The short rate disconnect in a monetary economy

Moritz Lenel Monika Piazzesi Martin Schneider
Princeton Stanford & NBER Stanford & NBER

January 20, 2019

Abstract

In modern monetary economies, most payments are made with inside money provided by payment intermediaries. This paper studies interest rate dynamics when payment intermediaries value short bonds as collateral to back inside money. We estimate intermediary Euler equations that relate the short safe rate to other interest rates as well as intermediary leverage and portfolio risk. Towards the end of economic booms, the short rate set by the central bank disconnects from other interest rates: as collateral becomes scarce and spreads widen, payment intermediaries reduce leverage and increase portfolio risk. Structural change induces low frequency shifts that mask otherwise stable business cycle relationships.

*Email addresses: lenel@princeton.edu, piazzesi@stanford.edu, schneidr@stanford.edu. We thank Oreste Tristani and Tyler Muir for helpful comments.
1 Introduction

Current research on monetary policy relies heavily on standard asset pricing theory. Indeed, it assumes the existence of real and nominal pricing kernels that can be used to value all assets. Moreover, the central bank’s policy rate is typically identified with the short rate in the nominal pricing kernel. With nominal rigidities as in the New Keynesian framework, the central bank then has a powerful lever to affect valuation of all assets – nominal and real – and hence intertemporal decisions in the economy. Focus on this lever makes the pricing kernel a central element of policy transmission.

In spite of its policy relevance, empirical support for monetary asset pricing models has been mixed at best. Models that fit the dynamics of long duration assets, such as equity and long term bonds, often struggle to also fit the policy rate. This is true not only for consumption based asset pricing models that attempt to relate asset prices to the risk properties of growth and inflation, but also for more reduced form approaches such as arbitrage-free models of the yield curve. The finding is typically attributed informally to a convenience yield on short term debt. We refer to it as the "short rate disconnect".

This paper proposes and quantitatively assesses a theory of the short rate disconnect that is based on the role of banks in the payment system. We start from the fact that short safe instruments that earn the policy rate are predominantly held by intermediaries, in particular banks and money market mutual funds. We argue that these intermediaries are on the margin between short safe debt and other fixed income claims. We derive new asset pricing equations that relate the short rate to bank balance sheet ratios. We show that these equations account quite well for the short rate disconnect, especially at business cycle frequencies.

Our asset pricing equations follow from the fact that banks issue short nominal debt used for payments. In our model, leverage requires collateral, and the ideal collateral to back short nominal debt is in turn short nominal debt. When such debt becomes more scarce, its equilibrium price rises and the short interest rate falls. In particular, the market short rate disconnects from the short rate of the nominal pricing kernel used to value other assets, such as long term bonds or equity.

Empirically, our approach places restrictions on the joint dynamics of the yield curve and bank balance sheets that we evaluate with US data since the 1970s. Our measure of short rate disconnect is the spread between a "shadow" short rate, which we measure as the short end of a yield curve model estimated with only medium and long maturity Treasury, and the three month T-bill rate. This "shadow spread" consistently rises at the end of booms. As safe collateral becomes scarce, banks increase the share of risky collateral and thereby have a riskier portfolio overall. At the same time, banks lower risk by reducing their leverage, as our
theory predicts.

An important feature of our theory is that banks choose both their leverage ratios and the share of short safe bonds in their asset portfolio. Optimal leverage trades off low interest rates (due to the liquidity benefit of inside money) against an increasing marginal cost of leverage, as in models with bankruptcy costs. The optimal safe portfolio share trades off the higher return on risky instruments (which are not disconnected) against the cost of backing inside money with worse collateral. We note that the key benefit of leverage in our model is not to take more risk. Instead, it is to produce more money for given equity, which is cheaper to do when the bank is safer.

Adjustment along both margins is crucial for our model to account for the comovement of the safe share, leverage, and the shadow spread in the data. Indeed, a higher shadow spread makes safe bonds more costly to hold, and banks shift their asset portfolio towards risky instruments. As a result, leverage becomes more costly and is optimally reduced. In contrast, a lower shadow spread pushes banks towards safer collateral and higher leverage. We note that in our model leverage is not synonymous with risk: in fact, times of high leverage are times of low portfolio risk. We thus obtain countercyclical leverage together with procyclical risk taking.

Given the observed dynamics of the shadow spread, the model is successful in capturing the joint movements of bank leverage and portfolio shares at business cycle frequencies. The model also does well at lower frequencies. For example, the 1980s saw a strong increase in the shadow spread that coincided with particularly low bank leverage, which our models predicts both qualitatively and quantitatively. However, the predicted level of leverage deviates at times from the data, in particular after 2008, when our model cannot explain all of the observed increase in bank leverage. We therefore ask which changes in the asset management cost function of banks may explain these deviations. We find that a one-time increase in fixed asset management cost can capture the increase in leverage post 2008. When allowing for slow moving shifts in the cost function parameters over the whole sample, the model captures the low frequency trends in bank leverage while maintaining the fit at business cycle frequencies.

Our results call into question the traditional account of how monetary policy is transmitted to the real economy. Systematic movement in the shadow spread suggests that the central bank does not control the short rate of the nominal pricing kernel. Its impact on intertemporal decisions of households and firms is thus less direct than what most models assume. Instead, the fit of our bank-based asset pricing equations suggest that transmission works at least to some extent through bank balance sheets. As a result, monetary policy and macroprudential policy are likely to both matter for the course of interest rates.
Formally, our model describes the behavior of a competitive banking sector that maximizes shareholder value subject to financial frictions. We capture the nonfinancial sector by two standard elements: a pricing kernel used by investors to value assets – in particular bank equity – and a broad money demand equation that relates the quantity of deposits to their opportunity cost. We also specify an incomplete asset market structure: banks can invest in reserves, short safe bonds that earn the policy rate, as well as a risky asset that stands in for other fixed income claims available to banks such as loans.

The key friction faced by banks is that delegated asset management is costly, and more so if it is financed by debt. We assume that a bank financed by equity only requires a proportional management fee per unit of assets. If the bank also issues deposits, this resource cost per unit of assets increases with bank leverage. One interpretation is that debt generates the possibility of bankruptcy, which entails deadweight costs proportional to assets. Since banks issue short nominal debt, they place a particular value on short nominal debt as collateral. It is this collateral benefit of short debt that generates the short rate disconnect in our model.

We then solve banks’ optimization problem and evaluate their first order conditions. We show that there is no disconnect when bank assets are safe: banks only hold reserves and short nominal bonds. More generally, however, the collateral benefit of short bonds generates a wedge between the market short rate and the short rate in the nominal pricing kernel. This wedge is captured by the shadow spread which is high during times when banks have a large share of their portfolio invested in risky assets. During these times, banks do not have much good collateral and therefore place a particularly high value on short nominal bonds relative to other investors in the economy. The banks’ optimization problem also implies that when the shadow spread is high, banks counteract the increase in risk on their asset side by reducing risk on their liability side. During these times, banks thus reduce their leverage.

To measure the positions of payment intermediaries, we consolidate bank balance sheets with those of money market funds. These funds are also regularly used for payments by households and corporations. The raw fact that provides evidence for our mechanism is that payment intermediaries have a portfolio share of safe assets as well as a leverage ratio that are both strongly negatively correlated with the shadow spread, both at business cycle frequencies and over longer periods. We define safe assets as assets with short maturity that are nominally safe (such as reserves, vault cash, and government bonds). We further define leverage as the ratio of inside money to total fixed income assets. To measure inside money, we use a broad concept of money that includes money market accounts.

Related literature

Our approach follows the spirit of consumption-based asset pricing pioneered by Breeden.
we test valuation equations that must hold in general equilibrium, without taking a stand on many other features of the economy, in particular the structure of the household sector and the technology and pricing policy of firms. Since we only require a pricing kernel and a money demand function, our approach is thus equally consistent with the supply side of a real business cycle and of the New Keynesian model: in both cases, the two elements can be derived from representative agent optimization. Our model is also consistent with heterogeneous agent models as long as there is a set of state prices used to evaluate shareholder value of banks.

The short rate disconnect has also been documented in Duffee (1996). The phenomenon is well known in the literature on arbitrage-free yield curve models, which struggle to fit the short end. Our explanation builds on the idea that bonds have a convenience yield. The idea is often formalized with a utility benefit from bonds (Patinkin (1956), Tobin (1963)), analogously to the utility benefit of money (Sidrauski (1967)). Recent examples include Bansal and Coleman (1996), Krishnamurthy and Vissing-Jørgensen (2012) and Nagel (2016). Alternatively, bonds can relax constraints associated with making payments, similar to a cash-in-advance constraint for money (Clower 1967). For work along these lines, see Venkateswaran and Wright (2014) and Andolfatto and Williamson (2015).

We share the goal of a growing intermediary-based asset pricing literature to study the relationship between asset prices and balance sheet ratios that hold in equilibrium, without taking a stand on what the rest of the economy looks like. Examples are Brunnermeier and Pedersen (2009), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Adrien, Etula, and Muir (2014), Greenwood and Vayanos (2014), Koijen and Yogo (2015), Bocola (2016), Moreira and Savov (2017), He, Kelly, and Manela (2017), Muir (2017), Haddad and Sraer (2018), and Haddad and Muir (2018). A key difference between the our paper and this literature is that our banks are not investors with preferences that differ from those of households, but instead shareholder maximizing firms owned by households. As in Piazzesi and Schneider (2018), we thus endogenize households’ decisions to hold some assets directly and others indirectly through banks.

Our theory is based on the scarcity of safe short assets available to banks, which is distinct from the scarcity of reserves. In recent years, reserves have made up an important share of banks’ safe assets. The scarcity of reserves is measured by the spread between a short rate (such as the three month T-bill rate) and the interest rate on reserves. This spread was positive before 2008 but negative thereafter. In contrast, the short rate disconnect we document is present both before and after 2008. Our paper is thus only tangentially related to work on bank liquidity management (for example, Bhattacharya and Gale 1987, Whitesell 2006, Cúrdia and Woodford 2011, Reis 2016, Bianchi and Bigio 2014, Drechsler, Savov, and Schnabl 2018)
De Fiore, Hoerova, and Uhlig (2018) consider a model that incorporates both bank liquidity management and a scarcity of bank collateral as in the present paper and derive its implications for monetary policy.

In the wake of the recent financial crisis, a growing literature studies monetary policy when banks face financial frictions. One strand assumes that banks have a special ability to lend, and hence add value via positions on the asset side of their balance sheets (for example, Cúrdia and Woodford 2010, Gertler and Karadi 2011, Gertler, Kiyotaki, and Queralto 2012, Christiano, Motto, and Rostagno 2014, Negro, Eggertsson, Ferrero, and Kiyotaki 2017, Brunnermeier and Sannikov 2016, Christiano, Motto, and Rostagno 2012, Del Negro, Eggertsson, Ferrero, and Kiyotaki 2017, and Brunnermeier and Koby (2018). These papers also distinguish assets priced by banks – for example bank loans – from assets priced by households, which include the policy instrument. Policy transmission depends on pass-through from the policy rate (which aligns with households’ expected marginal rate of substitution) to the loan rate and hence to bank-dependent borrowers.

In contrast, our model features a short rate disconnect because the policy instrument is priced only by intermediaries. Our model thus says that policy transmission depends on the pass-through from the policy rate to the shadow rate – only the latter aligns with households’ expected marginal rate of substitution. Piazzesi, Rogers, and Schneider (2018) show how the disconnect dampens the effects of policy in a New Keynesian model since the central bank no longer has a direct lever to affect households’ marginal rate of substitution, and hence any intertemporal decisions of households.

Our paper assumes that banks have a special ability to provide inside money as a medium of exchange. We share this "liability centric" view of banking with e.g. Williamson (2012), Williamson (2016), Hanson, Shleifer, Stein, and Vishny (2015), and Di Tella and Kurlat (2017). As in these papers, banks’ portfolio choice in our model is shaped by banks’ ability to fund themselves with deposits. In our case, banks value short safe debt as particularly good collateral for inside money, which serves as the only medium of exchange.

2 A model of the short rate disconnect

We study an economy with a single consumption good and an infinite horizon. There is a group of agents, whom we will call "investors", who hold bank equity as well as other risky assets directly. Investors use inside money as a payment instrument. The inside money is provided by competitive banks. We do not model in detail what the investor sector does: Section 2.1 simply summarizes how that sector values assets, including inside money. With this approach, we can focus on a model mechanism that is robust to what exactly the "real
economy” looks like. Section 2.2 then lays out the problem of the banking system, and Section 2.3 derives the key asset pricing conditions that must hold in equilibrium.

2.1 Environment and household preferences

Let M_{t+1} denote the real pricing kernel for investors. It is a random variable that represents the date t value, in consumption goods, of contingent claims that pay off one unit of the consumption good in various states of the world at date $t+1$, normalized by the relevant conditional probabilities. For example, in an economy with a representative household, M_{t+1} is equal to the household’s marginal rate of substitution between wealth at dates t and $t+1$.

The price of any asset held by investors in equilibrium is given by the present value of payoffs – in consumption goods – discounted with the pricing kernel. In particular, the value of a bank is given by the present value of its payout to shareholders, to be described below. Moreover, we think of this pricing kernel as determining real intertemporal decisions in the economy.

Since we are interested in nominal interest rates, it is helpful to introduce additional notation for the valuation of nominal claims. Let P_t denote the price of goods in terms of dollars and define the nominal pricing kernel as $M^{\text{S}}_{t+1} = M_{t+1}P_t/P_{t+1}$. With this change of numeraire, M^{S}_{t+1} represents (normalized) date t values, in dollars, of contingent claims that pay off one dollar in various states of the world at date $t+1$. We also define a nominal one period safe interest rate by

$$1 = E_t \left[M^{\text{S}}_{t+1} \right] (1 + i^S_t).$$

We refer to i^S_t, the short rate in the nominal pricing kernel, as the *shadow rate*.

We assume that investors cannot borrow at the shadow rate. This assumption is sensible as long as private agents cannot issue perfectly safe debt. It implies that the shadow rate serves as an upper bound on the market nominal rate on short safe debt, denoted i^B_t. The two rates are equal only if investors directly hold short safe debt. The short rate disconnect occurs when the market rate drops below the shadow rate. In this case, investors perceive short nominal bonds as too expensive and do not hold them directly. As we will see, this scenario is consistent with equilibrium because banks may value short nominal bonds more than investors.

Finally, consider the valuation of inside money, or deposits, by investors. We assume that investors rely on deposits to make transactions and are therefore willing to accept an interest rate on deposits i^D_t that is below the shadow rate. The opportunity cost of money $i^S_t - i^D_t$ reflects the value of money for making payments. It is declining in real balances held by the rest of the economy: the marginal benefit of payment instruments is declining in the overall quantity held. Formally, we model the payment benefits as a decreasing convex “money
demand” function v:

$$v_t(D_t/P_t) = \frac{i_t^S - i_t^D}{1 + i_t^S},$$

(2)

where D_t denotes the dollar value of deposits, or inside money. The dependence on t here stands in for other forces that affect money demand, for example the level of consumption.

2.2 Payment intermediaries

Payment intermediaries provide inside money to investors. In the U.S. economy, they consist not only of traditional depository institutions but also of money market funds. We consolidate all payment intermediaries and refer to them as "banks" for short. Banks issue nominal deposits D_t to the rest of the economy and purchase assets worth A_t dollars to back those deposits. They maximize shareholder value. We allow shareholders to freely adjust equity every period and hence focus on a one period ahead portfolio and leverage choice.

Banks have access to three classes of assets: short safe debt that pays the market rate i_t^B, reserves and risky bonds. Reserves are short safe bonds that pay a nominal reserve rate i_t^M set by the central bank. Risky bonds deliver a stochastic real rate of return r_{t+1}^L. We describe a bank’s portfolio by its share of reserves a_t^M in total assets as well as the share of other short safe bonds a_t^B in assets. The real rate of return r_{t+1}^L on the bank’s asset portfolio is a weighted average of the returns on reserves, safe bonds, and risky bonds. We also define bank leverage at date t as the ratio of promised deposit payoffs to assets

$$\ell_t = \frac{D_t(1+i_t^D)}{A_t}.$$

(3)

All ingredients of the leverage ratio are known as of date t, so ℓ_t is part of the description of bank policy at date t.

Banks’ technology is described by two cost functions. First, we introduce a cost of delegated portfolio management. The idea is that agency problems always entail costs, but that those are compounded when the value of assets falls short of the promised payoff on debt. We thus assume that, for each dollar of assets acquired at date t, the bank incurs an asset management cost of $k(\tilde{\ell}_{t+1})$ dollars at date $t + 1$, where $\tilde{\ell}_{t+1}$ is an ex post measure of leverage, namely the ratio of deposits to the stochastic payoff on assets at $t + 1$:

$$\tilde{\ell}_{t+1} = \frac{\ell_t}{(1 + r_{t+1}^A)P_{t+1}/P_t}.$$

(4)

1In practice, money market mutual funds keep their assets at custodian banks and rely on the latter’s access to Fedwire and other payment systems for their payment services. For an aggregate approach that distinguishes only between payment intermediaries and an investor sector, it thus makes sense to consolidate.
For given leverage chosen at date \(t \), ex post leverage is high if the nominal return on assets in the denominator is low – a shortfall of assets relative to promised debt.

The function \(k \) is strictly increasing and convex in \(\tilde{\ell}^2 \). It starts at \(k(0) > 0 \): even an equity financed bank incurs some asset management cost. Leverage then raises costs at an increasing rate and a bank without equity is not viable. Convexity of the cost function thus effectively makes the bank more averse to risk than what would be implied by shareholders’ pricing kernel \(M_{t+1} \) alone. This type of cost can be microfounded by a setup with bankruptcy costs: suppose, for example, banks incur a deadweight cost – a share of assets is lost in reorganization – whenever the return on assets falls below a multiple of debt.

Our second cost function captures the idea that reserves are liquid instruments that help banks meet liquidity shocks. Banks face such shocks because their debt is inside money used for payments. We assume that, for each dollar of deposit issued at date \(t \), the bank incurs a liquidity cost of \(f(m_t) \) dollars at date \(t+1 \), where \(m_t \) is the ratio of reserves to average depositors’ transactions

\[
m_t := \frac{\alpha^M M_t}{\zeta_t D_t}.
\]

The average propensity to use deposits for payments \(\zeta_t \) is known to the bank at date \(t \). The function \(f \) is strictly decreasing, convex, and converges to zero as \(m_t \) becomes large. The presence of liquidity costs is not essential for the short rate disconnect to obtain. They are useful, however, to contrast the scarcity of short safe debt that gives rise to the short rate disconnect in our model to the scarcity of reserves that ended with quantitative easing programs.

At date \(t \), a bank acquires \(A_t \) dollars worth of assets and issues \(D_t \) dollars worth of deposits; shareholders’ equity is \(A_t - D_t \). It chooses nonnegative assets, deposits as well as nonnegative balance sheet ratios \(\alpha^M, \alpha^B \) and \(\ell_t \) with \(\alpha^M_t + \alpha^B_t \leq 1 \) in order to maximize the discounted value of payoffs

\[
(E_t \left[M_{t+1} (1 - k(\tilde{\ell}_{t+1})) (1 + r^A_{t+1}) \right] - 1) A_t / P_t + \left(1 - E_t \left[M^S_{t+1} (1 + i^D_{t+1}) \right] - \zeta_t f(m_t) \right) D_t / P_t.
\]

Here the portfolio weights \(\alpha^M \) and \(\alpha^B \) enter into the return on assets \(r^A_{t+1} \) and together with leverage determine \(m_t \) and ex post leverage \(\tilde{\ell}_{t+1} \) according to equation (4). The first term is then the return on assets net of asset management costs and the second term is the interest payment on deposits plus liquidity costs. The bank’s objective is homogeneous of degree one in its asset and liability positions – optimal policy determines only balance sheet ratios.

\(^2\) We impose no condition here to ensure that \(\tilde{\ell} \) is below one so that bank equity is positive. Nevertheless, we focus throughout on interior solutions with that property. In our quantitative application, we specify a cost function that slopes up sufficiently quickly for banks to choose leverage below one, as in the data.
2.3 Bank optimization and bank Euler equations

Shareholder value maximization means that the bank compares returns on potential assets and liabilities to its cost of capital. In a setup with risk, the cost of capital is state-dependent and captured by shareholders’ pricing kernel M_{t+1}. For each asset and liability position, the bank thus computes the risk-adjusted return. At an optimum, the risk-adjusted return on each asset position has to be less than or equal one – otherwise the bank could issue an infinite amount of equity in order to buy the asset. If the risk-adjusted return is strictly below one, the bank holds zero units of the asset; while it would like to go short, it is not allowed to do so. The risk-adjusted return thus has to be equal to one for all assets that the bank holds in equilibrium. Analogously, the risk-adjusted return on deposits has to be larger than or equal to one – otherwise the bank would issue an infinite amount of deposits. Banks issue deposits if their risk-adjusted return is equal to one.

A key feature of our model is that the asset management cost affects risk-adjusted returns. To see this, consider for example the first order condition for assets A_t. Taking the derivative of shareholder value, we have that the risk-adjusted overall return on bank assets must be equal to one:

$$E_t [M_{t+1} (1 - k (\hat{l}_{t+1}) + k' (\hat{l}_{t+1}) \hat{l}_{t+1}) (1 + r^a_{t+1})] - \alpha_t^M f'(m_t) = 1.$$

The asset management cost enters in two ways. First, it proportionally lowers the return on assets – this is true even if leverage is zero. Second, an additional dollar of realized return has a marginal collateral benefit $k' (\hat{l}_{t+1}) \hat{l}_{t+1}$: it lowers ex post leverage and hence the asset management cost. In other words, backing deposits with assets makes deposit production cheaper.

Since all individual assets incur management costs and contribute collateral, the cost k enters all bank optimality conditions. To concisely write those conditions, we define the bank pricing kernel

$$M_{t+1}^B = M_{t+1} (1 - k (\hat{l}_{t+1}) + k' (\hat{l}_{t+1}) \hat{l}_{t+1}).$$

Intuitively, this random variable describes how bank shareholders value contingent claims held inside the bank. There are two differences to the pricing kernel M_{t+1}: the proportional asset management cost is subtracted, whereas the marginal collateral benefit is added.

The bank pricing kernel clarifies what states of the world are "bad" for the bank (that is, high M_{t+1}^B), and hence what assets represent bad risks for the purposes of bank portfolio choice. Since the bank owes short nominal debt, it is entirely safe if and only if it is "narrow", that is, it holds only short nominal bonds or reserves. In this case, the leverage ratio \hat{l}_{t+1} as
defined in equation (4) is constant across states at $t+1$. Indeed, for a narrow bank, the nominal return on bank assets in the denominator is a weighted sum of predetermined nominal interest rates. Short nominal debt is thus good collateral for the bank in the sense that it does not worsen its risk profile. More generally, states are even worse for the bank than for shareholders if the return on bank assets is low.

Using the real bank pricing kernel together with its nominal counterpart M_{t+1}, we rearrange the bank first order conditions with respect to A_t, α_t^M and α_t^B to derive a set of "bank Euler equations". For each of the three available assets – risky bonds, safe short bonds and reserves – the Euler equation says that the risk-adjusted expected return should be less or equal to one, with equality if the bank indeed holds the asset:

$$E_t \left[M_t^B (1 + r_t^L) \right] \leq 1, \quad (6)$$

$$E_t \left[M_t^{BS} (1 + i_t^B) \right] \leq 1, \quad (7)$$

$$E_t \left[M_t^{BS} (1 + i_t^M) \right] = 1 + f'(m_t). \quad (8)$$

The bank Euler equation for reserves must hold with equality in any equilibrium since only banks can hold reserves. Reserves differ from short safe bonds because of their marginal liquidity benefit $-f'(m_t)$. As a result, banks may wish to hold both in equilibrium: if the bank Euler equation for bonds holds with equality, then

$$\frac{i_t^B - i_t^M}{1 + i_t^B} = -f'(m_t), \quad (9)$$

that is, the liquidity benefit is equated to the discounted spread between the bond rate and the reserve rate. As the quantity of reserves relative to deposits increases, as it has in recent years for most US banks, then the spread shrinks and may approach zero.Ş

Finally, consider the bank’s first order condition with respect to deposits:

$$\frac{i_t^S - i_t^D}{1 + i_t^S} = E_t \left[M_{t+1}^S k' \left(\tilde{i}_{t+1} \right) (1 + i_t^D) \right] + \zeta_t f(m_t) - \zeta_t f'(m_t) m_t. \quad (10)$$

The left hand side is the opportunity cost of deposits to the rest of the economy, or the value of the liquidity provided by deposits. The right hand side is the marginal cost of producing an

[ŞPiazzesi and Schneider (2018) present a model in which a counterpart of f is derived from banks' liquidity shock distribution. Their formulation implies a threshold for the ratio m_t beyond which f remains constant so that the spread is literally zero. They use this setup to distinguish the abundant reserve regime after 2008 with the scarce reserve regime prevalent before the financial crisis. In the present paper the focus is not on reserve management so this distinction is not critical.]

11
additional unit of deposits. It consists of a marginal asset management cost as well as marginal liquidity cost. Competitive banks thus equate the price of inside money to its marginal cost.

The presence of the asset management and liquidity cost functions together with the liquidity benefit of deposits for households implies that our model has determinate interior solutions for leverage and portfolio weights. The choice of leverage works much like in the trade-off theory of capital structure. On the one hand, deposits are a cheap source of funds for banks, since their interest rate is below the short rate in the nominal pricing kernel. On the other hand, issuing debt incurs costs. An interior optimal leverage trades off the two forces. Moreover, portfolio choice is determinate because it affects portfolio risk and hence expected cost.

2.4 The short rate disconnect in equilibrium

We focus on equilibria such that the risky bond is priced by the pricing kernel of investors. This might be because investors can go both long and short in the risky bond, or alternatively because the outstanding quantity of risky bonds is so large that not only banks hold risky bonds but also investors hold them directly. It follows that banks also hold risky bonds, then their pricing kernel must similarly price them. Since the bank pricing kernel is generally different from that of shareholders, the balance sheet ratios of banks must respond appropriately.

To clarify the relationship between the scarcity of short safe assets and the short rate disconnect, we characterize equilibria in which banks hold a fixed supply of reserves A^M_t as well as nominal short bonds A^B_t. We think of these quantities as being endogenously determined in general equilibrium by the interaction of government policy and the demand from other intermediaries who hold short bonds. Our focus here is on the relationship between quantities and prices implied by banking sector optimization and partial equilibrium in the reserve and deposit markets.

At given prices, all banks in our model choose the same leverage and portfolios. We define a symmetric equilibrium as a tuple $(\ell_t, \alpha^M_t, \alpha^B_t, P_t, D_t, i^D_t, i^B_t)$ that solves the bank first order conditions (6)-(8) and (10), the money demand equation (2) as well as the market clearing conditions

$$D_t \ell_t^{-1} \left(1 + i^D_t\right) \alpha^M_t = A^M_t,$$

$$D_t \ell_t^{-1} \left(1 + i^D_t\right) \alpha^B_t = A^B_t.$$

\footnote{The four equations in (8) and (10) jointly restrict the three bank balance sheet ratios α^M_t, α^B_t and ℓ_t. An equilibrium in which the bank holds all assets thus requires that interest rates align to allow a solution.

12
In principle, there could be two types of equilibria. In a *narrow banking equilibrium*, banks do not invest in risky bonds, \(\alpha^M_t + \alpha^B_t = 1 \). With narrow banking, there is no short rate disconnect. Indeed, from (7), the pricing kernel of a narrow bank is proportional to that of investors, with factor \(\frac{1 + i^S_t}{1 + i^B_t} \)\(^5\). Since investors price the risky bond, a positive shadow spread would violate the bank condition (6): if a narrow bank were to earn less than the short rate, then it always makes sense to take a little risk. This is a version of Arrow’s "local risk neutrality" result, here applied to the case of banks. In a narrow banking equilibrium, we have \(i^S_t = i^B_t \) and the bank pricing kernel is then the same as that of investors.

When can a narrow banking equilibrium exist? There must be a large enough (real) quantity of short safe collateral that can back inside money demanded at the cost implied by narrow banking. From (7) and the fact that there is no disconnect, the optimal leverage ratio with narrow banking depends only on the asset management cost:

\[
k (\ell^*) = k' (\ell^*) \ell^*.
\]

Leverage adjusts so that the asset management cost is exactly offset by the marginal collateral benefit from short safe bonds. This leverage ratio together with the optimal reserve share from (8) implies a deposit rate by (10) and an equilibrium real quantity of deposits by (2). Market clearing for reserves thus requires a large enough real quantity of short safe collateral.

In a *risky banking equilibrium*, banks buy risky bonds, so (6) holds with equality. Such an equilibrium is consistent with a quantity of inside money that is large relative to the quantity of short safe collateral. Importantly, however, a risky banking equilibrium does not require that the short rate \(i^B_t \) equals the shadow rate \(i^S_t \). To see this, we use the definition of the bank pricing kernel to rearrange the Euler equation for bonds as

\[
\frac{1}{1 + i^B_t} = \frac{1}{1 + i^S_t} + E_t \left[M_{t+1} \left(-k (\tilde{\ell}_{t+1}) + k' (\tilde{\ell}_{t+1}) \tilde{\ell}_{t+1} \right) \right].
\]

In general, there is a spread between the short rate and the shadow rate given by the risk-adjusted difference between the marginal collateral benefit and the asset cost.

To sum up, if the bank is narrow, that is, it holds no risky bonds, then ex post leverage \(\tilde{\ell}_{t+1} \) is predetermined and the spread is zero. In other words, in an economy with narrow banks, there is no short rate disconnect. More generally, however, for a risky bank the asset

\[\text{Ex post leverage for a narrow bank is not random, which means that}
E_t \left[M_{t+1}^{B,S} \right] \left(1 + i^B_t \right) = (1 - k (\tilde{\ell}_{t+1}) + k' (\tilde{\ell}_{t+1}) \tilde{\ell}_{t+1}) E_t \left[M_{t+1}^S \right] \left(1 + i^B_t \right) = 1.
\]

Since \((1 + i^S_t) = 1/E_t \left[M_{t+1}^S \right] \), we get \(M_{t+1}^{B,S} / M_{t+1}^S = (1 + i^S_t) / (1 + i^B_t) \).
management cost induces a wedge between the two interest rates. In the next section, we use a particular functional form for the cost function to work out its empirical implications.

3 Quantitative evaluation

In this section we connect the model to the data. Section 3.1 introduces our measure of the short rate disconnect – the spread between the shadow rate and the market rate on short safe bonds. It also provides evidence on a key assumption of the model, that short safe bonds are not held directly by households, but are held through intermediaries, in particular payment intermediaries. Section 3.2 provides measures of bank balance sheet ratios and uses them to test the bank Euler equations (8) under the assumption that the regulatory environment remains constant. Finally, Section 3.3 extends the model to allow for changes in regulation that shift the asset management costs of banks.

3.1 The short rate disconnect in the data

Measuring the shadow rate Our theory implies that the interest rate on nominal safe bonds reflects valuation by payment intermediaries, whereas other bonds – including longer Treasuries – are priced directly by investors. The shadow rate – the short rate in investors’ pricing kernel – is thus not directly observable in the market since investors do not hold short bonds. However, we can derive an estimate of the shadow rate from the prices of longer safe bonds. Indeed, yields of different maturities are connected: long yields should be risk-adjusted expectations of averages of future shorter yields. This principle motivates parsimonious yield curve models that jointly describe the dynamics of short and long yields in terms of a few factors. Estimation of such models does not require data on all maturities, but instead exploits their strong comovement.

To obtain a shadow short rate, we use the model and estimates of [Gurkaynak, Sack, and Wright, 2007] who construct forward rates from data on Treasury bonds but not Treasury bills. Their approach thus leaves out precisely those instruments that payment intermediaries like to hold as collateral for inside money. They also restrict attention to bonds with remaining maturity longer than three months. As the shadow rate for our quarterly exercise, we use the three month rate of the curve estimated by [Gurkaynak, Sack, and Wright, 2007]: we evaluate equation (9) in their paper at maturity 1/4 for their estimated parameter values. Our strategy here is similar to [Greenwood, Hanson, and Stein, 2015] who want to measure the convenience yield of T-bills relative to longer Treasury bonds.

Figure (1) plots the shadow spread \(i^S_t - i^B_t\), our measure of short-rate disconnect, for a quarterly sample from 1973 to 2017. The shadow spread averages about 50 bp per year. It is
higher towards the beginning of the sample, tends to rise at the end of booms and falls during shaded NBER recessions. It shares the latter properties with the level of the T-bill rate, shown as a grey line. We emphasize also that the shadow spread remains positive during the zero lower bound period post-2008: in fact it is not unusually low during this period.

![Image of Figure 1: Shadow spread and 3-month T-bill rate. The black line is the difference between the shadow rate from equation i^S_t and the 3-month T-bill rate i^B_t with units measured along the left vertical axis. The grey line is the 3-month T-bill rate with units measured along the right vertical axis. NBER recessions are shaded.](image)

Figure 1: Shadow spread and 3-month T-bill rate. The black line is the difference between the shadow rate from equation i^S_t and the 3-month T-bill rate i^B_t with units measured along the left vertical axis. The grey line is the 3-month T-bill rate with units measured along the right vertical axis. NBER recessions are shaded.

Who holds short safe bonds? Our theory is based on the idea that payment intermediaries value short safe bonds as collateral. We now consider evidence on asset positions that support this view. The ideal data to make our point would be sectoral accounts that track Treasury bills by maturity. Unfortunately, such data is not available for the US financial system. The available data do, however, allow several conclusions.

We first note that households do not buy T-bills from the government in the primary market. There has been a recent effort to sell T-bills directly to the public via the TreasuryDirect website. We can rule out, however, that the public purchases a sizeable share of T-bills through this channel. Indeed, for the period between 2008 and 2016, on average only 1.1% of all T-Bills sales went through TreasuryDirect directly to households, and only 1.6% was sold non-
competitively in total. The remaining T-bills were sold in a competitive auction process to primary dealers and other financial institutions.

Our second source of information about T-bill holdings are data from the Financial Accounts of the United States. Unfortunately, we observe a breakdown of the overall instrument "Treasuries" into short-term bills and long-term notes and bonds only for a subset of sectors: money market funds, insurance companies, mutual funds (since 2010), the monetary authority, and the rest of the world. While we do not see a breakdown for nonfinancial corporations, it makes sense to assume that their Treasury holdings consist of T-bills held for liquidity purposes.

Figure 2 uses this information to take a first stab at the composition of T-bill holdings by the domestic private sector. The total here is outstanding Treasury bills less holdings by the monetary authority and the rest of the world. The top shaded area in the figure consists of T-bills held by "Others" – the remaining T-bills outstanding that are not accounted for by holdings of specific sectors. This category in particular contains holdings of commercial banks, as well as those of households or institutions lumped in by the Financial Accounts with the (residual) household sector, in particular hedge funds.

![Figure 2: Holdings of T-Bills by Money Market Funds, Mutual Funds, Insurance Corporations, Nonfinancial Corporations and Others. Quarterly data from the Flow of Funds.](image)

Our theory suggests that a large chunk of the "Other" category of T-bill holdings should consist of holdings of commercial banks. To assess this possibility, Figure 3 compares the time series of T-bill holdings by "Others" and money market funds (in red) with all the Treasury

16
holdings of payment intermediaries (in blue). Here payment intermediaries include depository institutions, credit unions and banks. Importantly, "Treasuries" now include bonds, not only bills. The two lines should coincide if (i) no other domestic sector (except those in Figure 2) holds bills and (ii) all Treasuries held by banks are bills (as opposed to bonds or notes).

Several facts emerge from Figure 3. First, payment intermediaries’ holdings are typically higher than "Other" bill holdings not yet accounted for, consistent with all bills being held by payment intermediaries. The exception is the period around the recent boom and bust, where one might expect more participation of broker-dealers and hedge funds in the bill market. Second, the cyclical movements in bill holdings is closely aligned with payment intermediaries holdings, again with the exception of the recent boom-bust episode. Together we view these patterns as supportive of an approach that treats bills as held by payment intermediaries (as well as possibly other intermediaries), and not directly by investors.

Figure 3: T-Bills held by Others and Money Market Funds, together with all Treasury holdings by Payment Intermediaries.

3.2 Bank Euler equations

In order to obtain transparent versions of the bank Euler equations that can be taken to the data, we make a number of simplifying assumptions. We work with an asset management cost function of the form

\[k(\bar{\ell}_{t+1}) = b(\bar{k} + \bar{\ell}_{t+1}) \gamma, \]

(11)
where \(b \) and \(\bar{k} \) are strictly positive and \(\gamma > 1 \). The asset management cost thus consists of a fixed management fee (per dollar of assets) \(b\bar{k} \) plus a power function that captures the sensitivity to leverage. The parameter \(b \) scales the overall cost, while an increase in \(\bar{k} \) regulates the relative importance of the fixed management fee. The parameter \(\gamma \) governs the curvature of the cost function.

The pricing kernel of the bank now becomes

\[
M_{t+1}^{B,S} = M_{t+1}^S \left(1 - b \left(\bar{k} + (1 - \gamma) \bar{\ell}_{t+1}^\gamma \right) \right). \tag{12}
\]

Since \(\gamma > 1 \), the cost function is convex and the pricing kernel is increasing in ex-post leverage \(\bar{\ell}_{t+1} \). A bad state of the world for the bank (high pricing kernel) occurs when the return on its asset portfolio is low and ex-post leverage is high. As a result, a bank places a higher value on assets that pay off more in those states of the world.

We introduce additional notation that helps decompose ex-post leverage \(\bar{\ell}_{t+1} \) into the bank’s leverage chosen at date \(t \) and its stochastic (nominal) return on assets:

\[
\ell_t := \frac{(1 + i_t^D)D_t}{A_t}, \tag{13}
\]

\[
1 + r_{t+1}^{\alpha,S} := \frac{(1 + r_{t+1}^\alpha)P_{t+1}}{P_t}. \tag{14}
\]

The leverage ratio \(\ell_t \) measures the *promised* payment on deposits (principal plus interest) as a fraction of assets. It is known to the bank as of date \(t \). Ex-post leverage can then be written as the ratio \(\bar{\ell}_{t+1} = \ell_t / (1 + r_{t+1}^{\alpha,S}) \), thus separating the leverage decision from asset choice and the realization of returns.

Our model allows for two safe assets: reserves and short safe bonds. For our quantitative exercise, little is lost by ignoring this distinction and focusing on the overall safe portfolio share \(\alpha_t = \alpha_t^B + \alpha_t^M \). Indeed, our sample combines two specific policy regimes. Before 2008, when reserves earned a lower rate than other short safe bonds, the share of reserves in safe assets was negligible, so the safe share is well approximated by the share of safe bonds only. After 2008, this situation changed as quantitative easing greatly increased outstanding reserves. At the same time, however, the introduction of interest on reserves implied that T-bills and reserves became essentially perfect substitutes from the point of view of banks. It thus also makes sense to work with a single safe portfolio share.\(^6\)

We follow Campbell and Viceira (2004) in exploiting conditional lognormality to approximate optimal portfolio choice. In our case, the bank takes into account shareholders’ valuation

\(^6\)In terms of our model, the marginal liquidity cost \(f'(m_t) \) approaches zero as the ratio of reserves to average depositors’ transactions \(m_t \) becomes large.
via a pricing kernel, so we assume joint conditional lognormality of the return on the risky bond and the pricing kernel. We denote by σ_t the conditional volatility of the risky bond return given date t information. The key approximation step is a second-order Taylor approximation of the bank’s portfolio return around the riskfree return. We then obtain the following characterization of bank balance sheet ratios, derived formally in Appendix A:

Proposition 1 The bank’s optimal portfolio share of safe assets is

$$\alpha_t \approx 1 - \frac{1}{\gamma \sigma_t^2 \log \left(1 + \frac{i_t^S - i_t^B}{b\bar{k}} \right)},$$

Optimal bank leverage is

$$\ell_t \approx \exp \left(i_t^S - \alpha_t \left(i_t^S - i_t^B \right) + 0.5(1 - \alpha_t^2) \sigma_t^2 \right) \exp \left(-\frac{1}{2} \gamma \sigma_t^2 (1 - \alpha_t)^2 \right) \ell^*,$$

where $\ell^* = (\bar{k} / (\gamma - 1))^{1/\gamma}.$

The approximate formulas clarify the trade-offs faced by a bank in our model and how balance sheets respond to the environment. Consider first the safety of the asset portfolio. If there is no short rate disconnect, then the optimal bank portfolio consists only of safe assets: we obtain a "narrow" bank with $\alpha_t = 1.$ Since the bank makes money from issuing short safe nominal deposits, and the convex asset management cost penalizes risk, it makes sense for banks to avoid any risk. Only if risk avoidance is costly – because of a positive shadow spread – does it become optimal to back inside money with risky collateral.

For a risky bank, the safe portfolio share is decreasing in the shadow spread and increasing in risk as well as the fixed component and the curvature of the asset management cost. To draw a connection to standard portfolio choice theory, we can rearrange the formula to resemble that for optimal myopic portfolio choice with a risky and riskfree asset:

$$1 - \alpha_t \approx \frac{-\log \left(b\bar{k} \right) - \left(-\log \left(b\bar{k} - (i_t^S - i_t^B) \right) \right)}{\gamma \sigma_t^2}.$$

Here the denominator is the product of risk and curvature in the objective; here γ works like risk aversion for a power utility investor. The numerator is an expected (risk-adjusted) excess return to shareholders of placing a risky versus a riskfree asset in the bank. In both cases, they incur the asset management cost $b\bar{k},$ and for the riskfree asset they further incur the shadow spread. The expected return on the risky bond does not matter because shareholders can also hold it directly – this is why shareholders compare risk-adjusted and not raw returns.
The formula for optimal leverage has three components. The constant ℓ^* determines leverage (up to an interest factor) if the bank is safe (that is, $\alpha_t = 1$). It follows from the properties of the asset management cost function alone. For a risky bank, two things change. On the one hand, the risk-adjusted expected return on the portfolio increases since the bank avoids the shadow spread and the mean return increases by Jensen’s inequality. This effect – captured by the first exponent – tends to make leverage increase with the safe portfolio share. At the same time, however, a riskier bank incurs a higher certainty equivalent leverage cost: the second exponent says that riskier banks should reduce leverage.

Quantitatively, a key force in our model is that higher bond risk increases leverage. The formulas show why this effect is powerful: an increase in bond return variance σ_t^2 leads banks to optimally reduce the share $1 - \alpha_t$ of risky bonds in proportion with variance. As a result, total portfolio risk $\sigma_t^2(1 - \alpha_t)^2$ declines – the risk reduction implied by optimal portfolio choice always outweighs the increase in bond risk. A safer bank then optimally increases leverage, with the strength of the effect driven by the curvature of the cost function. At the same time, the potentially offsetting force that works through the mean return tends to be quantitatively small, as moderate percentage point movements in α_t meet the modest shadow spread.

The formulas also clarify the role of the shadow spread for bank leverage and portfolio choice. A higher shadow spread makes safe banking more costly and induces more risk taking. For leverage, there are again two forces: small changes in the mean return and an incentive to lower leverage in the face of higher portfolio risk. This second force is key for our account of the data below: as the shadow spread increases towards the end of booms, banks choose riskier portfolios and reduce leverage. We note that this effect would obtain even if risk were constant. Our results below suggest that risk and spreads move together in equilibrium.

Data on balance sheet ratios To form the balance sheet ratios ℓ_t and α_t, we need data counterparts for three bank positions in the model: deposits, short safe bonds, and total assets. The mapping between model and data needs to take into account that the model has one type of payment intermediary, while in the data both banks and money market mutual funds are providers of inside money. At the same time, some payment intermediaries in the data issue claims that cannot be identified with inside money, for example repo borrowing by commercial banks.

Our theory makes predictions about aggregate balance sheet ratios, in particular how much collateral backs outstanding inside money. We thus construct an aggregate payment intermediary sector by consolidating banks and money market funds. In practice, money market fund companies keep their portfolios at custodian banks with whom they also contract for payment services that they sell to shareholders – for example, money market fund companies do not
directly participate in Fedwire, the key gross settlement system used for interbank payments. Our consolidation thus treats these contracts as occurring within one large firm.

Formally, the data counterpart of inside money D_t is Money of Zero Maturity (MZM), provided by the Federal Reserve Bank of St. Louis. MZM is a broad measure of money that incorporates those types of deposits and money market fund shares that are sufficiently liquid to provide immediate payment services. An advantage of this series is its stable money-demand relationship to interest rates, as documented by Teles and Zhou (2005).

Our measure of total assets held by payment intermediaries is derived from the U.S. Financial Accounts (Z.1), where we aggregate depository institutions (Table L.110) and money market funds (Table L.121). We emphasize that we work at the level of individual institutions, not bank holding companies. We thus treat any wholesale funding of bank holding companies as occurring within the investor sector. We view this approach as appropriate since our theory is about banks producing inside money, whereas bank holding companies also own intermediaries with very different business models, in particular broker dealers.

To further address wholesale funding at the commercial bank level, we subtract repurchase agreements which can be viewed as senior to deposits because they are tied to specific collateral. In other words, our measure of total assets contains only the haircut on repo collateral, not the total value of the securities. This approach takes care of the most important funding source that is not explicitly in our model. We treat commercial paper the same way – while seniority here is not so clear, the adjustment is also relatively small.

As the data counterpart of leverage ℓ_t, we calculate the ratio of MZM and aggregate payment intermediary asset holdings. We need to multiply this ratio by the deposit interest rate, since we have defined leverage ℓ_t as the ratio of promised repayment in the next period relative to current asset holdings. We use the MZM own rate provided by the Federal Reserve Bank of St. Louis – it reflects a weighted average of rates on the different flavors of inside money that make up MZM.

To sum up, our measure of leverage differs from other statistics of bank leverage discussed in the literature in three ways. First, within the banking sector, we only consider depository institutions for our calculations, not a broader set of banks such as brokers and dealers. Second, we include money market funds, which hold for our purposes highly leveraged but safe portfolios. Third, and most importantly, we only consider deposits in the numerator of our leverage measure, not a broader set of liabilities.

Our measure of short safe bonds aggregates the subset of those assets that are of short maturity and nominally safe. For depository institutions, we assume that vault cash, reserve, and Treasury holdings fall into this category. For money market funds, we add holdings of
Treasuries, municipal bonds, and government agency debt. To the sum of those two measures we also add the net-repo holdings of both sectors, consistent with having subtracted repo liabilities from the total asset measure. The fraction of those safe assets relative to total asset holdings yields our time series of α_t.

Stylized facts on bank balance sheets and the shadow spread As a first look at how the shadow spread evolves, we just plot the raw data. The top panel of Figure 4 plots the time series of the safe portfolio share α_t in black against the shadow spread in grey over the sample 1975 to 2017. Even in the raw data, one can detect the negative co-movement between the two time series. The same can be said about the time series of leverage ℓ_t which is depicted in the bottom panel of the same figure. Qualitatively, our model gives predictions that are consistent with the data, namely that episodes of high shadow spreads are associated with a lower safe asset share on banks’ balance sheets and lower bank leverage. This co-movement is also present in the period after the financial crisis of 2008, which sees an increase in both the safe asset share and bank leverage.

The evolution of leverage after 2008 highlights the differences between our leverage measure and, for example, the asset to equity ratio. While capital regulation has forced banks to lower their liability to asset ratio since 2008, the same is not true for the deposit to asset ratio. This observation does not rely on our definition of payment intermediaries, but also holds for commercial banks alone, whose liability to asset ratio has decreased from about 90% before the crisis to about 89% after, but whose deposit to asset ratio has increased from about 64% in the years preceding the crisis to more than 71% in 2017. From our model’s perspective, which focuses on the amount of assets that are available to back deposits, the latter is the relevant statistic.

While the co-movements of these three time series are at least qualitatively consistent with the model’s mechanisms, these figures do not allow us to evaluate the model’s quantitative success. In the next section, we therefore study the empirical fit of the model, which will also allow us to back out the time series of return risk σ_t^2, that also affects the leverage and portfolio choice in the model.

Figure 4: **Top panel:** Safe portfolio share (left axis) and shadow spread (right axis). **Bottom panel:** Leverage ℓ_t (left axis) and shadow spread (right axis). **Data:** i^B_t is the 3 month T-bill rate, i^S_t the shadow rate, data on leverage based on MZM (St. Louis Fed) and payment intermediary asset holdings measured from the U.S. Financial Accounts (Z.1).

Graphical assessment of bank Euler equations Section 3.2 derived two equations for the portfolio share and leverage in terms of the shadow-bond spread and the risky asset’s return variance σ^2_t. While payoff risk is an unobserved latent factor, we can use the equation of the
portfolio share to replace $\gamma \sigma_t^2$ in the leverage equation. We then find that

$$\ell_t = \exp \left(i_t^S - \alpha_t \left(i_t^S - i_t^B \right) + 0.5 (1 - \alpha_t^2) \sigma_t^2 \right) \exp \left(-\frac{1}{2} (1 - \alpha_t) \log \left(1 + \frac{i_t^S - i_t^B}{b_k} \right) \right) \ell^*. \quad (15)$$

The first component is approximately the bank’s expected nominal portfolio return. The second component states that leverage is, holding the portfolio share fixed, decreasing in the shadow spread, and, holding the spread fixed, increasing in the safe asset share. We can estimate the fit of this equation with data on α_t, ℓ_t, i_t^S, and i_t^B under the assumption that $\exp(0.5(1 - \alpha_t^2)\sigma_t^2) \approx 1$.

Figure 5: Leverage ℓ_t of payment intermediaries in the data (grey) and model predicted (black) as a function of $i_t^S - i_t^B$ given parameter estimates for b_k, ℓ^* and $\gamma \sigma_t^2$. The dashed line depicts the model fit with a re-estimated set of parameters post-2008. **Data:** i_t^B is the 3 month T-bill rate, i_t^S the shadow rate, data on leverage based on MZM (St. Louis Fed) and payment intermediary asset holdings measured from the U.S. Financial Accounts (Z.1), see text and appendix.

We estimate the two parameters, b_k and ℓ^*, by minimizing the sum of squared residuals of equation (15). The black line in the middle panel of Figure 5 depicts the time series of leverage predicted by the model. While the fit is far from perfect, we find that the model captures the dynamics of leverage variation, at least up to the financial crisis in 2008. This can be seen even better when focusing on the cyclical component of leverage in both data in model. To do so, we use a bandpass filter on both the data and the series predicted by the model. The filter isolates business-cycle fluctuations that persist for periods between 1.5

8For $\sigma_t = 0.1$ and $\alpha_t = 0$ we would find that $\exp(0.5(1 - \alpha_t^2)\sigma_t^2) = 1.005$.

24
and 8 years. The resulting cyclical components of the two series are shown in Figure 6. The correlation between the cyclical components of data and model is 72%. The estimated asset management fee of banks, $b\bar{k}$, has an annualized value of 0.5%. Since our estimation does not restrict the range of this parameter, it is surprising to find that the estimated managements fee has indeed a sensible order of magnitude. The estimated level of optimal leverage ℓ^* for a safe bank is 67%.

Without a structural change in parameters, the model is necessarily unable to fit the level of leverage after the crisis, since the level in the data post-2008 reaches close to 75%, but is, in the model, bounded by ℓ^*. The deviations in the trend components of the two series could be driven by shifts in structural parameters of the banks’ asset management cost. Given the regulatory changes in the banking environment, this is plausible, and in the next section we explore which parameter changes can, for example after the financial crisis of 2008, explain the observed deviations of model and data.

Return risk We can use our estimate for $b\bar{k}$ to find an implied measure of $\gamma\sigma_t^2$, which provides a scaled measure of return risk σ_t^2. Rearranging the equation for the portfolio share we have that

$$
\gamma\sigma_t^2 = \frac{1}{1 - \bar{\alpha}_t} \log \left(1 + \frac{i_t^S - i_t^B}{b\bar{k}} \right).
$$

Given the shadow spread and our parameter estimates, we find the estimated time series of $\gamma\sigma_t^2$ depicted in Figure 7. The series spikes in episodes of distress in financial markets, namely during the second oil price shock in 1979, the recession episodes and banking crisis of the early 1980s, the stock market crash in 1987, the 1994 peso crisis, the 1997/98 episode of financial
turmoil associated with Asia, Russia and LTCM and finally in the years leading up to the financial crisis of 2007/08. As one would expect, this measure is correlated with the shadow spread, since in times of higher risk, safe collateral becomes more valuable and the shadow spread widens.

![Figure 7](image-url)

Figure 7: The black line depicts the estimated return variance of the risky asset scaled by the curvature of the asset management cost function, $\gamma \sigma_t^2$. The grey line is calculated using the estimated time series of $\bar{b}k_t$ from Section 3.3.

While we have no direct estimate for the curvature of the cost function γ, we can use a plausible level of return risk to back out a likely range for γ. Over the sample, $\gamma \sigma_t^2$ is on average 0.47 and reaches up to 1.19. We use the quarterly return volatility of the S&P 500 stock index as a benchmark and find that the standard deviation of quarterly returns is on average 7.7% over the sample period and reaches up to 10.7% when calculated over 5-year rolling windows. If the bank faces similar return risk on the risky share of its portfolio, a value of $\gamma = 72$ matches the average volatility and implies a maximum volatility of 11.0% over 5-year rolling windows. In case the bank’s risky assets had half the return volatility of the S&P 500, our estimated γ would be about 290, and we would find $\gamma = 18$ if the banks’ risky return volatility would be twice that of the S&P 500 index. The higher is γ, the lower is ℓ^γ for small values of ℓ, but the steeper it increases as ℓ approaches 1, so that such high values of γ correspond to a more kinked cost function.
3.3 Structural changes in banks’ asset management cost

While our model is successful in capturing the cyclical components in the joint co-movement of safe asset share, leverage, and the shadow spread, the overall level of model implied leverage shows at times larger deviations from the data, in particular post-2008. A natural extension of our analysis is to allow for structural changes in the banks’ asset management cost function, which seems particularly relevant after the financial crisis of 2008, which was followed by a set of regulatory changes in the banking system. We therefore study to what extent a one-time change in parameters in the last quarter of 2008 can improve the model fit. We choose this quarter as a break point under the premise that the bankruptcy of Lehman Brothers triggered the following changes in the banking system. The dashed black line in Figure 5 depicts the fit of this re-estimated curve post-2008. Our results imply an increased operating cost of $b\bar{k} = 4.6\%$ as well as an increased level of $\ell^* = 70\%$.

One unifying explanation of upward shifts in both, $b\bar{k}$ and $\ell^* = (\bar{k}/(\gamma - 1))^{1/\gamma}$, is an increase of \bar{k}, which implies an increase in the fixed asset management cost of banking. This parameter change seems plausible because the regulatory changes imposed by the Dodd-Frank Act have been associated with increases in bank’s asset management cost. In the model, an increase in the fixed asset management cost leads to an increase in leverage, as it becomes more costly to hold assets in the bank as collateral. Assuming that b and γ remain fixed, our estimates for $b\bar{k}$ and $b\bar{k}_{post\ 2008}$ let us back out the curvature parameter as $\gamma = 44$. This estimate is in same order of magnitude as our estimates based on the return volatility targets presented in the previous section.

Smooth parameter shifts A one-time structural break in parameters gives us a first indication of the type of changes in bank’s cost function that can improve the model fit. However, there have been several changes in bank regulation in the past decades, usually implemented in stages over time. Furthermore, other structural adjustment, for example through technological innovations, will presumably also induce slow moving adjustments in bank’s asset management cost. To allow for such slow moving changes in cost function parameters, we re-estimate equation (15), but now allowing for time-variation in its two parameters, namely the fixed portion of management fees $b\bar{k}_t$, and the optimal level of leverage ℓ^*_t which banks choose when the shadow spread is zero. We are therefore interested in estimating

$$\ell_t = \exp(i_t^S + \alpha_t(i_t^B - i_t^S)) \exp \left(-\frac{1}{2}(1 - \alpha_t) \log \left(1 + \frac{i_t^S - i_t^B}{b\bar{k}_t} \right) \right) \ell^*_t + \sigma_R \epsilon_t,$$

\[(17) \]

\[9\]\Re-estimating the model pre-2008 has only small effects on our estimates for that period and for visual simplicity we therefore do not depict the updated time-series.

27
where \(\epsilon_t \) is an independent, standard normally distributed measurement noise shock. We have to recover \(\bar{b}_t \) and \(\ell^*_t \) as latent factors, and assume that both follow random walk processes:

\[
\bar{b}_t = \bar{b}_{t-1} + \sigma_{\bar{b}} \eta^1_t,
\]

\[
\ell^*_t = \ell^*_{t-1} + \sigma_{\ell} \eta^2_t,
\]

where \(\eta^1_t \) and \(\eta^2_t \) are independent shocks with a standard normal distribution.

Given the non-linear measurement equation, we use the Unscented Kalman filter to back out the time series of \(\bar{b}_t \) and \(\ell^*_t \). While it would be possible to jointly estimate the stochastic parameters \(\sigma_{\bar{b}}, \sigma_{\ell} \) and \(\sigma_R \) and the time series of the latent factors using maximum likelihood estimation, we find a calibration approach more sensible given the likely misspecification of our simple model. We choose to set \(\sigma_{\bar{b}} \) so that the annual standard deviation of the annualized management fee \(\bar{b}_t \) is 10bp, while \(\sigma_{\ell} \) is set so that the annual standard deviation of \(\ell^*_t \) is 1%. Both choices are meant to ensure that these parameters will only vary slowly over time in order to not affect the cyclical fit of the model. We choose starting values \(\bar{b}_0 \) and \(\ell^*_0 \) by minimizing the sum of squared residuals in the measurement equation (17), and find \(\sigma_R \) iteratively as the value that matches the resulting standard deviation of the residuals in the measurement equation.

The resulting time series of the latent factors are depicted in the upper panel of Figure 8 as thin black lines. Since we want to make sure that these parameter changes reflect slow moving structural adjustments with no effect on the cyclical fit of the model, we use smoothing splines to further remove any higher frequency fluctuations in these estimates. The thicker black line reflects the smoothed time series of fixed asset management cost \(\bar{b}_t \), which is in annual terms initially slightly higher than 2%, but quickly declines in the late 1970s to about 1%. From there we see a slight increase during the late 1980s and early 1990s to about 1.3%, a level that is roughly constant until the financial crisis of 2008, after which the cost is going back up. The grey line denotes the time variation in optimal leverage \(\ell^*_t \), which banks would choose if the shadow spread was zero, i.e. if collateral was abundant. This series shares the overall dynamics of the evolution of \(\bar{b}_t \).
Figure 8: Top panel: Estimated time series of annual fixed asset management cost \overline{bk}_t and maximum leverage ℓ_t^\ast. The thin black lines are the original results from the unscented Kalman filter. The thick lines are generated with smoothing splines and are used to evaluate the model fit in the bottom panel. The grey dotted lines mark the 1980 “Depository Institutions Deregulation and Monetary Control Act”, the 1989 “Financial Institutions Reform and Recovery Act”, the 1999 “Gramm-Leach-Billey Act” and the 2010 “Dodd-Frank Act”. Bottom panel: Leverage of payment intermediaries in the data (grey) and model (black).

The lower panel of Figure 8 compares the new model fit to the data. As can be seen, the slow moving structural changes in the cost function parameters lead to an improved model fit over the whole sample, while maintaining the cyclical fit from the previous section. The correlation between leverage in data and model is now 97%. Importantly, the model is able to match the increase in our leverage measure after 2008. The top panel shows that this increase
in leverage is in our results driven by an increase in both \(\bar{b}k_t \) and \(\ell_t^* \). As with the one-time structural break, it is again plausible to associate the joint movements between the two series with an increase in \(\bar{k}_t \), although the other two parameters must also have changed to jointly explain both series over the whole sample.

An increase in \(\bar{k}_t \) provides as before a rationale for why we might observe an increase in leverage \(\ell_t \) after 2008: if bank regulation induces higher asset management cost \(\bar{b}k_t \), both in absolute and relative terms through increases in \(\bar{k}_t \), holding assets inside the bank becomes more expensive so that households reduce asset holdings inside the bank by lowering bank equity. This economized production of deposits may also explain the increase of \(\ell_t^* \) after the 1989 “Financial Institutions Reform and Recovery Act”, which also tightened bank regulation. Overall we observe that break points in the two latent factor series are roughly associated with the four major bank reforms in the data, lending support to our idea of capturing structural changes in banks’ asset management cost.

Estimating return risk As in the previous section, we can use our estimates to back out the evolution of \(\gamma \sigma_t^2 \). Figure 7 depicts the resulting time series as a grey line, which looks similar to the series estimated without structural change, if somewhat smaller and more stable. When we again back out a value for \(\gamma \) by imposing that the average level of \(\sigma_t \) has to match the level of return volatility of the S&P 500 stock index, we now find that a lower curvature level of \(\gamma = 31.7 \) can match the return volatility target.

Banks’ asset management cost With our estimate of \(\gamma \) at hand, we can also evaluate whether our estimated cost function is economically sensible. We use the definition of \(\ell_t^* = \left(\frac{\bar{k}_t}{\gamma-1} \right)^{1/\gamma} \) to derive a time series estimate of \(\bar{k}_t \). We then find \(b_t = \bar{b}k_t / \bar{k}_t \), which we can use to calculate the asset management cost for any level of realized leverage \(\bar{\ell}_{t+1} \) as \(k(\bar{\ell}_{t+1}) = \bar{b}k_t + b_t \bar{\ell}_{t+1}^\gamma \). Figure 9 depicts the asset management cost for historic levels of leverage, portfolio shares and asset returns, given the estimates \(\gamma, b_t, \bar{k}_t \) and \(\sigma_t \). The three lines depict asset management cost given the realization of the expected return (black), the realization of a one standard deviation negative return shock (grey) and the realization of a two standard deviation negative return shock (dashed black). Periods in which costs are relatively robust to return shocks are either times of low leverage, high safe asset shares or low return volatility, or a combination of those factors. We find that our estimated cost function yields reasonable levels of asset management cost for plausible return scenarios. For even more negative return shocks the cost can quickly increase due to the high curvature in the cost function.
Figure 9: Estimated asset management cost given parameter estimates γ, b_t and \bar{k}_t and given historic choices of leverage ℓ_t, portfolio shares α_t, bond returns, shadow spread and σ_t.

References

A Functional form derivations

This section derives the closed form solutions for leverage ℓ_t and portfolio share α_t. We start from the bank’s Euler equations for safe and risky assets for the case in which banks hold both assets:

$$
E_t \left[M_{t+1} (1 - k (\tilde{\ell}_{t+1}) + k' (\tilde{\ell}_{t+1}) (1 + r^L_{t+1}) \right] = 1,
$$

$$
E_t \left[M^s_{t+1} (1 - k (\tilde{\ell}_{t+1}) + k' (\tilde{\ell}_{t+1}) (1 + i^B_t) \right] (1 + i^B_t) = 1
$$

We use our decomposition of ex-post leverage $\tilde{\ell}_{t+1}$ into ex-ante leverage

$$
\ell_t = (1 + i^D_t) D_t / A_t
$$

and the nominal risky return

$$
1 + r^\alpha_{t+1} = (1 + r^\alpha_{t+1}) P_{t+1} / P_t
$$

so that

$$
\tilde{\ell}_{t+1} = \frac{\ell_t}{1 + r^\alpha_{t+1}}.
$$

Given the functional form assumption, we rewrite the Euler equations for the risky and safe bonds as

$$
b(\gamma - 1) \ell_t^\gamma = b \tilde{k} E_t \left[M^s_{t+1} (1 + r^\alpha_{t+1})^{-\gamma} (1 + r^L_{t+1}) \right]^{-1},
$$

$$
1 = (1 + i^B_t) \left(\frac{1 - b \tilde{k}}{1 + i^S_t} + b(\gamma - 1) \ell_t E_t \left[M^s_{t+1} (1 + r^\alpha_{t+1})^{-\gamma} \right] \right).
$$

Substituting out ℓ_t, we combine both equations to find

$$
(1 + i^B_t) \left(\frac{1 - b \tilde{k}}{1 + i^S_t} + b \tilde{k} \frac{E_t \left[M^s_{t+1} (1 + r^\alpha_{t+1})^{-\gamma} \right]}{E_t \left[M^s_{t+1} (1 + r^\alpha_{t+1})^{-\gamma} (1 + r^L_{t+1}) \right]} \right) = 1. \quad (21)
$$

To solve for the safe portfolio share α_t in closed form we use the usual small return approximation $1 + r_{t+1} \approx \exp (r_{t+1})$ and assume that the nominal return on the risky asset $\exp (r^L_{t+1})$
and the household’s nominal pricing kernel are jointly log-normal:

\[M_{t+1}^S = \exp \left(-i_t^S - \frac{1}{2} \lambda_t^\top \lambda_t - \lambda_t^\top \epsilon_{t+1} \right), \]
\[\exp(r_{t+1}^L) = \exp \left(\mu_t + \eta_t^\top \epsilon_{t+1} \right), \]

for some standard normal vector \(\epsilon \). Following Campbell and Viceira (1999) we approximate the log portfolio return as

\[r_{t+1}^\alpha = a_{t+i}^B + (1 - a_t)r_{t+1}^L + \frac{1}{2} \alpha_t(1 - a_t)\sigma_t^2, \]

where we define \(\sigma_t^2 = \eta_t^\top \eta_t \) as the risky bond’s return variance.

For use in the following, we note that from \(1 = E[\exp(M_{t+1}^S) \exp(r_{t+1}^L)] \) we find that

\[i_t^S = \mu_t - \lambda_t^\top \eta_t + \frac{1}{2} \sigma_t^2. \]

The conditional moments in the Euler equations can then be computed as

\[E_t \left[M_{t+1}^S \exp(-\gamma r_{t+1}^\alpha + r_{t+1}^L) \right] \]
\[= E_t \left[\exp(-i_t^S - \frac{1}{2} \lambda_t^\top \lambda_t - \lambda_t^\top \epsilon_{t+1} - \gamma a_t i_t^B + (1 - \gamma(1 - a_t))r_{t+1}^L - \frac{1}{2} \alpha_t(1 - a_t)\sigma_t^2) \right] \]
\[= \exp(-\gamma(1 - a_t)\sigma_t^2 + \frac{1}{2} \gamma^2(1 - a_t)^2\sigma_t^2 + \gamma(1 - a_t)\eta_t^\top \lambda_t - \gamma a_t i_t^B - \gamma(1 - a_t)\mu_t - \frac{1}{2} \alpha_t(1 - a_t)\sigma_t^2) \]

and

\[E_t \left[M_{t+1}^S \exp(-\gamma r_{t+1}^\alpha) \right] \]
\[= E_t \left[\exp(-i_t^S - \frac{1}{2} \lambda_t^\top \lambda_t - (\lambda_t^\top + \gamma(1 - a_t)\eta_t^\top)\epsilon_{t+1} - \gamma a_t i_t^B - \gamma(1 - a_t)\mu_t - \frac{1}{2} \alpha_t(1 - a_t)\sigma_t^2) \right] \]
\[= \exp(-i_t^S + \frac{1}{2} \gamma^2(1 - a_t)^2\sigma_t^2 + \gamma(1 - a_t)\lambda_t^\top \eta_t - \gamma a_t i_t^B - \gamma(1 - a_t)\mu_t - \frac{1}{2} \alpha_t(1 - a_t)\sigma_t^2) \]

so that

\[\frac{E_t \left[M_{t+1}^S \exp(-\gamma r_{t+1}^\alpha + r_{t+1}^L) \right]}{E_t \left[M_{t+1}^S \exp(-\gamma r_{t+1}^\alpha) \right]} = \exp(i_t^S - \gamma(1 - a_t)\sigma_t^2). \]
We plug the above into equation (21) to find

\[
\exp(i_t^B) \left((1 - b\bar{k}) \exp(-i_t^S) + b\bar{k} \exp(-i_t^S) \exp(\gamma(1 - \alpha_t))\sigma_t^2 \right) = 1
\]

so that we can solve for the safe asset share \(\alpha_t \) as

\[
\alpha_t = 1 - \frac{1}{\gamma \sigma_t^2} \log \left(1 + \frac{i_t^S - i_t^B}{b\bar{k}} \right).
\]

A higher return variance \(\sigma_t^2 \) of the risky bond and more curvature \(\gamma \) in the bank’s asset management cost function increases the safe portfolio share. A higher shadow spread \(i_t^S - i_t^B \) lowers the safe portfolio share.

We then rearrange the risky bond Euler equation to solve for leverage

\[
\ell_t = \left(\frac{\bar{k}}{\gamma - 1} \right)^{1/\gamma} \exp \left(-\frac{1}{2} \gamma (1 - \alpha_t)^2 \sigma_t^2 + \alpha_t i_t^B + (1 - \alpha_t) (\mu_t - \eta_t^\top \lambda_t + \frac{1}{2} \sigma_t^2) + \frac{1}{2} (1 - \alpha_t^2) \sigma_t^2 \right)
\]

which yields

\[
\ell_t = \left(\frac{\bar{k}}{\gamma - 1} \right)^{1/\gamma} \exp \left(i_t^S - \alpha_t (i_t^S - i_t^B) + \frac{1}{2} (1 - \alpha_t^2) \sigma_t^2 \right) \exp \left(-\frac{1}{2} \gamma (1 - \alpha_t)^2 \sigma_t^2 \right).
\]

Plugging in our result for the portfolio share from above, we find that

\[
\ell_t = \left(\frac{\bar{k}}{\gamma - 1} \right)^{1/\gamma} \exp \left(i_t^S - \alpha_t (i_t^S - i_t^B) + \frac{1}{2} (1 - \alpha_t^2) \sigma_t^2 \right) \exp \left(-\frac{1}{2} \gamma \sigma_t^2 \log \left(1 + \frac{i_t^S - i_t^B}{b\bar{k}} \right)^2 \right).
\]