SIAM J. OPTIM. (© 2017 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 205-245

NEWTON SKETCH: A NEAR LINEAR-TIME OPTIMIZATION
ALGORITHM WITH LINEAR-QUADRATIC CONVERGENCE*

MERT PILANCI'T AND MARTIN J. WAINWRIGHT*

Abstract. We propose a randomized second-order method for optimization known as the New-
ton sketch: it is based on performing an approximate Newton step using a randomly projected Hes-
sian. For self-concordant functions, we prove that the algorithm has superlinear convergence with
exponentially high probability, with convergence and complexity guarantees that are independent of
condition numbers and related problem-dependent quantities. Given a suitable initialization, similar
guarantees also hold for strongly convex and smooth objectives without self-concordance. When
implemented using randomized projections based on a subsampled Hadamard basis, the algorithm
typically has substantially lower complexity than Newton’s method. We also describe extensions
of our methods to programs involving convex constraints that are equipped with self-concordant
barriers. We discuss and illustrate applications to linear programs, quadratic programs with convex
constraints, logistic regression, and other generalized linear models, as well as semidefinite programs.
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1. Introduction. Relative to first-order methods, second-order methods for
convex optimization enjoy superior convergence in both theory and practice. For
instance, Newton’s method converges at a quadratic rate for strongly convex and
smooth problems. Even for functions that are weakly convex—that is, convex but not
strongly convex—modifications of Newton’s method have superlinear convergence (for
instance, see the paper [39] for an analysis of the Levenberg-Marquardt method). This
rate is faster than the 1/T2 convergence rate that can be achieved by a first-order
method like accelerated gradient descent, with the latter rate known to be unimprov-
able (in general) for first-order methods [27]. Yet another issue in first-order methods
is the tuning of step size, whose optimal choice depends on the strong convexity param-
eter and/or smoothness of the underlying problem. For example, consider the problem
of optimizing a function of the form x — g(Az), where A € R"*? is a “data matrix,”
and g : R® — R is a twice-differentiable function. Here the performance of first-order
methods will depend on both the convexity /smoothness of g, as well as the condition-
ing of the data matrix. In contrast, whenever the function g is self-concordant, then
Newton’s method with suitably damped steps has a global complexity guarantee that
is provably independent of such problem-dependent parameters.
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On the other hand, each step of Newton’s method requires solving a linear system
defined by the Hessian matrix. For instance, in application to the problem family
just described involving an n x d data matrix, each of these steps has complexity
scaling as O(nd?) assuming n > d without loss of generality. For this reason, both
forming the Hessian and solving the corresponding linear system pose a tremendous
numerical challenge for large values of (n,d)—for instance, values of thousands to
millions, as is common in big data applications. In order to address this issue, a
wide variety of different approximations to Newton’s method have been proposed
and studied. The general class of quasi-Newton methods are based on estimating
the inverse Hessian using successive evaluations of the gradient vectors. Examples of
such quasi-Newton methods include DFP and BFGS schemes as well as their limited
memory versions; see the book by Wright and Nocedal [38] and references therein
for further details. A disadvantage of such first-order Hessian approximations is that
the associated convergence guarantees are typically weaker than those of Newton’s
method and require stronger assumptions.

In this paper, we propose and analyze a randomized approximation of Newton’s
method, known as the Newton sketch. Instead of explicitly computing the Hessian,
the Newton sketch method approximates it via a random projection of dimension
m. When these projections are carried out using the fast Johnson—Lindenstrauss
(JL) transform, say based on Hadamard matrices, each iteration has complexity
O(ndlog(m)+dm?). Our results show that it is always sufficient to choose m propor-
tional to min{d, n}, and, moreover, that the sketch dimension m can be much smaller
for certain types of constrained problems. Thus, in the regime n > d and with m =< d,
the complexity per iteration can be substantially lower than the O(nd?) complexity
of each Newton step. For instance, for an objective function of the form f(z) = g(Az)
in the regime n > d?, the complexity of Newton sketch per iteration is O(ndlogd),
which (modulo the logarithm) is linear in the input data size nd. Thus, the com-
putational complexity per iteration is comparable to first-order methods that have
access only to the gradient AT¢/(Az). In contrast to first-order methods, we show
that for self-concordant functions, the total complexity of obtaining a §-approximate
solution is O(nd(logd)log(1/6)), and without any dependence on constants such as
strong convexity or smoothness parameters. Moreover, for problems with d > n, we
provide a dual strategy that effectively has the same guarantees with roles of d and
n exchanged.

We also consider other random projection matrices and subsampling strategies,
including partial forms of random projection that exploit known structure in the
Hessian. For self-concordant functions, we provide an affine invariant analysis proving
that the convergence is linear quadratic and the guarantees are independent of various
problem parameters, such as condition numbers of matrices involved in the objective
function. Finally, we describe an interior point method to deal with arbitrary convex
constraints, which combines the Newton sketch with the barrier method. We provide
an upper bound on the total number of iterations required to obtain a solution with
a prespecified target accuracy.

The remainder of this paper is organized as follows. We begin in section 2 with
some background on the classical form of Newton’s method, past work on approximate
forms of Newton’s method, random matrices for sketching, and Gaussian widths as a
measure of the size of a set. In section 3, we formally introduce the Newton sketch,
including both fully and partially sketched versions for unconstrained and constrained
problems. We provide some illustrative examples in section 3.3 before turning to local
convergence theory in section 3.4. Section 4 is devoted to global convergence results
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for self-concordant functions, in both the constrained and unconstrained settings. In
section 5, we consider a number of applications and provide additional numerical
results. The bulk of our proofs are in given in section 6, with some more technical
aspects deferred to the appendices.

2. Background. We begin with some background material on the standard
form of Newton’s method, past work on approximate or stochastic forms of New-
ton’s method, the basics of random sketching, and the notion of Gaussian width as a
complexity measure.

2.1. Classical version of Newton’s method. In this section, we briefly review
the convergence properties and complexity of the classical form of Newton’s method;
see the sources [38, 6, 27] for further background. Let f : RY — R be a closed, convex,
and twice-differentiable function that is bounded below. Given a convex and closed
set C, we assume that the constrained minimizer

(2.1) ¥ = arggleilclf(a:)

exists and is uniquely defined. We define the minimum and maximum eigenvalues
7 = Amin(V2f(2%)) and B = Anax (V2 f(2*)) of the Hessian evaluated at the minimum.

We assume, moreover, that the Hessian map x + V2 f(x) is Lipschitz continuous
with modulus L, meaning that

(2.2) IV2f(z+A) = V2f(@)llop < LIAl2.

Under these conditions and given an initial point Z° € C such that ||2° — 2*[|; < 5%,
the Newton updates are guaranteed to converge quadratically, viz.

2L
12 — a*[l < — 7" — 273
5

This result is classical; for instance, see Boyd and Vandenberghe [6] for a proof.
Newton’s method can be slightly modified to be globally convergent by choosing the
step sizes via a simple backtracking line-search procedure.

The following result characterizes the complexity of Newton’s method when ap-
plied to self-concordant functions and is central in the development of interior point
methods (for instance, see the books [28, 6]). We defer the definitions of self-concor-
dance and the line-search procedure to the following sections. The number of itera-
tions needed to obtain a d-approximate minimizer of a strictly convex self-concordant
function f is at most

% (f(2®) = f(2")) +logy logy(1/3) ,

where a, b are constants in the line-search procedure.!

2.2. Approximate Newton methods. Given the complexity of the exact
Newton updates, various forms of approximate and stochastic variants of Newton’s
method have been proposed, which we discuss here. In general, inexact solutions
of the Newton updates can be used to guarantee convergence while reducing overall
computational complexity [11, 12]. In the unconstrained setting, the Newton update

I Typical values of these constants are a = 0.1 and b = 0.5 in practice.
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corresponds to solving a linear system of equations, and one approximate approach
is a truncated Newton’s method: it involves applying the conjugate gradient (CG)
method for a specified number of iterations, and then using the solution as an approxi-
mate Newton step [12]. In applying this method, the Hessian need not be formed since
the CG updates only need access to matrix-vector products with the Hessian. These
matrix-vector products can also be approximated using finite differences of gradients
(e.g., see [23]). While these strategies are popular, theoretical analysis of inexact New-
ton methods typically need strong assumptions on the eigenvalues of the Hessian [11].
Since the number of steps of CG for reaching a certain residual error necessarily de-
pends on the condition number, the overall complexity of the truncated Newton’s
method is problem dependent; the condition numbers can be arbitrarily large and, in
general, are unknown a priori. Ill-conditioned Hessian system are common in appli-
cations of Newton’s method within interior point methods. Consequently, software
toolboxes typically perform approximate Newton steps using CG updates in earlier
iterations, but then shift to exact Newton steps via Cholesky or QR decompositions
in later iterations.

A more recent line of work, inspired by the success of stochastic first-order
algorithms for large-scale machine learning applications, has focused on stochastic
forms of second-order optimization algorithms (e.g., [33, 5, 7, 8]). Schraudolph, Yu,
and Giinter [33] use online limited memory BFGS-like updates to maintain an inverse
Hessian approximation. Byrd et al. [8, 7] propose stochastic second-order methods
that use batch subsampling in order to obtain curvature information in a computa-
tionally inexpensive manner. These methods are numerically effective in problems in
which the objective consists of a sum of a large number of individual terms; however,
their theoretical analysis again involves strong assumptions on the eigenvalues of the
Hessian. Moreover, such second-order methods do not retain the affine invariance of
the original Newton’s method, which guarantees iterates are independent of the co-
ordinate system and conditioning. When simple stochastic schemes like subsampling
are used to approximate the Hessian, affine invariance is lost, since subsampling is
coordinate and conditioning dependent. In contrast, the stochastic form of Newton’s
method analyzed in this paper is constructed so as to retain this affine invariance
property, and thus not depend on the problem conditioning.

2.3. Different types of randomized sketches. Our Newton sketch algorithm
is based on performing a form of dimensionality reduction using random matrices,
known as sketching matrices. Various types of randomized sketches are possible, and
we describe a few of them here. Given a sketching matrix S € R™*"™ we use {s;},
to denote the collection of its n-dimensional rows. We restrict our attention to sketch
matrices that are zero mean, and that are normalized so that E[STS/m] = I,,.

Sub-Gaussian sketches. The most classical sketch is based on a random matrix
S € R™*™ with independently and identically distributed (i.i.d.) standard Gaussian
entries or, somewhat more generally, sketch matrices based on i.i.d. sub-Gaussian
rows. In particular, a zero-mean random vector s € R™ is 1-sub-Gaussian if for any
u € R™, we have

(2.3) P((s, u) > elluls] <e /2 forall e > 0.

For instance, a vector with i.i.d. N(0,1) entries is 1-sub-Gaussian, as is a vector
with i.i.d. Rademacher entries (uniformly distributed over {—1,+1}). We use the
terminology sub-Gaussian sketch to mean a random matrix S € R™*™ with i.i.d.
rows that are zero mean, 1-sub-Gaussian, and with cov(s) = I,,.
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From a theoretical perspective, sub-Gaussian sketches are attractive because of
the well-known concentration properties of sub-Gaussian random matrices (e.g., [10,
37]). On the other hand, from a computational perspective, a disadvantage of sub-
Gaussian sketches is that they require matrix-vector multiplications with unstruc-
tured random matrices. In particular, given a data matrix A € R"*¢, computing
its sketched version SA requires O(mnd) basic operations in general (using classical
matrix multiplication).

Sketches based on randomized orthonormal systems (ROS). The second
type of randomized sketch we consider is ROS, for which matrix multiplication can
be performed much more efficiently. In order to define a ROS sketch, we first let
H € C™" be an orthonormal complex valued matrix with unit magnitude entries,
ie., |H;j| € [—ﬁ, \/Lﬁ] Standard classes of such matrices are the Hadamard or Fourier
bases, for which matrix-vector multiplication can be performed in O(nlogn) time via
the fast Hadamard or Fourier transforms, respectively. Based on any such matrix, a
sketching matrix S € C™*" from a ROS ensemble is obtained by sampling i.i.d. rows
of the form

sT = ﬂe?HD with probability 1/n for j =1,...,n,

where the random vector e; € R™ is chosen uniformly at random from the set of all
n canonical basis vectors, and D = diag(v) is a diagonal matrix of i.i.d. Rademacher
variables v € {—1,+1}". Given a fast routine for matrix-vector multiplication, the
sketch SM for a data matrix M € R"*¢ can be formed in O(ndlogm) time (for
instance, see the papers [3, 2, 14]). The fast matrix multiplication usually requires
n to be a power of 2 (or power of r for a radix-r construction). However, in order
to use the fast multiplication for an arbitrary n, we can augment the data matrix
with a block of zero rows and do the same for the square root of the Hessian without
changing the objective value.

Sketches based on random row sampling. Given a probability distribution
{p;j}j_1 over [n] = {1,...,n}, another choice of sketch is to randomly sample the rows
of a data matrix M a total of m times with replacement from the given probability
distribution. Thus, the rows of S are independent and take on the values

T € . o .

S 5 with probability p; for j =1,...n,
where e¢; € R™ is the jth canonical basis vector. Different choices of the weights
{p;}j—, are possible, including those based on the row £ norms p;  [[Me,||5 and
leverage values of M—i.e., p; o [[Uejll2 for j = 1,...,n, where U € R" 4 is the
matrix of left singular vectors of M (e.g., see the paper [13]). When the matrix
M € R™? corresponds to the adjacency matrix of a graph with d vertices and n
edges, the leverage scores of M are also known as effective resistances which can be
used to subsample edges of a given graph by preserving its spectral properties [35].

Sparse JL sketches. For sparse data matrices, the sketching operation can be
done faster if the sketching matrix is chosen from a distribution over sparse matri-
ces. Several works developed sparse JL embeddings [1, 9, 19] and sparse subspace
embeddings [25]. Here we describe a construction given by [25, 19]. Given an integer
s, each column of S is chosen to have exactly s nonzero entries in random locations,
each equal to +1/4/s uniformly at random. The column sparsity parameter s can be
chosen O(1/¢) for subspace embeddings and O(log(1/d)/¢) for sparse JL embeddings,
where ¢ is the failure probability.
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2.4. Gaussian widths. In this section, we introduce some background on the
notion of Gaussian width, a way of measuring the size of a compact set in R?. These
width measures play a key role in the analysis of randomized sketches. Given a
compact subset £ C R?, its Gaussian width is given by

(2.4) W(L) i= B, |maxl (o, 2}

where g € R™ is an i.i.d. sequence of N (0, 1) variables. This complexity measure plays
an important role in Banach space theory, learning theory, and statistics (e.g., [32,
21, 4]).

Of particular interest in this paper are sets £ that are obtained by intersect-
ing a given cone K with the Euclidean sphere S~1 = {2 € R | |[jz]s = 1}. Tt
is easy to show that the Gaussian width of any such set is at most v/d, but it can
be substantially smaller, depending on the nature of the underlying cone. For in-
stance, if IC is a subspace of dimension r < d, then a simple calculation yields that
WK NS < /r.

3. Newton sketch and local convergence. With the basic background in
place, let us now introduce the Newton sketch algorithm, and then develop a number
of convergence guarantees associated with it. It applies to an optimization problem
of the form mingec f(z), where f : R? — R is a twice-differentiable convex function,
and C C R? is a closed and convex constraint set.

3.1. Newton sketch algorithm. In order to motivate the Newton sketch algo-
rithm, recall the standard form of Newton’s algorithm: given a current iterate z* € C,
it generates the new iterate Z*! by performing a constrained minimization of the
second-order Taylor expansion, viz.

1
(3.1a) = argmeig{i (z—2", V2f(@") (z —2")) + (Vf(E"), 2 — 7") }
In the unconstrained case—that is, when C = R% it takes the simpler form
(3.1b) B =@ - [V2F@E)] T VL.

Now suppose that we have available a Hessian matrix square root V2 f(z)/2—
that is, a matrix V2 f(2)'/2 of dimensions n x d such that

(V2f(2)YTV2 f(2)Y? = V2 f(2) for some integer n > rank(V2f(z)).

In many cases, such a matrix square root can be computed efficiently. For instance,
consider a function of the form f(r) = g(Ax), where A € R"*? and the func-
tion g : R® — R has the separable form g(Az) = >, g;({a;, z)). In this case,
a suitable Hessian matrix square root is given by the n x d matrix V2f(z)'/? :=
diag{g? ({ai, x))*/?}7_, A. In section 3.3, we discuss various concrete instantiations of
such functions.

In terms of this notation, the ordinary Newton update can be rewritten as

1
St+l : L2 prat\1/2/,,  At\)(2 ~t st
T argglelg{ SIVAf(@) (@ = 20)lls + (V@) x>},

o (x)
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and the Newton sketch algorithm is most easily understood based on this form of
the updates. More precisely, for a sketch dimension m to be chosen, let S € R"™*"™
be a sub-Gaussian, ROS, sparse-JL sketch or subspace embedding (when C is a sub-
space), satisfying the relation E[STS] = I,,. The Newton sketch algorithm generates
a sequence of iterates {z'}9°, according to the recursion

(32) @' cargmin] SISV 5@ @ — B+ (Vi@ 0 -t ),

P(x;S?t)

where S* € R™*? is an independent realization of a sketching matrix. When the
problem is unconstrained, i.e., C = R? and the matrix V2 f(z*)/2(S")TS!V?2 f(2?)1/2
is invertible, the Newton sketch update takes the simpler form

(33) 2 — gt (VQf(xt)1/2(St)TStv2f($t)1/2)71 Vf(xt)

The intuition underlying the Newton sketch updates is as follows: the iterate xt*!
corresponds to the constrained minimizer of the random objective function ®(x;S?)
whose expectation E[®(x;S?)], taking averages over the isotropic sketch matrix S?, is
equal to the original Newton objective i)(x) Consequently, it can be seen as a stochas-
tic form of the Newton update, which minimizes a random quadratic approximation
at each iteration.

In this paper, we also analyze a partially sketched Newton update, which takes the
following form. Given an additive decomposition of the form f = fo + g, we perform
a sketch of of the Hessian V2 f, while retaining the exact form of the Hessian V2g.
This splitting leads to the partially sketched update

(3.4) ot = arggleilcl {%(aj — 2 QM x — 2') + (Vf(2h), x — xt>},

where Q! : = (STV2 fo(xt)/2)T StV fo(x)'/? + V2g(zt).

For either the fully sketched (3.2) or partially sketched updates (3.4), our analysis
shows that there are many settings in which the sketch dimension m can be chosen
to be substantially smaller than n, in which cases the sketched Newton updates will
be much cheaper than a standard Newton update. For instance, the unconstrained
update (3.3) can be computed in at most O(md?) time, as opposed to the O(nd?)
time of the standard Newton update. In constrained settings, we show that the sketch
dimension m can often be chosen even smaller—even m < d—which leads to further
savings.

3.2. Affine invariance of the Newton sketch and sketched KKT sys-
tems. A desirable feature of the Newton sketch is that, similar to the original New-
ton’s method, both of its forms remain (statistically) invariant under an affine trans-
formation. In other words, if we apply the Newton sketch on an affine transformation
of a particular function, the statistics of the iterates are related by the same trans-
formation. As a concrete example, consider the problem of minimizing a function
f : R? — R subject to equality constraints Caz = d for some matrix C € R"*? and
vector d € R™. For this particular problem, the Newton sketch update takes the form

(35) o= arg min {1V @) @ - 2 E 4 (VG -t )
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Equivalently, by introducing Lagrangian dual variables for the linear constraints, it is
equivalent to solve the following sketched KKT system

(sz(ﬂct)l/z)T(S'Ct)TStsz(ﬂct)l/2 COT} {Axm] _ [Vféxt)} ’

Wnsk

where Azygx = 2t — 2t € R is the sketched Newton step, where 2t is assumed
feasible, and wysk € R™ is the optimal dual variable for the stochastic quadratic
approximation.

Now fix the random sketching matrix S* and consider the transformed objec-
tive function f(y):= f(By), where B € R?*¢ is an invertible matrix. If we apply
the Newton sketch algorithm to the transformed problem involving f, the sketched
Newton step Ayysk is given by the solution to the system

BT(sz(xt)l/z)T(St)TStVZf(a:t)l/QB BTCT AyNSK B BTVf(ajt)
CB 0 Wnsc | 0 ’

which shows that BAyysk = Axnsk- Note that the upper-left block in the above
matrix has rank at most m and, consequently, the above 2 x 2 block matrix has rank
at most m + rank(C').

3.3. Some examples. In order to provide some intuition, let us provide some
simple examples to which the sketched Newton updates can be applied.

Ezample 1 (Newton sketch for LP solving). Consider a linear program (LP) in
the standard form
(3.6) in (c, z),
where A € R™? is a given constraint matrix. We assume that the polytope

{z € R? | Az < b} is bounded so that the minimum is achieved. A barrier method
approach to this LP is based on solving a sequence of problems of the form

zeRY

min {T (e, T) — ilog(bi — {a;, x)) }a
i=1

f(@)

where a; € R? denotes the ith row of A, and 7 > 0 is a weight parameter that is
adjusted during the algorithm. By inspection, the function f : R? — R U {400} is
twice differentiable, and its Hessian is given by V2f(z) = AT diag{ @ DB 1A A

12 = diag(m)/l, which allows us to

1
—(a;, x
Hessian square root is given by V2 f(x)
compute the sketched version

2 i (L
SV f(x)!/? = S diag (|bi —{as, x>|> .

With an ROS sketch matrix, computing this matrix requires O(ndlog(m)) basic op-
erations. The complexity of each Newton sketch iteration scales as O(md?), where m
is at most O(d). In contrast, the standard unsketched form of the Newton update has
complexity O(nd?), so that the sketched method is computationally cheaper whenever
there are many more constraints than dimensions (n > d).
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Trial 1 Trial 2 Trial 3

90O

) Sketch size m = d

Trial 1 Trial 2 Trial 3

XX,

) Sketch size m = 4d

Trial 1 Trial 2 Trial 3

QQQ

) Sketch size m = 16d

F1G. 1. Comparisons of central paths for a simple linear program in two dimensions. Fach row
shows three independent trials for a given sketch dimension: across the rows, the sketch dimension
ranges as m € {d,4d,16d}. The black arrows show Newton steps taken by the standard interior
point method, whereas red arrows show the steps taken by the sketched version. The green point at
the vertex represents the optimum. In all cases, the sketched algorithm converges to the optimum,
and as the sketch dimension m increases, the sketched central path converges to the standard central
path.

By increasing the barrier parameter 7, we obtain a sequence of solutions that
approach the optimum to the LP, which we refer to as the central path. As a sim-
ple illustration, Figure 1 compares the central paths generated by the ordinary and
sketched Newton updates for a polytope defined by n = 32 constraints in dimension
d = 2. Each row shows three independent trials of the method for a given sketch
dimension m; the top, middle, and bottom rows correspond to sketch dimensions
m € {d,4d, 16d}, respectively. Note that as the sketch dimension m is increased, the
central path taken by the sketched updates converges to the standard central path.

As a second example, we consider the problem of maximum likelihood estimation
for generalized linear models.

Ezample 2 (Newton sketch for maximum likelihood estimation). The class of gen-
eralized linear models (GLMs) is used to model a wide variety of prediction and clas-
sification problems, in which the goal is to predict some output variable y € ) on the
basis of a covariate vector a € R%. GLMs include the standard linear Gaussian model
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(in which Y = R), as well as logistic models for classification (in which Y = {—1,+1}),
as well as as Poisson models for count-valued responses (in which Y = {0,1,2,...})
as special cases. See the book [24] for further details and applications.

Given a collection of n observations {(y;,a;)}" , of response-covariate pairs from
some GLM, the problem of constrained maximum likelihood estimation may be writ-
ten in the form

(3.7 min {gwai, ) |,

f(@)

where 1) : Rx) — Ris a given convex function, and C C R? is a convex constraint set,
chosen by the user to enforce a certain type of structure in the solution. Important
special cases of GLMs include the linear Gaussian model, in which ¢ (u, y) = (y—u)?,
and the problem (3.7) corresponds to the method of least-squares, as well as the
problem of logistic regression, obtained by setting ¥ (u,y) = log(1 + exp(—yu)).
Letting A € R"*¢ denote the data matrix with a; € R? as its ith row, the Hessian
of the objective (3.7) takes the form
V2 f(z) = AT diag (¢ (a] z))

n

i1 A
Since the function 1 is convex, we are guaranteed that 1" (alz) > 0, and hence the
n x d matrix diag(y"”(al'z))'/2A can be used as a matrix square root. We return to
explore this class of examples in more depth in section 5.1.

3.4. Local convergence analysis using strong convexity. Returning now
to the general setting, we begin by proving a local convergence guarantee for the
sketched Newton updates. In particular, this theorem provides insight into how large
the sketch dimension m must be in order to guarantee good local behavior of the
sketched Newton algorithm.

Our analysis involves the geometry of the tangent cone of the optimal vector z*.
More precisely, given a constraint set C and the minimizer * : = arg ming¢cc f(x), the
tangent cone at x* is given by

(3.8) K:={AeR?|z*+tAeC forsomet>0}.

The local analysis to be given in this section involves the cone-constrained eigenvalues
of the Hessian V2 f(z*), defined as

(3.9) y= inf (z, V2f(z*))z) and B= sup (z, VZf(z*))2).
zeKNSd-1 zeknsd—1

In the unconstrained case (C = RY), we have K = R?, so that v and § reduce to the
minimum and maximum eigenvalues of the Hessian V2 f(x*). In the classical analysis
of Newton’s method, these quantities measure the strong convexity and smoothness
parameters of the function f. Note that the condition v > 0 is much weaker than
strong convexity as it can hold for Hessian matrices that are rank deficient, as long
as the tangent cone /C is suitably small.

Recalling the definition of the Gaussian width from section 2.4, our choice of
the sketch dimension m depends on the width of the renormalized tangent cone. In
particular, for the following theorem, we require it to be lower bounded as

< 22 1/2
(3.10) m > =2 I;leaé(W (V=f(x)/<K),
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where € € (0, g5) is a user-defined tolerance, and c is a universal constant. Since the

Hessian square root V2f(z)'/? has dimensions n x d, this squared Gaussian width
is at at most min{n,d}. This worst-case bound is achieved for an unconstrained
problem (in which case K = R%), but the Gaussian width can be substantially smaller
for constrained problems. For instance, consider an equality constrained problem
with affine constraint Cax = b. For such a problem, the tangent cone lies within
the nullspace of the matrix C—say it is dco-dimensional. It then follows that the
squared Gaussian width (3.10) is also bounded by d¢; see the example following
Theorem 3.1 for a concrete illustration. Other examples in which the Gaussian width
can be substantially smaller include problems involving simplex constraints (portfolio
optimization) or ¢;-constraints (sparse regression).

With this set-up, the following theorem is applicable to any twice-differentiable
objective f with cone-constrained eigenvalues (v, 8) defined in (3.9), and with Hessian
that is L-Lipschitz continuous, as defined in (2.2).

THEOREM 3.1 (local convergence of Newton sketch). For a given tolerance € €
(0, g—g), consider the Newton sketch updates (3.2) based on an initialization x° such

that ||z — 2*||2 < g=, and a sketch dimension m satisfying the lower bound (3.10).
Then with probability at least 1 — c; Ne™ 2™, the FEuclidean error satisfies the bound

(3.11)

4L
|ttt — 2| < eﬁﬂxt — 22 + — ||zt — z*|)3 for iterations t =0,...,N — 1.
v v

The bound (3.11) shows that when € is small enough—say ¢ = §/4y—then the
optimization error A = 2t — z* decays at a linear-quadratic convergence rate. More
specifically, the rate is initially quadratic—that is, ||A*!|5 ~ %HAtH% when ||At]|,
is large. However, as the iterations progress and ||Af||2 becomes substantially less
than 1, then the rate becomes linear—meaning that [|A!1]|; ~ €§|\At|\2—since the

term 4Z||At||2 becomes negligible compared to e%HAtHg. Unwrapping the recursion
for all N steps, the linear rate guarantees the conservative error bounds

N N
(3.12) |2 —a*|2 < SLL (% + eg) and  f(zV) — f(z¥) < g—z (% + eg) .

A notable feature of Theorem 3.1 is that, depending on the structure of the
problem, the linear-quadratic convergence can be obtained using a sketch dimension m
that is substantially smaller than min{n, d}. As an illustrative example, we performed
simulations for some instantiations of a portfolio optimization problem: it is a linearly-
constrained quadratic program of the form

: Lorr
(3.13) min {Ex A" Az — {c, a:}} )
Z?:yfj:l

where A € R™*? and ¢ € R? are matrices and vectors that arise from data (see
section 5.3 for more details). We used the Newton sketch to solve different sizes of
this problem d € {10, 20, 30, 40, 50,60}, and with n = d® in each case. Each problem
was constructed so that the optimal vector z* € RY had at most s = [2log(d)] non-
zero entries. A calculation of the Gaussian width for this problem (see Appendix A
for the details) shows that it suffices to take a sketch dimension m - slogd, and we
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Fic. 2. Empirical illustration of the linear convergence of the Newton sketch algorithm for an
ensemble of portfolio optimization problems (3.13). In all cases, the algorithm was implemented
using a sketch dimension m = [4slogd]|, where s is an upper bound on the number of nonzeros in
the optimal solution x*; this quantity satisfies the required lower bound (3.10), and consistent with
the theory, the algorithm exhibits linear convergence.

implemented the algorithm with this choice. Figure 2 shows the convergence rate of
the Newton sketch algorithm for the six different problem sizes: consistent with our
theory, the sketch dimension m < min{d, n} suffices to guarantee linear convergence
in all cases.

It is also possible obtain an asymptotically superlinear rate by using an iteration-
dependent sketching accuracy € = €(t). The following corollary summarizes one such
possible guarantee.

COROLLARY 3.2. Consider the Newton sketch iterates using the iteration-
dependent sketching accuracy e(t) = m. Then with the same probability as in
Theorem 3.1, we have

. 1 B X 4L N
& = 2% )2 € et — 2|l + — e’ —a"|f3
log(1+¢)~ o
1
and, consequently, superlinear convergence is obtained, namely, lim;_, ”lg‘”;t_isz”!z =

0.

Note that the price for this superlinear convergence is that the sketch size is
inflated by the factor e 2(t) = log®(1 + t), so it is only logarithmic in the iteration
number.

4. Newton sketch for self-concordant functions. The analysis and com-
plexity estimates given in the previous section involve the curvature constants (v, 3)
and the Lipschitz constant L, which are seldom known in practice. Moreover, as
with the analysis of the classical Newton method, the theory is local, in that the
linear-quadratic convergence takes place once the iterates enter a suitable basin of the
origin.

In this section, we seek to obtain global convergence results that do not depend
on unknown problem parameters. As in the classical analysis, the appropriate setting
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Algorithm 1 Newton sketch with backtracking line search.

Input: Starting point z°, tolerance § > 0, (a,b) line-search parameters, sketching matrices {St}fio €
RWLXTL.

1: Compute approximate Newton step Az’ and approximate Newton decrement \(x)

(V@A) + 5 I8V 2 A3

Az':=arg min
Atatec

Xf(rt) i= V@) T Azt

2: Quit if A(z?)?/2 < 4.
3: Line search: choose p :  while f(z' 4+ pAx?) > f(z') + apX(z?), or ' + uA ¢ C  p <+ bu
4: Update: zt! = 2t + pAzt

Output: minimizer z*, optimality gap \(z")

in which to seek such results is for self-concordant functions, and using an appropriate
form of backtracking line search. We begin by analyzing the unconstrained case, and
then discuss extensions to constrained problems with self-concordant barriers. In
each case, we show that given a suitable lower bound on the sketch dimension, the
sketched Newton updates can be equipped with global convergence guarantees that
hold with exponentially high probability. Moreover, the total number of iterations
does not depend on any unknown constants such as strong convexity and Lipschitz
parameters.

4.1. Unconstrained case. In this section, we consider the unconstrained opti-
mization problem min,cga f(x), where f is a closed convex self-concordant function
that is bounded below. A closed convex function ¢ : R — R is said to be self-
concordant if

(4.1) 16" ()] < 2(¢"(x))*?.

This definition can be extended to a function f : R* — R by imposing this requirement
on the univariate functions ¢4 ,(t) : = f(x + ty), for all choices of z,y in the domain
of f. Examples of self-concordant functions include linear and quadratic functions
and the negative logarithm. Moreover, the property of self-concordance is preserved
under addition and affine transformations.

Our main result provides a bound on the total number of Newton sketch iterations
required to obtain a d-approximate solution without imposing any sort of initialization
condition, as was done in our previous analysis. This bound scales proportionally to
log(1/6) and inversely in a parameter v that depends on sketching accuracy € € (0, 1)
and backtracking parameters (a,b) via

2 1_l(1+6)2_a
U] 1 2\

4.2 v=ab—>7"r——, where n=—

42 L+ (o TR =y

With this set-up, we have the following guarantee.

THEOREM 4.1. Let f be a strictly convex self-concordant function and C = R<.
Given a sketching matriz S € R™ ™ with m = % maxgedom s rank(V2f(z)), the num-
ber of total iterations T for obtaining a §-approximate solution in function value via
Algorithm 1 is at most
f(2°) = f(z%)

v

1

cam

with probability at least 1 — cyNe™
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The iteration bound (4.3) shows that the convergence of the Newton sketch is
independent of the properties of the function f and problem parameters, similar to
the classical Newton’s method. Note that for problems with n > d, the complexity
of each Newton sketch step is at most O(d® + ndlogd), which is smaller than that
of Newton’s method (O(nd?)), and also smaller than typical first-order optimization
methods (O(knd) per iteration) that depend on data conditioning whenever n > d?,
ignoring logarithmic factors.

4.1.1. Rank-deficient Hessians. As stated, Theorem 4.1 requires the function
to be strictly convex. However, by exploiting the affine invariance of the Newton sketch
updates, we can also obtain guarantees of the form (4.3) for the Newton sketch applied
to problems with singular Hessians. As a concrete example, given a matrix A € R"*¢
that is rank deficient, i.e., with rank(A) = r < min{n, d}, consider a function of the
form f(z) = g(Az), where g : R™ — R is strictly convex and self-concordant. Due to
the rank deficiency of A, the Hessian of f will also be rank deficient, so that Theo-
rem 4.1 does not directly apply. However, suppose that we let A = UXV T be the full
SVD of A, where ¥ is a diagonal matrix with X;; = 0 for all indices j > r. With this

notation, define the function f(y) = g(AVy), corresponding to the invertible trans-
formation z = Vy. Note that as a result of the affine invariance property, we don’t

have to compute the SVD explicitly and perform this transformation. We then have

f(y) = g(UEy) = g(Uzl:ryl:r)a

where y1., € R" denotes the subvector of the first r entries of y. Hence, viewed as a
function on R”, the transformed function f is strictly convex and self-concordant, so
that Theorem 4.1 can be applied. By the affine invariance property, the Newton sketch
applied to the original function f has the same convergence guarantees (and trans-
formed iterates) as the reduced strictly convex function. Consequently, the sketch size
choice m = 5 rank(A) is sufficient. Note that in many applications, the rank of A
can be much smaller than min(n,d), so that the Newton sketch complexity O(m?2d)
is correspondingly smaller, relative to other schemes that do not exploit the low-rank
structure. Some optimization methods can exploit low rankness when a factorization
of the form A = LR is available. However, note that the cost of computing such a
low-rank factorization scales as O(nd?), which dominates the overall complexity of
the Newton sketch, including sketching time.

4.2. Newton sketch with self-concordant barriers. We now turn to the
more general constrained case. Given a closed, convex self-concordant function fy :
R? — R, let C be a convex subset of R?, and consider the constrained optimization
problem mingec fo(x). If we are given a convex self-concordant barrier function g(x)
for the constraint set C, it is customary to consider the unconstrained and penalized
problem

min {fo(x) + g(x) },

z€R4
f(x)

which approximates the original problem. One way in which to solve this uncon-
strained problem is by sketching the Hessian of both fy and g, in which case the
theory of the previous section is applicable. However, there are many cases in which
the constraints describing C are relatively simple, and so the Hessian of g is highly
structured. For instance, if the constraint set is the usual simplex (i.e., z > 0 and
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Algorithm 2 Newton sketch with self-concordant barriers.

Input: Starting point x°, constraint C, corresponding barrier function g such that f = fo + g, tolerance
§ > 0, (@, B) line-search parameters, sketching matrices S* € R™*"™.
1: Compute approximate Newton step Az’ and approximate Newton decrement Af.

1 1
Acti=arg min  (Vf(x'), A) + SISV fo(@ )2 A2 + S ATV g(ah) A
zt+Aec 2 2

Xf(wt) 1= Vf(m)TAwt

2: Quit if A(z*)?/2 < 4.
3: Line search: choose p: while f(z® + pAz®) > f(z') + aui(z?), or ' + uA ¢ C  p+ Bu.
4: Update: z't! = 2t + pAzt.

Output: minimizer z*, optimality gap A(z?).

(1, ) < 1), then the Hessian of the associated log barrier function is a diagonal matrix
plus a rank one matrix. Other examples include problems for which g has a separable
structure; such functions frequently arise as regularizers for ill-posed inverse problems.

Examples of such regularizers include ¢, regularization g(z) = i||z||3, graph regular-
ization g(z) = %Zi)jeE(xi — z;)? induced by an edge set E (e.g., finite differences),
d

and also other differentiable norms g(z) = (35, #%)'/? for 1 < p < cc.

In all such cases, an attractive strategy is to apply a partial Newton sketch, in
which we sketch the Hessian term V2 fo(z) and retain the exact Hessian VZg(x),
as in the previously described updates (3.4). More formally, Algorithm 2 provides
a summary of the steps, including the choice of the line-search parameters. The
main result of this section provides a guarantee on this algorithm, assuming that the
sequence of sketch dimensions {m!}$° is appropriately chosen.

The choice of sketch dimensions depends on the tangent cones defined by the
iterates, namely, the sets

Ki:={AeR!| 2" +aAeC for some a > 0}.

For a given sketch accuracy e € (0,1), we require that the sequence of sketch dimen-
sions satisfies the lower bound
t~ ©3 2 o2 1/2 4t
(4.4) m' > = max W(V?f(2) 12ct.
Finally, the reader should recall the parameter v was defined in (4.2), which depends

only on the sketching accuracy ¢ and the line-search parameters. Given this set-up,
we have the following guarantee.

THEOREM 4.2. Let f : R — R be a convex and self-concordant function, and
let g:RY — RU {+00} be a conver and self-concordant barrier for the convex set C.
Suppose that we implement Algorithm 2 with sketch dimensions {m'};>0 satisfying
the lower bound (4.4). Then performing

0y _ * 1
N = M + 0.65 log, <1_65) iterations

suffices to obtain a d-approximate solution in the function value with probability at
least 1 — ¢y Ne 2™,

Thus, we see that the Newton sketch method can also be used with self-concordant
barrier functions, which considerably extends its scope. In the above theorem, note
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that we can isolate affine constraints from C and enforce them at each Newton step.
Section 5.6 provides a numerical illustration of its performance in this context. As
we discuss in the next section, there is a flexibility in choosing the decompositions
fo and g corresponding to objective and barrier, which enables us to also sketch the
constraints.

4.3. Sketching with interior point methods. In this section, we discuss the
application of Newton sketch to a form of barrier or interior point methods. In par-
ticular we discuss two different strategies and provide rigorous worst-case complexity
results when the functions in the objective and constraints are self-concordant. More
precisely, let us consider a problem of the form

(4.5) m]iRri fo(z) subject to g;(z) <0 forj=1,...,r,
xTE

where fy and {g;};_; are twice-differentiable convex functions. We assume that there
exists a unique solution x* to the above problem.

The barrier method for computing z* is based on solving a sequence of problems
of the form

(4.6) #(7) : = arg min {7fo(x) — 3 log(~g;(x) }
j=1

for increasing values of the parameter 7 > 1. The family of solutions {Z(7)}r>1

trace out what is known as the central path. A standard bound (e.g., [6]) on the
suboptimality of Z(7) is given by

fo(@(7)) = fola™) <

A=

The barrier method successively updates the penalty parameter 7 and also the starting
points supplied to Newton’s method using previous solutions.
Since Newton’s method lies at the heart of the barrier method, we can obtain
a fast version by replacing the exact Newton minimization with the Newton sketch.
Algorithm 3 provides a precise description of this strategy. As noted in step 1, there
are two different strategies in dealing with the convex constraints g;(z) < 0 for j =
1,...,7r:
o Full sketch: sketch the full Hessian of the objective function (4.6) using Al-

gorithm 1.
e Partial sketch: sketch only the Hessians corresponding to a subset of the
functions { fo,g;,j = 1,...,7}, and use exact Hessians for the other functions.

Apply Algorithm 2.

As shown by our theory, either approach leads to the same convergence guaran-
tees, but the associated computational complexity can vary depending both on how
data enter the objective and constraints, as well as the Hessian structure arising from
particular functions. The following theorem is an application of the classical results
on the barrier method tailored for Newton sketch using any of the above strategies
(e.g., see Boyd and Vandenberghe [6]). As before, the key parameter v was defined
in Theorem 4.1.

THEOREM 4.3 (Newton sketch complexity for interior point methods). For a
given target accuracy § € (0,1) and any p > 1, the total number of Newton sketch
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Algorithm 3 Interior point methods using Newton sketch.

Input: Strictly feasible starting point z°, initial parameter 7° s.t. 7 := 7% > 0, u > 1, tolerance § > 0.
1: Centering step: Compute Z(7) by Newton sketch with backtracking line search initialized at =
using Algorithm 1 or Algorithm 2.
2: Update z := Z(7).
3: Quit if r/7 < 6.
4: Increase T by 7 := ur.
Output: minimizer Z(7).

iterations required to obtain a d-approximate solution using Algorithm 3 is at most

(4.7) Foggé(jﬂ <T(“_ 11/_ 8 1) | 4,65 1og, <1i65)>

If the parameter p is set to minimize the above upper bound, the choice p =
1+ 1 yields O(y/r) iterations. However, this “optimal” choice is typically not used
in practice when applying the standard Newton method; instead, it is common to
use a fixed value of p € [2,100]. In experiments, experience suggests that the number
of Newton iterations needed is a constant independent of r and other parameters.
Theorem 4.3 allows us to obtain faster interior point solvers with rigorous worst-case
complexity results. We show different applications of Algorithm 3 in the following
section.

5. Applications and numerical results. In this section, we discuss some ap-
plications of the Newton sketch to different optimization problems. In particular,
we show various forms of Hessian structure that arise in applications, and how the
Newton sketch can be computed. When the objective and/or the constraints contain
more than one term, the barrier method with Newton sketch has some flexibility in
sketching. We discuss the choices of partial Hessian sketching strategy in the barrier
method. It is also possible to apply the sketch in the primal or dual form, and we
provide illustrations of both strategies here.

5.1. Estimation in generalized linear models. Recall the problem of (con-
strained) maximum likelihood estimation for a generalized linear model, as previously
introduced in Example 2. It leads to the family of optimization problems (3.7): here
¥ : R — R is a given convex function arising from the probabilistic model, and C C R¢
is a closed convex set that is used to enforce a certain type of structure in the so-
lution. Popular choices of such constraints include ¢1-balls (for enforcing sparsity in
a vector), nuclear norms (for enforcing low-rank structure in a matrix), and other
nondifferentiable seminorms based on total variation (e.g., Z?;ll |zj41 — x;]), useful
for enforcing smoothness or clustering constraints.

Suppose that we apply the Newton sketch algorithm to the optimization prob-
lem (3.7). Given the current iterate a!, computing the next iterate z'*! requires
solving the constrained quadratic program

(5.1) min {%nsmag (v (Gas, 2, 0)) 7 Aw = )+ D @ ¥ (fa, xt>,yi>>} .
i=1

When the constraint C is a scaled version of the ¢;-ball—that is, C =
{x € R? | ||z||; < R} for some radius R > 0—the convex program (5.1) is an in-
stance of the Lasso program [36], for which there is a very large body of work. For
small values of R, where the cardinality of the solution = is very small, an effective
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strategy is to apply a homotopy-type algorithm, also known as LARS [15, 17], which
solves the optimality conditions starting from R = 0. For other sets C, another pop-
ular choice is projected gradient descent, which is efficient when projection onto C is
computationally simple.

Focusing on the /;-constrained case, let us consider the problem of choosing a
suitable sketch dimension m. Our choice involves the ¢;-restricted minimal eigenvalue
of the data matrix AT A, which is given by?

(5.2) (A= min Az
lzll1<24/5

Note that we are always guaranteed that v (A4) > Amin(ATA). Our result also in-
volves certain quantities that depend on the function v, namely,

Pl i=min min ¢”({a;, z),y;) and .. :=max max " ((a;, z), ),
zeC i=1,...,n zeC i=1,...,n

where a; € R? is the ith row of A. With this set-up, supposing that the optimal

solution z* has cardinality at most ||z*||o < s, then it can be shown (see Lemma A.1
in Appendix A) that it suffices to take a sketch size

" jEIlaX HAJH%
(5.3) m=co X slogd,
I/'Illin Vs (A)
where ¢y is a universal constant. Let us consider some examples to illustrate:
e Least-squares regression: ¢ (u) = gu?, ¢"(u) = 1, and ¢, = ¥l = 1;

min T ¥max ~
. . " RAmax
e Poisson regression: ¢ (u) = €%, ¥ (u) = e*, and wr/“/_"‘ = S
2 "
e logistic regression: (u) = log(l + e%), ¥"(u) = (eue:l)z, and ﬁrf??: =

eRAmin (e
e FAmax (eFAmmn1)2
where Amax 1= maXi=1,..n [|@illc and Amin 1= mini=1,.» [|@;[| -
For a large class of distributions of data matrices, the sketch size choice given
in (5.3) scales as O(slogd). As an example, consider data matrices A € R"*9,
where each row is independently sampled from a sub-Gaussian distribution with pa-
rameter one (see (2.3)). Then standard results on random matrices [37] show that
~vs (A) > 1/2 with high probability as long as n > ¢1slogd for a sufficiently large con-

—RAmax +1)2

stant ¢;. In addition, we have max;—1,._q|4;[|3 = O(n), as well as ﬁ;}l;"_‘x = O(log(n)).
For such problems, the per iteration complexity of the Newton sketch update scales
as O(s2dlog?(d)) using standard Lasso solvers (e.g., [20]) or as O(sdlog(d)) using
projected gradient descent, per gradient evaluation. Using ROS sketches and stan-
dard lasso interior point Lasso solvers to solve sketched Newton updates, the total
complexity is therefore (O(s2dlog?(d) + ndlog(d))log(1/¢)). This scaling can be sub-
stantially smaller than conventional algorithms that fail to exploit the small intrinsic
dimension of the tangent cone.

5.2. Semidefinite programs. The Newton sketch can also be applied to semidef-
inite programs. As one illustration, let us consider a metric learning problem studied

20ur choice of introducing the factor of two in the the constraint ||z||1 < 2+/s is for later
theoretical convenience, due to the structure of the tangent cone associated with the ¢1-norm [31, 30].
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in machine learning. Suppose that we are given d-dimensional feature vectors {a;}1,
and a collection of (%) binary indicator variables y;; € {—1,+1}" given by

~_J+1 ifa; and a; belong to the same class,
Yis = —1 otherwise,

defined for all distinct indices i,5 € {1,...,n}. The task is to estimate a positive
semidefinite matrix X such that the seminorm [|(a;—a;)| x := /{a; — aj, X (a; — a;))
is a good predictor of whether or not vectors i and j belong to the same class. Using
the least-squares loss, one way in which to do so is by solving the semidefinite program
(SDP)

()
?i%{ (X, (a; — aj)(a; — aj)T) — yij)2 + )\trace(X)}.
T i#g
Here the term trace(X), along with its multiplicative prefactor A > 0 that can be
adjusted by the user, is a regularization term for encouraging a relatively low-rank
solution. Using the standard self-concordant barrier X — logdet(X) for the positive
semidefinite cone, the barrier method involves solving a sequence of subproblems of
the form
n
min {7‘ (X, a;al) — y;)? + TAtrace X — logdet (X) }
X gRdxd —

i=1

f(vec(X))

Now the Hessian of the function vec(X) — f(vec(X)) is a d? x d? matrix given by

(3)

V2 f(vee(X)) =7 Z vec(Aj)vec(Ai) T + Xt X7
i#j
where A;; := (a; — aj)(a; — a;)T. Then we can apply the barrier method with
partial Hessian sketch on the first term, {S;;vec(A4;;)}i#; and exact Hessian for the
second term. Since the vectorized decision variable is vec(X) € R? the complexity
of Newton sketch is O(m?2d?) while the complexity of a classical SDP interior-point
solver is O(nd*) in practice.

5.3. Portfolio optimization and support vector machines. Here we con-
sider the Markowitz formulation of the portfolio optimization problem [22]. The
objective is to find a vector x € R? belonging to the unit simplex, corresponding to
nonnegative weights associated with each of d possible assets, so as to maximize the
expected return minus a coefficient times the variance of the return. Letting p € R?
denote a vector corresponding to mean return of the assets, and ¥ € R?*? be a sym-
metric, positive semidefinite matrix which represents the covariance of the returns.
The optimization problem is given by

1
(5.4) max {uTx — A= xTEx} .
220, %, 2;<1 2
The covariance of returns is often estimated from past stock data via an empirical co-
variance matrix of the form ¥ = AT A; here columns of A are time series corresponding
to assets normalized by \/n, where n is the length of the observation window.
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The barrier method can be used solve the above problem by solving penalized
problems of the form

d
1
min { T RO\ §a:TATAx — Zlog(e;fpa:) —log(1 —17x) },

Rd
xTE i—1

f(@)

where e; € R? is the ith element of the canonical basis and 1 is a row vector of all-ones.
Then the Hessian of the above barrier penalized formulation can be written as

V2f(x) = TA AT A + (diag{z? 521)71 + 117,

Consequently, we can sketch the data dependent part of the Hessian via 7AS A which
has at most rank m and keep the remaining terms in the Hessian exact. Since the
matrix 117 is rank one, the resulting sketched estimate is therefore diagonal plus rank
(m~+1), where the matrix inversion lemma [16] can be applied for efficient computation
of the Newton sketch update. Therefore, as long as m < d, the complexity per
iteration scales as O(md?), which is cheaper than the O(nd?) per step complexity
associated with classical interior point methods. We also note that support vector
machine classification problems with squared hinge loss also have the same form as
in (5.4), so that the same strategy can be applied.

5.4. Unconstrained logistic regression with d < n. Let us now turn to
some numerical comparisons of the Newton sketch with other popular optimization
methods for large-scale instances of logistic regression. More specifically, we generated
a data matrix A € R"*? with d = 100 features and n = 65536 observations. Each
row a; € R? was generated from the d-variate Gaussian distribution N (0,Y), where
the covariance matrix ¥ has 1 on diagonals and p on off-diagonals. Consequently, we
solve the optimization problem,

. i log(1 Ty,
(5.5) miy ; og(1 + exp(a; y;),

which is a special case of the GLM maximum likelihood problem given in (3.7) us-
ing Newton sketch (Algorithm 1) and other optimization algorithms, where C = R9.
As shown in Figure 3, the convergence of the algorithm per iteration is very similar
to Newton’s method. Besides the original Newton’s method, the other algorithms
compared are

o gradient descent (GD) with backtracking line search,

e stochastic average gradient (SAG) with line search,

e Broyden-Fletcher—Goldfarb-Shanno algorithm (BFGS) (MATLAB R2015a

implementation),

e truncated Newton’s method (trunNewt).

We ran Algorithm 1 with ROS sketch and sketch size m = 4d, line-search pa-
rameters a = 0.1 and b = 0.5, and plot iterates over 10 independent trials. The step
size in the gradient method is computed using backtracking line search. For the trun-
cated Newton’s method, we first performed experiments by setting the maximum CG
iteration number in the range {log(d),2log(d),3log(d)...,10log(d)}, and then also
implemented the residual stopping rule with accuracy 1/¢, where t is the iteration
count, as suggested in [12]. The best choice among these parameters is shown as
trunNewt in the plots. All algorithms are implemented in MATLAB (R2015a). In
the plots, each iteration of the SAG algorithm corresponds to a pass over the data,
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Fic. 3. Comparison of Newton sketch with various other algorithms, including Newton’s

method, truncated Newton, SAG, and BFGS in the logistic regression problem with Gaussian data.
Plots on the left show log optimality gap versus iteration number, and plots on the right show the
log optimality gap versus wall-clock time (bottom). (a), (b): No correlation, p = 0. For these very
well-conditioned problems first-order methods (GD and SAG) are often the best. (c), (d): Correla-
tion, p = 0.7. Newton sketch is now the best method. (e), (f): Correlation, p = 0.9. Newton sketch

performs well even with high correlations.

which is of comparable complexity to a single iteration of GD. In order to keep the
plots relatively uncluttered, we have excluded stochastic GD since it is dominated by
another stochastic first-order method (SAG), and accelerated gradient method [26]
as it is quite similar to GD. Plots on the left in Figure 3—that is panels (a), (c),
and (e)—show the log duality gap versus the number of iterations; as expected, on
this scale, the classical form of Newton’s method is the fastest. However, when the
log optimality gap is plotted versus the wall-clock time (right-side panels (b), (d),
and (e)), we now see that the Newton sketch is the fastest. The panels (a) and (b)
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Fic. 4. Comparison of Newton sketch with various other algorithms, including Newton’s
method, truncated Newton, SAG, and BFGS in the logistic regression problem with data gener-
ated from a Student’s t-distribution (see text for details). Plots on the left show log optimality gap
versus iteration number, and plots on the right show the log optimality gap versus wall-clock time
(bottom). (a), (b): No correlation, p = 0. (c), (d): Correlation, p = 0.5. (e), (f): Correlation,
p = 0.9. Newton sketch performs well even with high correlations and non-Gaussian data while

first-order algorithms perform poorly.

exhibit the case when there is no correlation (p = 0). For these very well-conditioned
problems first-order methods are often the best. However, panels (¢) and (d) exhibit
the case when correlation is moderate (p = 0.5) where it can be seen that Newton
sketch is the fastest method. Panels (e) and (f) further demonstrate that Newton
sketch performs well even with high correlations (p = 0.9).

On the other hand, Figure 4 reveals the sensitivity of first-order and stochastic-
gradient-type methods to the distribution of the covariates. For these experiments, we
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Fic. 5. The performance of Newton sketch is independent of condition numbers and problem
related quantities. Plots of the number of iterations required to reach 106 accuracy in £1-constrained
logistic regression using Newton’s method and projected GD using line search.

generated a feature matrix A with d = 100 features and n = 65536 observations where
each row a; € R? was generated from the Student’s t-distribution with covariance
3. The covariance matrix ¥ has 1 on the diagonal and p off the diagonal. The
distribution of the data rows generated from Student’s t-distribution is more heavy
tailed compared to a normal distribution. As can be seen in Figure 3, SAG and GD
perform quite poorly compared to Figure 3 under the heavy-tailed distribution even
in the uncorrelated case (p = 0). However, the performance of the Newton sketch is
not changed by the distribution or the conditioning of the data and so outperforms
other methods as predicted by our theory.

5.5. £;-constrained logistic regression and data conditioning. Next we
provide some numerical comparisons of Newton sketch, Newton’s method, and pro-
jected GD when applied to an ¢;-constrained form of logistic regression. We consider
the optimization problem (5.5), where the constraint set C is a scaled ¢; ball. More
specifically, we first generate a feature matrix A € R"*¢ based on d = 100 features
and n = 1000 observations. Each row a; € R? is drawn from the d-variate Gaussian
distribution N(0,X); the covariance matrix has entries of the form ¥;; = 2[p[*~7,
where p € [0,1) is a parameter controlling the correlation and, hence, the condition
number of the data. For 10 different values of p we solved the ¢;-constrained problem
(Jlz]]1 < 0.1), performing 200 independent trials (regenerating the data and sketching
matrices randomly each time). The Newton and sketched Newton steps (Algorithm
1) are solved exactly using the homotopy algorithm—that is, the Lasso modification
of the LARS updates [29, 15] using a MATLAB implementation [34]. The homotopy
method is very effective when the solution is very sparse. The ROS sketch with a
sketch size of m = [4 x 10logd] is used, where 10 is the estimated cardinality of
solution. As shown in Figure 5, Newton sketch converges in about 6 (+ 2) itera-
tions independent of data conditioning while the exact Newton’s method converges
in 3 (£ 1) iterations. However the number of iterations needed for projected gradi-
ent with line search increases steeply as p increases. Note that, ignoring logarithmic
terms, the projected gradient and Newton sketch have similar computational com-
plexity (O(nd)) per iteration while the Newton’s method has higher computational
complexity (O(nd?)).
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5.6. A dual example: Lasso with d > m. The regularized Lasso problem
takes the form min,cga{3 |4z — y[|3 + A|z|1}, where A > 0 is a user-specified regu-
larization parameter. In this section, we consider efficient sketching strategies for this
class of problems in the regime d > n. In particular, let us consider the corresponding
dual program, given by

1 2
s 9{ -5 lly - wi3}.

By construction, the number of constraints d in the dual program is larger than the
number of optimization variables n. If we apply the barrier method to solve this dual
formulation, then we need to solve a sequence of problems of the form

d

d
min { 7lly — w3 = D" log(A = (4, w)) = 3 log(A + (45, w)) }.
j=1

Jj=1

f(x)

where A; € R™ denotes the jth column of A. The Hessian of the above barrier
penalized formulation can be written as

2 — i ! i 1
Vef(w) =71, + Adiag <W> AT 4+ Adiag <m> AT

Consequently, we can keep the first term in the Hessian, 71, exact and apply partial
sketching to the Hessians of the last two terms via

1 1
, AT,
o din <|A =~ o)l T A, w>'>

Since the partially sketched Hessian is of the form tI,, + VV7, where V is rank at
most m, we can use a matrix inversion lemma for efficiently calculating Newton sketch
updates. The complexity of the above strategy for d > n is O(nm?), where m is at
most n, whereas traditional interior point solvers are typically O(dn?) per iteration.

In order to test this algorithm, we generated a feature matrix A € R"*? with
d = 4096 features and n = 50 observations. Each row a; € R? was generated from
the multivariate Gaussian distribution N(0,%) with X;; = 2 % |0.5/"7. For a given
problem instance, we ran 10 independent trials of the sketched barrier method with
m = 4d and ROS sketch, and compared the results to the original barrier method.
Figure 6 shows the duality gap versus iteration number (top panel) and versus the
wall-clock time (bottom panel) for the original barrier method (blue) and sketched
barrier method (red): although the sketched algorithm requires more iterations, these
iterations are cheaper, leading to a smaller wall-clock time. This point is reinforced
by Figure 7, where we plot the wall-clock time required to reach a duality gap of 1076
versus the number of features n in problem families of increasing size. Note that the
sketched barrier method outperforms the original barrier method, with significantly
less computation time for obtaining similar accuracy.

6. Proofs. We now turn to the proofs of our theorems, with more technical
details deferred to the appendices.
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6.1. Proof of Theorem 3.1. For any vector x € dom (f) and vector r €
R\ {0}, we define the following pair of random variables,

Zu(S; x,r) i = sup <w, (STS— I)L> ,
we{V2f(2)1/2KC NSn—1 (7|2
Z(S; x) i = inf | Sw3.

we{V2f(z)l/2K}NSn—1
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Of particular interest to us in analyzing the sketched Newton updates are the se-
quences of random variables

Zl = Z, (8% ot VA f(a)Y2AY) and  ZE = Z,(St; at),

as defined by the iterates {z'}{°, and sketching matrices {S*}{2, of the algorithm.

For a given iteration ¢ and tolerance parameter ¢ € (0, g—g], we define the “good
event”
(6.1) = {Z §§ and ZﬁZl—e}.

Given these two definitions, the proof of the theorem is based on two auxiliary
lemmas, the first of which establishes a key recursion on the error in the algorithm.

LEMMA 6.1 (key recursion). Suppose that the event NY_,E holds. Then given
any initialization x° such that ||2° — z*||]2 < 5, the error vectors At = 2t —2* satisfy
the recursion

1 8L
(6.2) AR, < Zt 7 |\At|\2+ 77 |AYZ  forallt=0,1,...,N —1.
Note that since we have % < e and 7 < 2 whenever the event N}, £? holds,

the bound (3.11) stated in the theorem then follows.

In order to complete the proof, we need to establish that the event NI ;£ holds
with the stated probability. The following result gives sufficient conditions on the
sketch dimension for such a guarantee to hold.

LEMMA 6.2 (sufficient conditions on sketch dimension [31]).
(a) For sub-Gaussian sketch matrices, given a sketch size

m > C—g max W?(V2 f(x)1/2K),
€4 xeC
we have
(6.3) P[] > 1 — cre ™

(b) For ROS sketches and JL embeddings, over the class of self-bounding cones,
given a sketch size

co log*n
——— max WA(V*f(2)'/?K),
we have
me2
(6.4) P[] > 1 —cre” PlosTn

Together with Lemma 6.1, the claim of the theorem follows.

It remains to prove Lemma 6.1, and the bulk of our effort is devoted to this task.

Proof of Lemma 6.1. We prove the recursion (6.2) by exploiting the con-
vex optimality conditions that define the iterates z'*! and the optimum z*. Re-
call the function z +— ®(z;S*) that underlies the sketch Newton update (3.2) in
moving from iterate x! to iterate z'T!. Since the vectors z!*! and z* are optimal
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and feasible, respectively, for the constrained optimization problem, the error vector
AL = gt g% satisfies the inequality (V®(ztt!; St), —A1) > 0 or, equivalently,
<(StVZf(xt)1/2)Tstv2f(xt)l/2(AtJrl _ At) + Vf(xt), _At+l> > 0.

t+1

Similarly, since * and '™ are optimal and feasible, respectively, for the minimization

of f, we have
(f(z*), A1) > 0.
Adding these two inequalities and rearranging leads to the basic inequality
(6.5)  [IS*V2f () PAT
LHS
< <Stv2f($t)1/2At+l, StVZf(xt)1/2At> _ <Vf($t) _ Vf(ﬁ*), At+1> )
RHS

This inequality forms the core of our argument: in particular, the next steps in our
proof are devoted to establishing the following bounds on the left-hand and right-hand
sides:

(6.6) LHS > 7f {7 LA’ Jla™ |3, and
(6.6b)  RHS < Z {B+ LIA 2 }IA ol ATz + LIAYZI AT 2.

Taking these bounds as given for the moment, let us complete the proof of the recur-
sion (6.2). Our proof consists of two steps:
e we first show that bound (6.2) holds for A" whenever [|Af|l; < -
e we then show by induction that, conditioned on the event N ;£?, the bound
|Af]l2 < g& holds for all iterations t = 0,1,...,N.
Assuming that [|A’|l; < g, then our basic inequality (6.5) combined with the
bounds (6.6) implies that

28 + LA}
AtJrl < u
187 e < 2 —TAT,)

L

Ay +
187+ e ATy

1A%]3.

We have L||Af||2 < /8 < /8, and (y — L||At]]5)~! < %, hence,

Zt 98 1 8L
7 Aty < Zu 22 _ o~
(6.7) A 7

At

A3,
thereby verifying the claim (6.2).

Now we need to check that for any iteration ¢, the bound [|A*|]; < g% holds.
We do so by induction. The base case is trivial since ||A%]; < g& by assumption.
Supposing that the bound holds at time ¢, by our argument above, inequality (6.7)
holds, and hence
9 82 16L 4 ZL 9B 1 1 4

AT < = —foeT :
S 56LZL  TyZl64L2  ZI28L ' ZI 28 L

IN

t
Whenever £ holds, we have g—;; < 3—; and ZLE <1 whence [[A" |y < (% + )1

37, as claimed.
The final remaining detail is to prove the bounds (6.6).
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Proof of the lower bound (6.6a). We first prove the lower bound (6.6a) on the
LHS. Since V2f(2!)/2A!H1 € V2 f(2!)'/2KC, the definition of Z} ensures that

LHS = [|S'V? f (') /2 A3 > ZE(|V2 f(2!) /2 A3
O] ZHAFDYT V2 () At
= Z{(ATH)TV2 f (@) A 4 (ATHT(V2 f(ah) = V2 f(a") A
(i)
> Zi (v AT = LA™ 31AY |2}
where step (i) follows since (V2 f(z)/2)TV2f(z)"/? = V2f(z), and step (ii) follows
from the definitions of v and L.
Proof of the upper bound (6.6b). Next we prove the upper bound (6.6b) on the

RHS. Throughout this proof, we write S instead of S? so as to simplify notation. By
the integral form of Taylor series, we have

RHS = /Ol(At)T (5927 (@) SV f ()2 = V2 f(a' + u(a” — o) A du
=T+ T,
where
(682)  Tii= (AT [(SVEf(@")/A)TSV ()2 - V2 f(a)] AT, and

(68b) T .= A (At)T [—VQf(ZIJt + u(x* _ ﬂit)) + sz($t)] At“du.

Here the decomposition into 77 and 75 follows by adding and subtracting the term
(At)TVZf(xt)At'H.
We begin by upper bounding the term Tj. By the definition of Z!, we have
w110y [STS 20 £\1/2 At+1
Ty < |(AY) Q7 (2) 7—1 Vof(z")/PA
< Zo|| V2 f(a) Ao |V £ ()2 AT o,
By adding and subtracting terms, we have

IV2F (") 2AY3 = (A) TV f(a") Al
= (ANTV2f(@)A + (AT [V f(ah) = V2 f(a")] A
< BIAYE + LIATP = [|A"[3(8 + LIIAY),

where the final step follows from the definitions of # and L, as bounds on the Hessian,
and its Lipschitz constant, respectively. A similar argument yields

IV f (") 2 AR5 < [|JAMY[3(8 + LIAY).
Overall, we have shown that

(6.9) Ty < Z,(B+ LIA DA 2 A 2.
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Turning to the quantity 7>, we have

1
Te <{/ sup ol [V2f(a! + u(a” — ') = V2f(a")] ﬁ\du} N[
0

v, DeELNSI—1

(6.10)
< LIAYEII A2,

where the final step uses the local Lipschitz property again. Combining the bound (6.9)
with the bound (6.10) yields the bound (6.6b) on the RHS.

6.2. Proof of Theorem 4.1. Recall that in this case, we assume that f is a
self-concordant and strictly convex function. We adopt the following notation and
conventions from Nesterov and Nemirovski [28]. For a given vector z € R?, we define
the pair of dual norms

ulle := (V2 f(z)u, w)/? and ol := (V2 f(z) "o, v)'/2,
as well as the Newton decrement
Ap(x) = (V2 (@) 'V f (@), VE@)Y? = IV () 'V @)l = IV (@) 2V f(@)])2-

Note that V2f(z)~! is well-defined for strictly convex self-concordant functions. In

terms of this notation, the exact Newton update is given by = — xyg : = & + Uyg,
where
1
(6.11a) Ung 1= arg Héin { §||V2f(x)1/2z|\§ + (2, Vf(x)) }
zeC—x
2(2)

On the other hand, the Newton sketch update is given by & — Znsk := & + Unsxk,
where

(6.11b) b 1= arg_min {%|\Sv2f(x)l/2z||§ (= V@)

The proof of Theorem 4.1 given in this section involves the unconstrained case (C =
R?), whereas the proofs of later theorems involve the more general constrained case.
In the unconstrained case, the two updates take the simpler forms

Ine =T — (V2f(x))71Vf(x) and
onsk =@ — (V2 f(2) /28T V2 f(2)/2) "1V £ ().

Let us make a few high-level remarks about the structure of the proof. For a self-
concordant function, the suboptimality of the Newton iterate zyy in function value
satisfies the bound

fxe) = min f(2) < [As(xe)]”
N——

fa*)

This classical bound is not directly applicable to the Newton sketch update, since
it involves the approzimate Newton decrement Af(z)? = —(V f(z), vxsx), as opposed
to the ezxact one A\f(x)* = —(V f(z), vxe). Thus, our strategy is to prove that with



234 MERT PILANCI AND MARTIN J. WAINWRIGHT

high probability over the randomness in the sketch matrix, the approximate Newton
decrement can be used as an exit condition.

Our argument for doing so consists of two main parts. First, we show that under
appropriate conditions on the random sketch, the approximate and exact Newton
updates are guaranteed to be relatively close. Second, in analogy to the analysis of
classical Newton’s method, we analyze the sketched Newton algorithm in two phases,
depending on whether the sketched Newton decrement Ay (z) is strictly greater than
or less than or equal to 7.

6.2.1. Relating the sketched and exact Newton directions. Recalling the
definitions (6.11a) and (6.11b) of the exact vy and sketched Newton vysk update
directions, our first step is to show that under suitable conditions on the random
sketch, these two directions are close with high probability. Recall the definition (3.8)
of the tangent cone /IC of the set C at a given vector x € C. With this notation, the
following lemma provides a high probability bound on these two directions.

LEMMA 6.3. Let S € R™*"™ be a sub-Gaussian, ROS, or JL sketching matriz
and consider any fized vector x € C independent of the sketch matriz. If m >

/
O—W(VQfg)l °K)* , then

(6.12) |92 @) e = vue)

C

<e
2

V2f($)1/2’UNE )

—come?

with probability at least 1 — ce

Proof. The proof follows similar lines to the proof of Theorem 3.1, in particular
exploiting the convex optimality conditions that define the exact and sketched Newton
updates. Let u be a unit-norm vector independent of S, and consider the random
quantities

(6.13a) Zy(S,x) : [ Sv|3 and

inf
vEV2 f(2)1/2KtNSn—1

(6.13b) Z,(S,x) : = sup (u, (STS — I,)v)|.
vEV? f(z)1/2KtNS™ 1

By the optimality and feasibility of vy and vyg (respectively) for the sketched New-
ton update (6.11b), we have

SISV (@) ooel3 — oners V(@) < 3 IV2 @) 0nl3 — (e V()

Defining the difference vector € : = vygx — Ung, Some algebra leads to the basic in-
equality

614) SISV 7@ 2003 < (V2 () 0, STSVAH(2)20) + (2, V().

Moreover, by the optimality and feasibility of vyy and vysk for the exact Newton
update (6.11a), we have

(6'15) <v2f($)'UNE - Vf(ﬂi), €> = <v2f($)UNE - Vf(ﬂi), Unsk — UNE> > 0.

Consequently, by adding and subtracting (V2 f(z)vxg, €), we find that

(6.16) %IISVQf(x)”%H% < (V2 f (@) Pons, (In = STS)V f(2)'/?8)|.
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By definition, the error vector € belongs to the cone K! and the vector V2 f(x)!/?
is fixed and independent of the sketch. Consequently, invoking definitions (6.13a)
and (6.13b) of the random variables Z; and Z,, yields

Ung

SISV () 2203 > 2292 p () el
(V2 (@) s, (In = STS)V2(2)/26)| < Zul|V2f(2) 2osclla V2 £ (2) /2.

Putting together the pieces, we find that

(617) HV2 1/2(UNSK - UNE)

Hvz 1/2(UNE) i

<7
27 Zy(S,x)

Finally, for any 6 € (0,1), let us define the event £(0) = {Z; > 1—-0, and Z, <d}.
By Lemmas 4 and 5 from our previous paper [31], we are guaranteed that P[E(d)] >
1 — cie~2™m%” . Conditioned on the event & (6), the bound (6.17) implies that

HV2 1/2 ('UNSK - UNE)

ey 1/2
= 1—6 ‘V (V) 2

By setting 6 = 7, the claim follows. 0

6.2.2. Two phase analysis. Similar to the standard analysis of Newton’s method,
our next step in the analysis of the Newton sketch algorithm is to consider two dif-
ferent phases, as defined by the magnitude of the decrement Az (x):

e First phase: Decrement Xf () > .

e Second phase: Decrement Xf(x) <n.
In each phase, we establish different guarantees on the behavior of the sketched update
Tysk based on a starting vector x.

LEMMA 6.4. For e € (0,1/2), there exist constants v > 0 and n € (0,1/16) such
that

(a) if \p(x) >, then f(xys) — f(x) < —v with probability at least 1—cre—c2me’

(b) conversely, if Af(x) <mn, then

(6.18a) M (zyse) < Af(z)  and
(6.18b) /\f(xNSK) < (;g) /\f( )

where both bounds hold with probability 1 — 01602’”62,

Using this lemma, let us now complete the proof of the theorem, dividing our
analysis into the two phases of the algorithm.

First phase analysis. Lemma 6.4(a) ensures that each iteration in the first
phase decreases the function value by at least v > 0; consequently, the number of first
phase iterations Np is at most

cam

with probability at least 1 — Nycie™
Second phase analysis. Next, let us suppose that at some iteration ¢, the
condition Af(z') < n holds, so that part (b) of Lemma 6.4 can be applied. In fact,
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the bound (6.18a) then guarantees that As(z'™1) < 7, so that we may apply the
contraction bound (6.18b) repeatedly for Na rounds so as to obtain that

ye ) < (20)

with probability 1 — Nacpe®?™
Since Af(z') < n < 1/16 by assumption, the self-concordance of f then implies

that
t+k *) < 16 g 1
fat - 1) < (58) 15

Therefore, in order to ensure that and, consequently, for achieving f(z***)— f(z*) < ¢,
it suffices for the number of second phase iterations to be lower bounded as Ny >
0.65logy (15-)-
Putting together the two phases, we conclude that the total number of iterations
N required to achieve e-accuracy is at most
f(z%) — f(z*)
Y

1
N:Nl +N2 S +06510g2 <1_6€> s

and moreover, this guarantee holds with probability at least 1 — N¢; e—came’,
Thus, in order to complete our proof of the theorem, it remains to prove Lemma 6.4,
and we do so in the next two subsections.

6.2.3. Proof of Lemma 6.4(a). Our proof of this part is performed condition-
ally on the event D : = {\ ¢(z) > n}. Our strategy is to show that the backtracking
line search leads to a step size s > 0 such that the function decrement in moving from
the current iterate z to the new sketched iterate Tnsx = & + Sunsk 1S at least

(6.19) f(znsk) — f(z) < —v  with probability at least 1 — cje™ ™.

The outline of our proof is as follows. Defining the univariate function g( )=
f(z + uvysk) and € 126 we first show that the step size choice U : =

(1+6’ )Af ()
satisfies the bound

(6.20a) g(@) < g(0) — atihg(x)?,

which implies that u satisfies the exit condition of backtracking line search. Therefore,
the step size s must be lower bounded as s > bu, which then implies that the updated
solution rysx = T + Sunsk satisfies the decrement bound

ab A (@)? -
+ (14 2Z2) s ()

(6'20b) f(xNSK) - f(x) < -

is monotone in-
2

In order to prove the claims (6.20a) and (6.20b), we first state and prove an
auxiliary lemma.

Since Xf(x) > 7 by assumption and the function v — ﬁ

creasing, this bound implies that inequality (6.19) holds with v = ab
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LEMMA 6.5.
(a) For u € domgNRY, we have the decrement bound

(6.21a) g(u) < g(0) + u(VF(x), vasi) — ul|[V2f ()] 2vsx2
—log (1 — ul|[V2f(2)]"?vxskl2),

provided that ul|[Vf(x)]" ?vysklla < 1.
(b) With probability at least 1 — c1e™ 2™, we have

2
(6.210) 1[92 ()] vpen < (1 - Z) ()]’

Proof. Let us first prove the bound (6.21a). By construction, the function g(u) =
f(x + uwvysk) is strictly convex and self-concordant. Consequently, it satisfies the
bound -L(g”(u)~1/%) <1, whence

g//(s)—1/2 _g//(o)—1/2 :/ i (g//(u)—1/2) du<s
0 du

or, equivalently, g’ (s) < % for s € dom g N [0, ¢”(0)~1/?). Integrating this

(1—sg
inequality twice yields the bound

g(u) < g(0) + ug'(0) — ug”(0)*/? —log(1 — ug”(0)'/?).

Since ¢'(u) = (Vf(z + uvnsk), Unsx) and ¢”(u) = (vnsk, V2 (2 + Unsk)Unsk), the
decrement bound (6.21a) follows.

Turning to the proof of the bound (6.21b), we perform this analysis conditional
on the bound (6.12) from Lemma 6.3. We begin by observing that

||[V2f(95)]1/2UNSK||2 < ||[V2f(95)]1/2”NE||2 + ||[V2f(x)]1/2(UNSK — vne)|l2
(6.22) =X (@) + V2 (@) (ns — vxe) |2 -

Lemma 6.3 implies that ||V2[f(2)]Y/%(vnsk — Oxe) 2 < €| V2 ()] ?0xsll2 = eXf(2).
In conjunction with the bound (6.22), we see that

(6.23) V2 F ()] Posscllz < (1 + )X ().

Our next step is to lower bound the term (V f(x), vysx); in particular, by adding and
subtracting a factor of the original Newton step vyg, we find that

(Vf(2), vask) = <[V2f( )]_1/2Vf( ), V [ (z )]1/2UNSK>
[

= (V2 f(@)]"*V (@), V’[f(@)]"*vxe)
+ (V2 f(@)] PV f (), V2[f ()] /Q(UNSK —v))
= —|V2[f ()] 2V f ()13
+ (V2 F (@) PV f (), VP[f ()] (vns — i)
—IV2f @)V f ()13

+ ||[V2 f(@)]” 1/2Vf x)||2||V2[ f(z )]1/2(UNSK — vne)|l2
= =2 (@) + A (@) IV[f ()] (0nsic — vue)ll2
(6.24) < =Ap(2)*(1—e),

where the final step again makes use of Lemma 6.3. Repeating the above argument
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in the reverse direction yields the lower bound (Vf(z), vxsk) > —Af(2)2(1 + €), so
that we may conclude that

(6.25) A (@) = Ap(@)] < eAs(@).

Finally, squaring both sides of the inequality (6.22) and combining with the above
bounds gives

V2 £ @) 2ol < = —

as claimed. 0

uf_kee) (Vf(z), vask) = (L+te) X?(x) < (1 . 6) X?(l’),

We are now equipped to return to the proofs of our earlier claims (6.20a) and
(6.20b). Recalling our shorthand ¢’ : = € — 1 = 2% gsubstituting inequality (6.21b)

1—e 1—e’
into the decrement formula (6.21a) yields

(6.26)
g(u) < g(0) —uds(2)* —u(1+€) Ap(x) —log(1 —u(l +€) Af())
= 9(0) = {ull + €)X (@) + u(l + €) X (@) +log(1 — u(l +¢) Xs(x)) |
+u((1+€)? = DA (x)?,

where we added and subtracted u(1 + ¢/)2Xf(z)2 so as to obtain the final equality.
1

We now prove inequality (6.20a). Now since the choice v = U : = [EveEy gy,

satisfies the conditions of Lemma 6.5, we are guaranteed that
(€” +2¢)Af(z)?
1+ (1+ 6’)Xf(x) .

1,2

Making use of the standard inequality —u + log(1l 4+ u) < — ==
the book [6]), we find that

g(@) < g(0) — (1 +€¢) Ap(@) +log(1 + (L +€¢) Ap()) +

(for instance, see

30+ PN @ (¢ +2)s (@)
1+(1+6’)Xf(x) 1+(1+6’)Xf(x)
=¢4(0) — (% — %e’z — e/> Xf(x)Qﬂ

< 9(0) — aXs(2)*a,

g(u) < ¢(0) —

where the final inequality follows from our assumption a < % — %e’ 2 _ ¢, This

completes the proof of the bound (6.20a). Finally, the lower bound (6.20b) follows
by setting u = bu into the decrement inequality (6.21a). We have thus completed the
proof of Lemma 6.4(a).

6.2.4. Proof of Lemma 6.4(b). Our proof of this part hinges on the following
auxiliary lemma.

LEMMA 6.6. For all € € (0,1/2), we have

(1+ )N (x) + eAs(w)
(1-a+ @)
(6.27b) (1—e) A(@) < Asp(2) < (1 +)As(a),

(627&) Af(xNSK) <

where all bounds hold with probability at least 1 — 61€_C2m62.
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Proof. We have already proved the bound (6.27b) during our proof of Lemma 6.5—
in particular, see (6.25). Accordingly, it remains only to prove the inequality (6.27a).

Introducing the shorthand X := (1 + €)Af(x), we first claim that the Hessian
satisfies the sandwich relation

(6.28) (1 —50)?V2f(z) < V2f(x + suysk) = ﬁv%”(x)

for |1 — sa| < 1, where o = (1 + €)Af(x), with probability at least 1 — cre=e2me | Let
us recall Theorem 4.1.6 of Nesterov [27]: it guarantees that

1

(6.29) (1= sllowsiclle)*V2f (@) 2 V(2 + sv0xc) = (1= sllvssscll)?

V2f(z) .

Now recall the bound (6.12) from Lemma 6.3: combining it with an application of
the triangle inequality (in terms of the seminorm ||v|, = ||V2f(z)'/?v]|2) yields

HV2 1/2UNSK <(l+e¢)

’vz 1/2

= (1 + ¢)[Jvxelle

Ung
2

with probability at least 1 — efclmﬁz, and substituting this inequality into the bound
(6.29) yields the sandwich relation (6.28) for the Hessian.
Using this sandwich relation (6.28), the Newton decrement can be bounded as

/\f(xNSK)
= ||v2f($NSK)71/2Vf(xNSK)||2
ST VO el
1 /
(1 "t oN( HV2 —-1/2 <vf / V2 f(z + SUnsk )Unsk ds) i
1 2 —1/2 < 9 A)
(1_ (1+€ Af Hv vf / v $+SUNSK)UNE ds + 2,

where we have defined A = fol V2f(z + svxsk) (Unsk — Ung) ds. By the triangle in-
equality, we can write Af(zysk) < WM(Ml + M), where

and

= HV2f(x)1/2 (Vf / V2 f x—i—tvNSK)vNEdt)

My = HVQf(x)‘l/QAuz.

2

In order to complete the proof, it suffices to show that

eAr(@)

< “ 7
and Mo S TN @)
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Bound on M;. Rearranging and then invoking the Hessian sandwich rela-
tion (6.28) yields

/1 (sz(a:)flﬂvzf(x + sunsx ) V2 (2) 712 — I) ds (sz(a:)l/%NE)

0

/01 <<1 e [Ewsrve e 1) o

(14 e)As(x /
1— (1+ ) (a) Hvzf(“’)l S,

)
(
(1 —I—e))\ff(a:)
1—(1+e)Af(x)

M- |

2

(V2£@)?vss) Iz

Bound on M. We have

1
M, = / V2 (1) V2V2f (2 + svne) V21 (2) 25V F(2) Y2 (0 — s
0 2
' 1 2 1/2
< dsV _
- ‘/0 1= s+ r(2)2"” F@)7 B = te) 2
1
S — Lk _
1—(1+ (@ H (Unsec = Ve
(1) 1
< V2 f(x)1/?
T 1-(14eAf(x H sl
_ As(x)
1—(1+e)Af(z)’
where the inequality in step (i) follows from Lemma 6.3. d

We now use Lemma 6.6 to prove the two claims in the lemma statement.

Proof of the bound (6.18a). Recall from the theorem statement that
1__(1+e)2_a

. By examining the roots of a polynomial in €, it can be seen

= 8 W
that n < 1 - 16 By applying the inequalities (6.27b), we have
1 ~ 1 1
(6.30) (14 OA(a) £ T Apla) < 7o <

whence inequality (6.27a) implies that

L X € x
63 o) < BUDLDD o (1 B0 56 < o

Here the final inequality holds for all € € (0,1/2). Combining the bound (6.27b) with
inequality (6.31) yields

Rp(aan) < (14 Os(amnd) < (1+0) (1) Fr(o) < Ry,

where the final inequality again uses the condition e € (0,1). This completes the
proof of the bound (6.18a).
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Proof of the bound (6.18b). This inequality has been established as a consequence
of proving the bound (6.31).

6.3. Proof of Theorem 4.2. Given the proof of Theorem 4.1, it remains only
to prove an appropriately modified version of Lemma 6.3. It applies to the exact and
sketched Newton directions vng, vnsx € R? that are defined as follows:

(6.32a) Ung 1= argzreréizlm {%||V2f(x)1/2z|\§ + (z, Vf(x)) + %(z, V2g(x)z)},

(6.32b)  vnex = argzlgéizlw{ %|\S’V2f(x)1/2z||§ +(z, Vf(x)) + %(z, Vig(x)z) }

W(z;S)

Thus, the only difference is that the Hessian V2 f(z) is sketched, whereas the term
V2g(x) remains unsketched. Also note that since the function g is a self-concordant
barrier for the set C, we can safely omit the constraint C in the definitions of sketched
and original Newton steps.

LEMMA 6.7. Let S € R™*" be a sub-Gaussian, ROS, or JL sketching matriz,
and let x € R? be a (possibly random) vector independent of S. If m > comax,ec
WV @) P 4o

(6.33) Hv2 ()2 (Unsc — V)

<e HVQf(a:)l/QUNE
2 2

with probability at least 1 — 616_62m62.

Proof. We follow the basic inequality argument used in the proof of Lemma 6.3.
Since vysk and vyg are optimal and feasible (respectively) for the sketched Newton
problem (6.32b), we have W(vnsk;S) < U(vng;S). Defining the difference vector
€:= wnsk — U, some algebra leads to the basic inequality

§||5V2f($)1/2€||§ + 5@ V2g(x)e) < —(V2f ()" Poxs, STSV f(2)"/%€)
T (@ (VF(z) - Vg(a))ose).

On the other hand since vyy and vysx are optimal and feasible (respectively) for the
Newton step (6.32a), we have

(V2 f(2)vne + V2g(2)vne — Vf(z), €) > 0.
Consequently, by adding and subtracting (V2 f(z)vxs, €), we find that

(6.34)

SISV 7 (@) 2213 + 5o, Vg(e)one) < [(V20) 2o, (I — STS)V2f(2)%8)|.

2

o (12 . [ VF@)'? .
We next define the matrix H(x) = | Vg and the augmented sketching

matrix S := [§ [ ], where ¢ = 2n. Then we can rewrite the inequality (6.34) as
follows:

1. _

SISH @)%l < (A (@) v, (1, — 57S) H()'/28)|.

Note that the modified sketching matrix S also satisfies the conditions (6.13a) and
(6.13b). Hence, the remainder of the proof follows as in the proof of Lemma 6.3. 0O
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7. Discussion. In this paper, we introduced and analyzed the Newton sketch, a
randomized approximation to the classical Newton updates. This algorithm is a natu-
ral generalization of the iterative Hessian sketch (IHS) updates analyzed in our earlier
work [30]. The THS applies only to constrained least-squares problems (for which the
Hessian is independent of the iteration number), whereas the Newton sketch applies
to twice differentiable convex functions, minimized over a closed and convex set. We
described various applications of the Newton sketch, including its use with barrier
methods to solve various forms of constrained problems. For the minimization of
self-concordant functions, the combination of the Newton sketch within interior point
updates leads to much faster algorithms for an extensive body of convex optimization
problems.

Each iteration of the Newton sketch has lower computational complexity than the
classical Newton’s method. Moreover, ignoring logarithmic factors, it has lower overall
computational complexity than first-order methods when either n > d?, when applied
in the primal form, or d > n?, when applied in the dual form; here n and d denote the
dimensions of the data matrix A. In the context of barrier methods, the parameters
n and d typically correspond to the number of constraints and number of variables,
respectively. In many “big data” problems, one of the dimensions is much larger than
the other, in which case the Newton sketch is advantageous. Moreover, sketches based
on the randomized Hadamard transform are well-suited to parallel environments: in
this case, the sketching step can be done in O(logm) time with O(nd) processors.
This scheme significantly decreases the amount of central computation, namely, from
O(m?%d + ndlogm) to O(m?2d + logd).

There are a number of open problems associated with the Newton sketch. Here we
focused our analysis on the cases of sub-Gaussian, ROS sketches and JL embeddings.
It would also be interesting to analyze sketches based on row sampling and leverage
scores. Such techniques preserve the sparsity of the Hessian, and can be used in
conjunction with sparse KKT system solvers. Finally, it would be interesting to
explore the problem of lower bounds on the sketch dimension m. In particular, is
there a threshold below which any algorithm that has access only to gradients and
m-sketched Hessians must necessarily converge at a sublinear rate, or in a way that
depends on the strong convexity and smoothness parameters? Such a result would
clarify whether or not the guarantees in this paper are improvable.

Appendix A. Gaussian widths with £;-constraints. In this appendix, we
state and prove an elementary lemma that bounds the Gaussian width for a broad
class of ¢;-constrained problems. In particular, given a twice-differentiable convex
function 1, a vector ¢ € R%, a radius R, and a collection of d-vectors {a;}"_;, consider
a convex program of the form

(A1) mln {Zw a;, T)) + {c, x>} ; where C = {z € R | ||z < R}.

LEMMA A.1. Suppose that the ¢1-constrained program (A.1) has a unique optimal
solution x* such that ||x*||o < s for some integer s. Then denoting the tangent cone
at =¥ by IC,

" max ”A HZ

meach(V2f 2)/2K) < 64/slogd max

min A /f}/s
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where

1Z)mln - mln min ‘/’ (<ai7 x>7y1) and ¢max - max max ‘/’ (<CL1', $>,y1)
eC i=1,. eC i=1,....n
Proof. Tt is well known (e.g., [18, 31]) that the tangent cone of the ¢;-norm at
any s-sparse solution is a subset of the cone {z € R? | ||z|1 < 2+/s||z||]2}. Using this
fact, we have the following sequence of upper bounds:

W(V2f(2)Y?K) = E, max (w, V2f(x)/22)
2TV2f(x)2=1,

zeK
. 1" 1/2

=E, max (w, diag (V" ({a;, x),y;))"" "~ Az)

TAleag(w ((a“w>w7yi))AZ:17

zeK

< E, max (w, diag (¢¥" ({a;, =), yi))1/2 Az)

TATAZ<1/w[))ln

zEK

< E, max (w, diag (¢¥" ({a;, z),y ))1/2 Az)

Izl < T = T)m
2/s ]

:7%[ ———E, [ ATdiag (4" ((a:, 2),5:))"* ]l
’}/3_ (A) min

= max Z wiAij1/)/l(<aiv $>7yi)1/2 :

I/
/ 1/ 1,.
'Ys min J i=1,...,n

Here the random variables (); are zero-mean Gaussians with variance at most

Qj

Z A CL“ > yl) < wmaxHAjH%'

Consequently, applying standard bounds on the suprema of Gaussian variates [21],
we obtain

j=1,...,

E, max Z w; A" ((ag, ©), ;)% < 3v/logd f{lax max ||A [|2-
i=1,

When combined with the previous inequality, the claim follows. a
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