.38) (81.1) (108) (66.1) (73.4) (190) (70.5) (174.9) (61.0) (126)

fu -0.31 -14.3 0.76 -24.0 12.7 30.2 -4.00 4.21 37.9 -0.26
( 0.22) (29.5) (26.1) (18.1) (18.0) (36.5) (18.6) (34.5) (20.7) (20.6)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σ
(n)
η 0.177 0.111 0.056 0.034 0.046 0.064

(0.009) (0.006) (0.004) (0.002) (0.003) (0.004)

Note: The table lists parameter values for the model in equations (2)-(5) and observation error standard
deviations in equation (24) for yields of maturity n quarters. We use 50,000 simulations after a burn-in
sample of 10,000 for the Gibbs sampler. We report the posterior mean and posterior standard deviation (in
parentheses) of each parameter. The sample period is June 1952 to December 2004 and the data frequency is
quarterly.
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Table 3: SUMMARY STATISTICS

PANEL A: MOMENTS OF MACRO FACTORS

Means % Standard Deviations % Autocorrelations

Data Model Data Model Data Model

g 0.000 -0.010 0.400 0.428 0.841 0.847
(0.051) (0.078) (0.033) (0.047) (0.041) (0.024)

π 0.866 0.875 0.567 0.675 0.984 0.986
(0.086) (0.509) (0.066) (0.256) (0.026) (0.005)

PANEL B: MOMENTS OF YIELDS

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

Means

Data 1.307 1.412 1.464 1.507 1.540 1.560
(0.108) (0.109) (0.108) (0.105) (0.104) (0.103)

Model 1.307 1.402 1.462 1.509 1.540 1.559
– (0.006) (0.003) (0.002) (0.002) (0.004)

Standard Deviations

Data 0.731 0.733 0.722 0.702 0.694 0.682
(0.091) (0.082) (0.081) (0.079) (0.079) (0.076)

Model 0.721 0.718 0.714 0.706 0.692 0.675
(0.009) (0.006) (0.003) (0.003) (0.004) (0.005)

Autocorrelations

Data 0.932 0.940 0.949 0.955 0.959 0.962
(0.031) (0.030) (0.028) (0.027) (0.027) (0.025)

Model 0.964 0.963 0.962 0.963 0.963 0.964
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

PANEL C: SHORT RATE CORRELATIONS

g π fu

Data 0.188 0.696 –
(0.138) (0.075)

r 0.228 0.714 0.941
(0.124) (0.134) (0.031)

Note: Panel A lists moments of the output gap and inflation in data and implied by the model. For the
model, we construct the posterior distribution of unconditional moments by computing the unconditional
moments implied from the parameters in each iteration of the Gibbs sampler. Panel B reports data and model
unconditional moments of n-quarter maturity yields. We compute the posterior distribution of the model-
implied yields using the generated latent factors in each iteration. In Panel C, we report correlations of the
short rate with various factors. For the model, we compute the posterior distribution of the correlations of
the model-implied short rate r in equation (3). In all the panels, the data standard errors (in parentheses) are
computed using GMM and all moments are computed at a quarterly frequency. For the model, we report
posterior means and standard deviations (in parentheses) of each moment. The sample period is June 1952 to
December 2004 and the data frequency is quarterly.
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Table 4: VARIANCE DECOMPOSITIONS

Variance Decompositions

Total Risk Premia

Maturity (qtrs) Risk Premia g π fu g π fu

PANEL A: YIELD LEVELS y
(n)
t

1 0.0 35.4 38.4 26.2 – – –
4 2.0 32.9 38.4 28.8 22.4 28.9 48.7
8 8.4 30.4 37.8 31.8 11.4 30.9 57.7
12 16.0 28.9 37.7 33.4 11.3 29.0 59.7
16 23.1 28.2 37.8 34.0 12.4 27.8 59.7
20 29.5 27.8 38.0 34.2 13.2 27.1 59.7

PANEL B: YIELD SPREADS y
(n)
t − y

(1)
t

4 52.7 62.2 28.3 9.5 22.4 28.9 48.7
8 55.7 68.2 21.1 10.8 11.4 30.9 57.7
12 55.4 73.1 19.9 7.0 11.3 29.0 59.7
16 53.2 76.6 20.1 3.4 12.4 27.8 59.7
20 50.2 78.0 20.8 1.1 13.2 27.1 59.7

PANEL C: EXPECTED EXCESS HOLDING PERIOD RETURNS Et(rx
(n)
t+1)

4 100 24.3 28.1 47.6 24.3 28.1 47.6
8 100 19.8 30.5 49.7 19.8 30.5 49.7
12 100 18.6 31.6 49.8 18.6 31.6 49.8
16 100 18.2 32.4 49.3 18.2 32.4 49.3
20 100 18.3 32.9 48.8 18.3 32.9 48.8

Note: The table reports unconditional variance decompositions of forecast variance (in percentages) for yield
levels y

(n)
t in Panel A; yield spreads y

(n)
t −y

(1)
t in Panel B; and unconditional expected excess holding period

returns E(rx(n)
t+1) = E(ny

(n)
t − (n − 1)y(n−1)

t+1 − rt) in Panel C. In each panel, we also examine the variance
decomposition due to time-varying risk premia. By definition, the variance decompositions of time-varying
expected excess holding period returns must be due only to time-varying risk premia. All maturities are
in quarters. We ignore observation error for computing variance decompositions for yield levels and yield
spreads. All the variance decompositions are computed using the posterior mean of the parameters listed in
Table 2.
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Table 5: CHARACTERIZING EXCESS RETURNS

PANEL A: MOMENTS OF EXCESS RETURN

n = 4 n = 8 n = 12 n = 16 n = 20

Means

Data 0.102 0.149 0.188 0.212 0.226
(0.047) (0.102) (0.149) (0.196) (0.229)

Model 0.095 0.157 0.204 0.236 0.254
(0.014) (0.021) (0.027) (0.038) (0.055)

Standard Deviations

Data 0.748 1.547 2.194 2.783 3.297
(0.128) (0.219) (0.257) (0.288) (0.332)

Model 0.612 1.434 2.213 2.936 3.609
(0.034) (0.079) (0.122) (0.160) (0.198)

PANEL B: PREDICTABILITY REGRESSIONS

Data Estimates Model-Implied Estimates

g π y(20) R2 g π y(20) R2

n = 4 -0.151 -0.284 0.338 0.060 -0.176 -0.272 0.304 0.093
(0.108) (0.145) (0.117) (0.107) (0.099) (0.083)

n = 12 -0.520 -1.125 1.077 0.077 -0.531 -1.155 1.131 0.096
(0.320) (0.430) (0.359) (0.385) (0.361) (0.305)

n = 20 -0.683 -1.853 1.662 0.082 -0.844 -1.943 1.811 0.096
(0.485) (0.650) (0.536) (0.631) (0.597) (0.503)

PANEL C: FACTOR COEFFICIENTS

Maturity (qtrs)

4 8 12 16 20

Ax
n 0.004 0.009 0.012 0.015 0.018

Bx
n g -0.103 -0.262 -0.444 -0.618 -0.777

π -0.313 -0.733 -1.090 -1.411 -1.706
fu 0.357 0.791 1.125 1.410 1.669
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Note: Panel A lists moments of one-quarter approximate excess holding period returns, arx
(n)
t+1, in the

data and implied by the model (see equation (25)). For the model, we construct the posterior distribution
of unconditional moments by computing the unconditional moments implied from the parameters in each
iteration of the Gibbs sampler. Panel B regresses one-quarter approximate excess holding period returns for
an n-period bond, arx

(n)
t+1 onto the output gap, inflation, and the 20-quarter bond yield. The standard errors

for the OLS estimates from data (in parentheses) are computed using robust standard errors. We compute the
model-implied coefficients and R2 as follows. We construct the posterior distributions of the model-implied
estimates by computing the implied coefficients from the model parameters in each iteration of the Gibbs
sampler. We report posterior means and standard deviations (in parentheses) of each coefficient. Panel C
reports the coefficients, summing the values over all lags of each factor, of the conditional expected excess
holding period return defined in equation (10) on the factors. The data frequency is quarterly and the sample
period is June 1952 to December 2004.
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Table 6: TAYLOR RULES

PANEL A: BENCHMARK TAYLOR RULE

Full Sample Pre-82:Q4 Post-83:Q1

OLS Model OLS Model OLS Model

const 0.005 0.011 0.003 0.011 0.002 0.010
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

gt 0.338 0.509 0.283 0.503 0.548 0.457
(0.095) (0.044) (0.282) (0.103) (0.182) (0.103)

πt 0.900 0.238 0.979 0.229 1.825 0.572
(0.135) (0.079) (0.417) (0.079) (0.165) (0.167)

PANEL B: BACKWARD-LOOKING TAYLOR RULE

const gt πt gt−1 πt−1 rt−1 R2

Full Sample OLS 0.000 0.380 0.322 -0.268 -0.181 0.866 0.897
(0.000) (0.107) (0.248) (0.117) (0.237) (0.043)

Model 0.000 0.509 0.238 -0.372 -0.124 0.911 0.950
(0.000) (0.044) (0.079) (0.049) (0.083) (0.024)

Pre-82:Q4 OLS 0.001 0.345 0.241 -0.183 -0.011 0.774 0.881
Model 0.000 0.503 0.229 -0.323 -0.068 0.870 0.938

Post-83:Q1 OLS 0.000 0.516 0.791 -0.461 -0.761 0.960 0.956
Model 0.000 0.457 0.519 -0.441 -0.403 0.941 0.912

PANEL C: FINITE-HORIZON,
FORWARD-LOOKING TAYLOR RULE

const Et(gt+k,k) Et(πt+k,k)

k = 1 0.011 0.590 0.292
(0.001) (0.030) (0.016)

k = 4 0.010 0.741 0.365
(0.001) (0.039) (0.016)

k = 8 0.009 0.975 0.486
(0.001) (0.078) (0.016)

k = 20 0.007 0.903 0.708
(0.001) (0.163) (0.027)
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Table 6 Continued

PANEL D: INFINITE-HORIZON,
FORWARD-LOOKING TAYLOR RULE

const ĝt π̂t β

k = ∞ 0.010 0.168 0.054 0.857
(0.001) (0.008) (0.002) (0.007)

PANEL E: FORWARD- AND BACKWARD-LOOKING TAYLOR RULE

const Et(gt+k,k) Et(πt+k,k) Lags of g Lags of π rt−1 R2

k = 1 0.000 0.590 0.292 -0.672 -0.785 0.908 0.951
(0.000) (0.030) (0.016) (0.037) (0.028) (0.001)

k = 4 -0.001 0.741 0.365 -0.867 -1.318 0.911 0.950
(0.000) (0.039) (0.016) (0.047) (0.053) (0.001)

Note: Panel A reports the OLS and model-implied estimates of the benchmark Taylor (1993) rule in equation
(11) over the full sample and over subperiods; Panel B reports the backward-lookingTaylor rule (12); Panel C
reports the finite-horizon, forward-looking Taylor rule without discounting in equation (20); Panel D reports
the infinite-horizon, forward-looking Taylor rule with discounting in equation (21); and Panel E reports
estimates of the forward- and backward-looking Taylor rule in Section 2.7. In Panel E, we report the sums
of the coefficients of the output gap and inflation over all four lags. For the forward-looking Taylor rules in
Panels C-E, we hold the estimates of the VAR parameters in equation (2) and re-estimate the forward-looking
Taylor rule coefficients together with the prices of risk. For the model-implied coefficients, we construct
the posterior distribution of Taylor rule coefficients by computing the implied coefficients from the model
parameters in each iteration of the Gibbs sampler. We report posterior means and standard deviations (in
parentheses) of each coefficient. The standard errors for the OLS estimates (in parentheses) are computed
using robust standard errors. In each panel, the data frequency is quarterly and the full sample period is from
June 1952 to December 2004.
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Figure 1: OUTPUT GAP, INFLATION, AND SHORT RATE
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We plot the output gap, year-on-year inflation measured by the GDP deflator and the 1-quarter maturity short
rate.
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Figure 2: IMPULSE RESPONSE FUNCTIONS
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The panels show responses of the output gap, inflation, and the short rate to 1% shocks to the output gap
g, inflation π, and the short rate r. The left column shows responses implied by the model, while the right
column presents response functions computed from an unrestricted VAR(4) of (gt πt rt)�. We compute the
1% r shock from the model by scaling an f shock so that the short rate changes by 1%. We show quarters
on the x-axis. The impulse responses are computed using a Cholesky decomposition that orders the variables
(g, π, f) for the model and (g, π, r) for the unrestricted VAR.
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Figure 3: LATENT FACTOR, SHORT RATE, AND THE OLS BENCHMARK TAYLOR RULE
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We plot the posterior mean of the latent factor fu
t , the demeaned short rate from data, and the residuals from

the OLS estimate of the basic Taylor Rule, which is computed by running OLS on equation (11). The latent
factor, short rate, and OLS residuals are all annualized.
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Figure 4: EXPECTED EXCESS BOND RETURNS
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We plot the conditional expected excess holding period return Et[rx
(n)
t+1] of a 4-quarter and 20-quarter bond

implied by the posterior mean of the latent factors through time. The numbers on the y-axis are in percentage
terms per annum.
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Figure 5: SERIALLY CORRELATED MONETARY POLICY SHOCKS
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In the top panel, we plot the residuals from the OLS estimate of the basic Taylor Rule, which is computed
by running OLS on equation (11) and the posterior mean estimates of monetary policy shocks from a Taylor
rule with serially correlated shocks (εMP,AR

t in equation (16)). The bottom panel plots the short rate data
and rAR, which is the fitted short rate using equation (16), rAR

t = ct + Ψt(L)fo
t . In both the top and bottom

panels, we plot annualized numbers.
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Figure 6: BACKWARD-LOOKING MONETARY POLICY SHOCKS
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In the top panel, we plot the OLS estimates of the residuals of the backwards-looking Taylor rule (12). The
bottom panel plots the corresponding model-implied monetary policy shocks, which are the posterior mean
estimates of εMP,B

t = δ12v
u
t from equation (14). In both the top and bottom panels, we plot annualized

monetary policy shocks. NBER recessions are shown as shaded bars.
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