
Randomized Sketching for Convex and

Non-Convex Optimization

Mert Pilanci
Department of Electrical Engineering

Stanford University

December 6, 2018

Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)

1

Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)

1

Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)

1

Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)

1

Deep learning revolution

2

◦ Machine learning

◦ Statistical estimation and data analysis

◦ Signal processing and control theory

◦ Computational imaging

◦ Design and manufacturing

◦ Decision making

︸ ︷︷ ︸

minimize g(x) subject to constraints

3

Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

Data size

C
o

m
p

u
ta

ti
o

n

IDEAL

Goals: 1. Find optimal trade-offs between

computation and accuracy

2. Leverage distributed

computation

3. Tackle non-convexity

4

Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

Data size

C
o

m
p

u
ta

ti
o

n

IDEAL

Goals: 1. Find optimal trade-offs between

computation and accuracy

2. Leverage distributed

computation

3. Tackle non-convexity

4

Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

What if we could reduce the data volume without

losing any significant information ?

Data size

C
o

m
p

u
ta

ti
o

n

IDEAL

Goals: 1. Find optimal trade-offs between

computation and accuracy

2. Leverage distributed

computation

3. Tackle non-convexity

4

Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

Data size

C
o

m
p

u
ta

ti
o

n

IDEAL

Goals: 1. Find optimal trade-offs between

computation and accuracy

2. Leverage distributed

computation

3. Tackle non-convexity

4

Outline

Optimization and Big Data

Sketching

Distributed Sketching

Non-convex Problems

Ongoing work

5

Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6

Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6

Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6

DATA OPTIMIZER

6

DATA OPTIMIZER

6

DATA OPTIMIZER

parameter

cost

all data

6

DATA OPTIMIZER

parameter

cost

all data

sample

6

DATA OPTIMIZER

parameter

cost

all data

6

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

6

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

combined

6

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

An

d

7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

An

d

Sm
SA=

m

d

7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

An

d

Sm
SA=

m

d

7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

An

d

S	
 m SA	

=

m

d

FAST	
 O(nd)

[Candès	
 &	
 Tao,	
 06;	
 Krahmer	
 &	
 Ward	
 11]	

S	
 =	
 FD	

subsampled discrete Fourier/Hadamard	
 random diagonal	
 ±1	

7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Theorem : Cost approximation

If m ≥ 2 rank∗(A)/ε, then

OPT ≤ f(Ax̂) ≤ (1 + ε)OPT

with high probability

Sarlós 06; Rokhlin and Tygert 08; P. and Wainwright, IEEE Trans. Info. Theory 2015 ∗effective rank
7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Theorem : Converse

If m ≤ c0 rank∗(A)/ε, then

f(Ax̂) ≥ (1 + ε)OPT

with probability > 1
2

P. and Wainwright, IEEE Trans. Info. Theory 2015
7

Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Practical use

Airline dataset n = 120, 000, 000, d = 28

m = 500 gives 1.1-approximation

m = 5000 gives 1.01-approximation

[P and Wainwright, IEEE Trans. Info. Theory 2015]
7

min
x
‖Ax− y‖22 and min

x
‖S(Ax− y)‖22

𝜖

original cost

approximate cost

ො𝑥

𝒙∗

8

min
x
‖Ax− y‖22 and min

x
‖S(Ax− y)‖22

𝜖

original cost

approximate cost
?

ො𝑥

𝒙∗

8

Least squares

min
x
‖Ax− y‖2

[Gauss, 1795]

variable

response

9

Statistical error

◦ Consider the noisy observation model

y = Ax∗ + w, where w1, w2... ∼ N(0, σ2)

◦ estimation error:

E‖xLS − x∗‖22 = O

(
d

n
σ2
)

10

Statistical error

◦ Consider the noisy observation model

y = Ax∗ + w, where w1, w2... ∼ N(0, σ2)

◦ estimation error:

E‖xLS − x∗‖22 = O

(
d

n
σ2
)

10

Statistical error

◦ Observation model y = Ax∗ + w, where w ∼ N(0, σ2In)

◦ Is the sketched solution x̂ statistically optimal?

x̂ = arg min
x
‖SAx− Sy‖2 where S ∈ Rm×n

10
2 3

10
4

0.001

0.01

0.1

1

10

M
SE

Mean−squared error vs. number of samples

LS

Sketch

number of samples

11

Statistical error

◦ Observation model y = Ax∗ + w, where w ∼ N(0, σ2In)

◦ Is the sketched solution x̂ statistically optimal?

x̂ = arg min
x
‖SAx− Sy‖2 where S ∈ Rm×n

10
2 3

10
4

0.001

0.01

0.1

1

10

M
SE

Mean−squared error vs. number of samples

LS

Sketch

number of samples 11

Suboptimality of the Classical Sketch

◦ Is the sketched solution x̂ statistically optimal?

◦ No, information-theoretically impossible!

◦ For Gaussian, i.i.d. ±1 or DFT/Hadamard based S and

m = constant× rank(A)

Theorem

Any estimator that is a function of (SA, Sy) obeys

ES,w

[
‖x̂− x∗‖2

]
& σ2

statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

[P. and Wainwright, Journal of Machine Learning Research 2016]

12

Suboptimality of the Classical Sketch

◦ Is the sketched solution x̂ statistically optimal?

◦ No, information-theoretically impossible!

◦ For Gaussian, i.i.d. ±1 or DFT/Hadamard based S and

m = constant× rank(A)

Theorem

Any estimator that is a function of (SA, Sy) obeys

ES,w

[
‖x̂− x∗‖2

]
& σ2

statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

[P. and Wainwright, Journal of Machine Learning Research 2016]

12

Suboptimality of the Classical Sketch

◦ Is the sketched solution x̂ statistically optimal?

◦ No, information-theoretically impossible!

◦ For Gaussian, i.i.d. ±1 or DFT/Hadamard based S and

m = constant× rank(A)

Theorem

Any estimator that is a function of (SA, Sy) obeys

ES,w

[
‖x̂− x∗‖2

]
& σ2

statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

[P. and Wainwright, Journal of Machine Learning Research 2016] 12

Suboptimality of the Classical Sketch

◦ Is the sketched solution x̂ statistically optimal?

◦ No, information-theoretically impossible!

◦ For Gaussian, i.i.d. ±1 or DFT/Hadamard based S and

m = constant× rank(A)

Theorem

Any estimator that is a function of (SA, Sy) obeys

ES,w

[
‖x̂− x∗‖2

]
& σ2

statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

[P. and Wainwright, Journal of Machine Learning Research 2016] 12

DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

Is there an optimal algorithm with complexity O(nd) ?

13

DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

𝑟1
𝑇𝐴 𝑟1 = 𝐴ො𝑥1 − 𝑦

Is there an optimal algorithm with complexity O(nd) ?

YES!

14

DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

𝑟1
𝑇𝐴 𝑟1 = 𝐴ො𝑥1 − 𝑦

Error ≤ 𝑂
𝑑

𝑛
𝜎2

𝑟2 = 𝐴ො𝑥2 − 𝑦𝑟2
𝑇𝐴
⋮

⋮

log 𝑛

Is there an optimal algorithm with complexity O(nd) ?

YES!

15

Numerical Simulation: Estimation Error

10
2

10
3

10
4

0.001

0.01

0.1

1

LS

Iterative Sketch
Naive Sketch

number of samples

M
SE

Mean−squared error vs. number of samples

16

Iterative Sketch

SA

rT1A
...

rTt A

◦ Statistical model : y = Ax∗ + w where x∗ ∈ C
Theorem (Optimality)

Iterative Sketch achieves optimal prediction error with

log(n/d) iterations for any convex set C
statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

iterative sketch optimal O(nd)

[P. and Wainwright, Journal of Machine Learning Research 2016]

17

Iterative Sketch

SA

rT1A
...

rTt A

◦ Statistical model : y = Ax∗ + w where x∗ ∈ C
Theorem (Optimality)

Iterative Sketch achieves optimal prediction error with

log(n/d) iterations for any convex set C
statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

iterative sketch optimal O(nd)

[P. and Wainwright, Journal of Machine Learning Research 2016]
17

Netflix Problem

◦ 500000 × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x
‖Ax− y‖2 + λ‖x‖22

◦ Partition into test and training sets, solve for all values of

λ ∈ {1, 2, ..., 100}.

18

Netflix Problem

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

0 1000 2000
total computation time (seconds)

19

Netflix Problem

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

101.5

0 1000 2000
total computation time (seconds)

19

How to generalize to arbitrary functions ?

Convex objective, where A ∈ Rn×d is a large data matrix

x∗ = arg min
x∈C

f(Ax)

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

O(nd)
2

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

affine
invariant

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

20

Introducing Newton Sketch

◦ Newton’s Method

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖∇2g(xt)1/2(x− xt)‖2

Definition (Newton Sketch)

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖St∇2g(xt)1/2(x− xt)‖2

◦ Iterative Sketch is a special case g(x) = ‖Ax− y‖2

21

Introducing Newton Sketch

◦ Newton’s Method

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖∇2g(xt)1/2(x− xt)‖2

Definition (Newton Sketch)

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖St∇2g(xt)1/2(x− xt)‖2

◦ Iterative Sketch is a special case g(x) = ‖Ax− y‖2

21

Introducing Newton Sketch

◦ Newton’s Method

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖∇2g(xt)1/2(x− xt)‖2

Definition (Newton Sketch)

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖St∇2g(xt)1/2(x− xt)‖2

◦ Iterative Sketch is a special case g(x) = ‖Ax− y‖2

21

Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number

of iterations for ε accuracy is less than

C log(1/ε)

C is a constant independent of f& data (same assumptions).

[P. and Wainwright. SIAM Journal on Optimization, 2017]

computation

Gradient Descent O(κnd log(1/ε))

Newton’s Method O(nd2 log log(1/ε))

Newton Sketch O(nd log(1/ε))

Dependence on curvature κ is unavoidable among first order
methods [Nesterov, 04]

22

Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number

of iterations for ε accuracy is less than

C log(1/ε)

C is a constant independent of f& data (same assumptions).

[P. and Wainwright. SIAM Journal on Optimization, 2017]

computation

Gradient Descent O(κnd log(1/ε))

Newton’s Method O(nd2 log log(1/ε))

Newton Sketch O(nd log(1/ε))

Dependence on curvature κ is unavoidable among first order
methods [Nesterov, 04] 22

Logistic Regression (n = 500, 000, d = 5, 000 uncorrelated)

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap
Optimality vs. time

Newton
Grad. desc
Newton Sketch

23

Logistic Regression (n = 500, 000, d = 5, 000 correlation 0.1)

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap
Optimality vs. time

Newton
Grad. desc
Newton Sketch

24

Exact Newton

Newton Sketch

∑n

i=1

log(bi − ai
T x)

c

cT x −µ

min cT x
Ax≤b

25

Distributed Optimization

DATA

26

Distributed Optimization

DATA

.

.

.

27

Distributed Optimization

DATA

.

.

.

communication

communication

28

Distributed optimization

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Partition data A =

[
A1

A2

]
, y =

[
y1

y2

]

◦ Least squares cost

min
x
‖Ax− y‖2 = min

x
‖A1x− y1‖2 + ‖A2x− y2‖2

Alternating Directions Method of Multipliers (ADMM)

(Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

min
x
‖Ax− y‖2 = min

x1=x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2

= min
x1,x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2 + λT (x1 − x2)

29

Distributed optimization

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Partition data A =

[
A1

A2

]
, y =

[
y1

y2

]

◦ Least squares cost

min
x
‖Ax− y‖2 = min

x
‖A1x− y1‖2 + ‖A2x− y2‖2

Alternating Directions Method of Multipliers (ADMM)

(Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

min
x
‖Ax− y‖2 = min

x1=x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2

= min
x1,x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2 + λT (x1 − x2)

29

Distributed optimization

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Partition data A =

[
A1

A2

]
, y =

[
y1

y2

]

◦ Least squares cost

min
x
‖Ax− y‖2 = min

x
‖A1x− y1‖2 + ‖A2x− y2‖2

Alternating Directions Method of Multipliers (ADMM)

(Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

min
x
‖Ax− y‖2 = min

x1=x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2

= min
x1,x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2 + λT (x1 − x2)

29

Alternating Directions Method of Multipliers

→ x1 update on machine 1

min
x1

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2︸ ︷︷ ︸
constant

+λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A1, y1, x2

→ x2 update on machine 2

min
x2

‖A1x1 − y1‖2︸ ︷︷ ︸
constant

+‖A2x2 − y2‖2 + λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A2, y2, x1

→ communicate x1⇐⇒x2, update λ← λ+ρ(x1−x2)

30

Alternating Directions Method of Multipliers

→ x1 update on machine 1

min
x1

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2︸ ︷︷ ︸
constant

+λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A1, y1, x2

→ x2 update on machine 2

min
x2

‖A1x1 − y1‖2︸ ︷︷ ︸
constant

+‖A2x2 − y2‖2 + λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A2, y2, x1

→ communicate x1⇐⇒x2, update λ← λ+ρ(x1−x2)

30

Alternating Directions Method of Multipliers

→ x1 update on machine 1

min
x1

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2︸ ︷︷ ︸
constant

+λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A1, y1, x2

→ x2 update on machine 2

min
x2

‖A1x1 − y1‖2︸ ︷︷ ︸
constant

+‖A2x2 − y2‖2 + λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A2, y2, x1

→ communicate x1⇐⇒x2, update λ← λ+ρ(x1−x2)

30

Alternating Directions Method of Multipliers

◦ (Informal) Under some assumptions, ADMM converges in

O(κA log(1/ε)) iterations, where κA is a conditioning

parameter

◦ # iterations = rounds of communication

31

Distributed Sketching and ADMM

A1 and A2 are n× d

A =

[
A1

A2

]

Define multiple sketching matrices

S1 =
[
In×n, 0n×n

]
, S2 =

[
0n×n, In×n

]

S1A = A1

S2A = A2

ADMM is operating on (naive) sketches!

32

Distributed Sketching and ADMM

A1 and A2 are n× d

A =

[
A1

A2

]

Define multiple sketching matrices

S1 =
[
In×n, 0n×n

]
, S2 =

[
0n×n, In×n

]

S1A = A1

S2A = A2

ADMM is operating on (naive) sketches!

32

Distributed Sketching and ADMM

A1 and A2 are n× d

A =

[
A1

A2

]

Define multiple sketching matrices

S1 =
[
In×n, 0n×n

]
, S2 =

[
0n×n, In×n

]

S1A = A1

S2A = A2

ADMM is operating on (naive) sketches!

32

Distributed Sketching

DATA

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8

𝑆1A

33

Distributed Sketching

DATA

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑆1A

𝑆2A

34

Randomized Direction Method of Multipliers

Let S be a random orthogonal matrix, S =

[
S1

S2

]
, STS = I

e.g., DFT matrix with randomly permuted rows

→ x1 update on machine 1

min
x1

‖S1(Ax1−y)‖2+‖S2(Ax2 − y)‖2︸ ︷︷ ︸
constant

+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ x2 update on machine 2

min
x2

‖S1(Ax1−y)‖2︸ ︷︷ ︸
constant

+‖S2(Ax2 − y)‖2+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ communicate x1⇐⇒x2 and update λ

35

Randomized Direction Method of Multipliers

Let S be a random orthogonal matrix, S =

[
S1

S2

]
, STS = I

e.g., DFT matrix with randomly permuted rows

→ x1 update on machine 1

min
x1

‖S1(Ax1−y)‖2+‖S2(Ax2 − y)‖2︸ ︷︷ ︸
constant

+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ x2 update on machine 2

min
x2

‖S1(Ax1−y)‖2︸ ︷︷ ︸
constant

+‖S2(Ax2 − y)‖2+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ communicate x1⇐⇒x2 and update λ

35

Randomized Direction Method of Multipliers

Let S be a random orthogonal matrix, S =

[
S1

S2

]
, STS = I

e.g., DFT matrix with randomly permuted rows

→ x1 update on machine 1

min
x1

‖S1(Ax1−y)‖2+‖S2(Ax2 − y)‖2︸ ︷︷ ︸
constant

+λ>(x1−x2)+
1

2
‖A(x1−x2)‖2

→ x2 update on machine 2

min
x2

‖S2(Ax2−y)‖2︸ ︷︷ ︸
constant

+‖S2(Ax2 − y)‖2+λ>(x1−x2)+
1

2
‖A(x1−x2)‖2

→ communicate x1⇐⇒x2 and update λ

36

Randomized Direction Method of Multipliers

Theorem

Local solutions converge, and number of iterations for ε accuracy

is less than

C log(1/ε) ,

where C is a constant independent of data.

[P. and Candès, 2018]

◦ O(log(1/ε)) rounds of communication. No condition number

dependency.

◦ Exchanging O(d log(1/ε)) bits to communicate x1, x2, ..., xM

is information theoretically optimal

37

Randomized Direction Method of Multipliers

Theorem

Local solutions converge, and number of iterations for ε accuracy

is less than

C log(1/ε) ,

where C is a constant independent of data.

[P. and Candès, 2018]

◦ O(log(1/ε)) rounds of communication. No condition number

dependency.

◦ Exchanging O(d log(1/ε)) bits to communicate x1, x2, ..., xM

is information theoretically optimal

37

Randomized Direction Method of Multipliers

Theorem

Local solutions converge, and number of iterations for ε accuracy

is less than

C log(1/ε) ,

where C is a constant independent of data.

[P. and Candès, 2018]

◦ O(log(1/ε)) rounds of communication. No condition number

dependency.

◦ Exchanging O(d log(1/ε)) bits to communicate x1, x2, ..., xM

is information theoretically optimal

37

Randomized Direction Method of Multipliers

Random i.i.d. heavy tailed data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01

38

Randomized Direction Method of Multipliers

Random i.i.d. data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01
ADMM =0.3825

39

Randomized Direction Method of Multipliers

Random i.i.d. data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01
ADMM =0.3825
ADMM =0.755

40

Randomized Direction Method of Multipliers

Random i.i.d. data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01
ADMM =0.3825
ADMM =0.755
ADMM =1.1275

41

Randomized Direction Method of Multipliers

Random i.i.d. data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01
ADMM =0.3825
ADMM =0.755
ADMM =1.1275
ADMM =1.5

42

Randomized Direction Method of Multipliers

Random i.i.d. data

0 20 40 60 80 100 120

iteration

-35

-30

-25

-20

-15

-10

-5

0
ob

je
ct

iv
e

ADMM =0.01
ADMM =0.3825
ADMM =0.755
ADMM =1.1275
ADMM =1.5
RDMM

_ 43

Non-convex Optimization Problems

◦ In general, very difficult to solve globally

◦ Need to make further assumptions

44

Non-convex Optimization Problems

min
x

n∑

i=1

(fx(ai)− yi)2

→ Heuristic: Gauss-Newton method

xt+1 = arg min
x
‖ fxt(A) + Jtx︸ ︷︷ ︸

Taylor’s approx for fx

−y‖22

where (Jt)ij = ∂
∂xj

fx(ai) is the Jacobian matrix

45

Non-convex Optimization Problems

min
x

n∑

i=1

(fx(ai)− yi)2

→ Heuristic: Gauss-Newton method

xt+1 = arg min
x
‖ fxt(A) + Jtx︸ ︷︷ ︸

Taylor’s approx for fx

−y‖22

where (Jt)ij = ∂
∂xj

fx(ai) is the Jacobian matrix

45

Non-convex Optimization Problems

Deep learning, nonlinear least squares...

2 layer ReLU neural network training loss 46

Neural Networks

→ Randomized Gauss-Newton method

xt+1 = arg min
x
‖St(fxt(A) + Jtx− y)‖22.

◦ StJt backpropagation (Pearlmutter, 1994)

47

Neural Networks

→ Randomized Gauss-Newton method

xt+1 = arg min
x
‖St(fxt(A) + Jtx− y)‖22.

◦ StJt backpropagation (Pearlmutter, 1994)

Theorem

(informal) Consider a single hidden layer neural network,

Gaussian input data A. Randomized Gauss-Newton method

converges to a global minimum in

C log(1/ε) ,

iterations.

[P. and Candès, 2018]

47

2 layer neural network on MNIST dataset

48

0 5 10 15 20 25

Time (seconds)

10 -2

10 -1

100

T
ra

in
in

g
er

ro
r

5 10 15 20 25 30

Time (seconds)

10 -2

10 -1

T
es

t e
rr

or

Gauss-Newton
Randomized Gauss-Newton
Randomized Gauss-Newton (Iterative Sketch)
Batch SGD

49

Summary

1. Information theoretic lower bounds for sketching

2. Iterative sketching with statistical optimality

3. Distributed sketching

4. Non-convex problems

50

Extensions: Streaming optimization

◦ Sketch can be updated by [S s+]

[
A

aT+

]
= SA+ s+a

T
+

Example: Adaptive filtering

time

M
SE

RLS
Iterative Sketch

NLMS

[Scheibler and Vetterli, 16] 51

Extensions: Streaming optimization

◦ Sketch can be updated by [S s+]

[
A

aT+

]
= SA+ s+a

T
+

Example: Adaptive filtering

[Scheibler and Vetterli, 16] 52

Extensions

◦ Privacy preserving optimization

◦ SA provides privacy

◦ Mutual information constraint I(SA;A) ≤ ε
Yang, P., Wainwright, Annals of Statistics, 2015, P. (book chapter) 2018,

53

Extensions

◦ Privacy preserving optimization

◦ SA provides privacy

◦ Mutual information constraint I(SA;A) ≤ ε
Yang, P., Wainwright, Annals of Statistics, 2015, P. (book chapter) 2018,

53

Extensions

◦ Distributed and fault tolerant computing

◦ S1A, S2A ..., SmA can be lost due to point failures

◦ Generate another sketch Sm+1A i.i.d.

54

Extensions

◦ Distributed and fault tolerant computing

◦ S1A, S2A ..., SmA can be lost due to point failures

◦ Generate another sketch Sm+1A i.i.d.

54

Thank you!

Questions ?

54

