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Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)
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Deep learning revolution
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in machine learning and data science

◦ more data results in better and accurate models

→ large scale distributed computing problems
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in machine learning and data science

◦ more data results in better and accurate models

→ large scale distributed computing problems

Can we scale computation inexpensively ?

Our approach: serverless systems with error correction to auto-scale

computation
M. Pilanci, Computational Polarization: An Information-theoretic Method for

Resilient Computing, accepted to IEEE Transactions on Information Theory, 2021

B. Bartan and M. Pilanci Straggler Resilient Serverless Computing Based on

Polar Codes, Allerton 2019
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Distributed computation

DATA

.

.

.

4



Error Resilient Matrix Multiplication

Speeding Up Distributed Machine Learning Using Codes. Lee et al., 2017
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Error Resilient Matrix Multiplication

A1 + A2 + A3

Speeding Up Distributed Machine Learning Using Codes. Lee et al., 2017
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Serverless computing: AWS Lambda

◦ low cost, no upfront investment

◦ 900 seconds single-core, 3GB RAM

◦ Python, Java, C#
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Serverless computing: AWS Lambda

◦ Lambda functions are stateless

Local file system access and child

processes may not extend beyond

the lifetime of the request

Persistent state should be stored in

a storage service (e.g., S3)

◦ Pywren (E. Jonas et al., 2017)

◦ Google Cloud and Microsoft Azure

offer similar services
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Serverless computing: AWS Lambda

◦ return times
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Polar Codes

◦ Polar Codes were invented by Arikan in 2009

◦ Combines communication channels recursively to obtain better/worse channels

◦ It is the first code with an explicit construction to provably achieve the channel

capacity for all symmetric discrete memoryless channels

◦ 3rd Generation Partnership Project (3GPP) adopted polar codes as the official

coding scheme for the control channels of the 5G New Radio interface.

10



Polar Codes: Recursive Channel Transformation

2× 2 construction 4×4 construction
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Computational Polar Codes
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Computational Polar Codes
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Hadamard transform
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Butterfly coded computation
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Decoding the original computation f(A1) and f(A2) for linear functions
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Runtime distribution
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4 by 4 construction
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Computational Polarization Process
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Computational Polarization Process

F (t)

F (t)2

1− (1− F (t))2◦ Functional Martingale process

◦ F (t) is the cumulative density function of the i.i.d. run-times

Fn+1(t) =

1− (1− Fn(t))
2 with probability 1

2

Fn(t)
2 with probability 1

2

◦ E[Fn+1(t)|Fn] = Fn(t)

◦ Theorem:
∥∥Fn+1(t)− Fn(t)

∥∥
L2
→ 0 as n→∞ with rate O(2−2

√
n
)

Fn(t) converges to unit step functions

run-time distributions converge to the Dirac measure

M. Pilanci, Computational Polarization: An Information-theoretic Method

for Resilient Computing, arXiv preprint 2021
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Run-time distributions
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Fixing certain inputs to zero
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Fixing certain inputs to zero
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Computational Polarization
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Computational Polarization

(B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, 2019)
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Comparison with other coding methods

◦ Reed-Solomon codes, LT codes, LDPC codes, Fermat Number Transform (FNT)

based codes

◦ Computational Polar codes have O(n log n) encoding and decoding complexity

◦ only addition and subtraction operations in encoding and decoding

◦ can scale to 10,000 workers
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Compute jobs
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Elastic computing
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◦ AWS Lambda serverless compute jobs 1.5 GB memory each

(a) uncoded: 500 workers

(b) coded: 1500 workers (1000 redundant parity)
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Computational Polarization for optimization on AWS Lambda

◦ encode data matrix A for gradient calculation, e.g., Ax and AT y for Least

Squares and Generalized Linear Models

random data (20000×4800) Imagenet (2013526×196608 ∼ 1.2 TB)
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Computing Nonlinear Functions

◦ linear functions of data f(A)

◦ polynomial functions of data f(A)

◦ gradient and Hessian calculations involving data A
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Computational Polarization for gradient estimation

◦ gradient estimator

∂f(x)

∂xi
≈ f(x+ hei)− f(x− hei)

2h

◦ coded gradient estimator

f(x+ hzi)− f(x− hzi)

2h

◦ zi: redundant function evaluation directions =

◦ decode the gradient ∂f(x)
∂x from 〈∂f(x)∂x , zi〉

B. Bartan, M. Pilanci, Distributed Black-Box Optimization via Error Correcting Codes, 2019
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Adversarial Examples

◦ given a trained neural network

◦ constrained optimization problem

minx ||x− x0|| subject to probabilityj(x) > probabilityi(x)

(Szegedy et al., 2014, Goodfellow et al., 2015)
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Comparison with finite differences and random search

◦ plane classified as truck in CIFAR10
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Conclusions and future work

X Scalable and error resilient distributed computing system

X cheap encoding and decoding

X distributed Least Squares and GLMS

→ privacy and encryption

→ more general convex optimization problems with constraints, e.g.,

convex optimization for neural networks

M. Pilanci, T. Ergen

Neural Networks are Convex Regularizers: Exact Polynomial-time Convex

Optimization Formulations for Two-Layer Networks, arXiv:2002.10553
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