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Abstract. We prove that training neural networks on 1-D data is equivalent to solving convex Lasso problems9
with discrete, explicitly defined dictionary matrices. We consider neural networks with piecewise10
linear activations and depths ranging from 2 to an arbitrary but finite number of layers. We first11
show that two-layer networks with piecewise linear activations are equivalent to Lasso models using a12
discrete dictionary of ramp functions, with breakpoints corresponding to the training data points. In13
certain general architectures with absolute value or ReLU activations, a third layer surprisingly creates14
features that reflect the training data about themselves. Additional layers progressively generate15
reflections of these reflections. The Lasso representation provides valuable insights into the analysis16
of globally optimal networks, elucidating their solution landscapes and enabling closed-form solutions17
in certain special cases. Numerical results show that reflections also occur when optimizing standard18
deep networks using standard non-convex optimizers. Additionally, we demonstrate our theory with19
autoregressive time series models.20

1. Introduction. Training deep neural networks is an important optimization problem.21
However, the non-convexity of neural nets makes their training challenging. In this paper, we22
show that for low-dimensional data, e.g., 1-D or 2-D, training a deep neural network can be23
simplified to solving a convex Lasso problem with an easily constructable dictionary matrix.24

Neural networks are used as predictive models for low-dimensional data in acoustic signal25
processing (5; 20; 21; 27; 32; 34), physics-informed machine learning problems, uncertainty26
quantification (9; 10; 36; 40; 41; 43), and predicting financial data (Section 5). In (33; 15; 16),27
the problem of learning 1-D data is studied for two-layer ReLU networks, and it is proved28
that an optimal two-layer ReLU neural network precisely interpolates the training data as a29
piecewise linear function for which the breakpoints are at the data points. Recent work in30
(22; 23; 26) also studied 2-layer ReLU neural networks and their behavior on 1-D data.31

However, even for low-dimensional data, the current literature still lacks analysis on the32
expressive power and learning capabilities of deeper neural networks with generic activations.33
This motivates us to study the optimization of 2 and 3-layer networks with piecewise linear34
activations and deeper neural networks with sign and ReLU activations. For 1-D data, we35
simplify the training problem by recasting it as a convex Lasso problem, which has been36
extensively studied (12; 37; 38).37

Convex analysis of neural networks was developed in several prior works. As an example,38

∗Department of Electrical Engineering
†Department of Computer Science
‡Departments of Statistics and Mathematics

1

This manuscript is for review purposes only.



infinite-width neural networks enable the convexification of the overall model (2; 4; 17). However,39
due to the infinite-width assumption, these results do not reflect finite-width neural networks40
in practice. Recently, a series of papers (14; 15; 31) developed a convex analytic framework41
for the training problem of two-layer neural networks with ReLU activation. As a follow-up42
work, a similar approach is used to formulate the training problem for threshold activations43
with data in general d-dimensions as a Lasso problem (13). However, the dictionary matrix is44
described implicitly and requires high computational complexity to create (13). By focusing on45
1-D data, we can provide simple, explicit Lasso dictionaries and consider additional activations.46
For example, we analyze networks with sign activation, which is useful in contexts such as47
saving memory to meet hardware constraints (8; 25).48

Throughout the paper, all scalar functions extend to vector and matrix inputs component-49
wise. We write vectors as v = (v1, · · ·, vn) and denote the set of n-dimensional, real-valued50
column and row vectors by Rn and R1×n, respectively. For L ≥ 2, an L-layer neural network for51
d-dimensional data is denoted by fL (x; θ) : R1×d → R, where x ∈ R1×d is an input row vector52
and θ is the parameter set. The set θ may contain matrices, vectors, and scalars representing53
weights and biases. We let θ ∈ Θ, where Θ is the parameter space. Let X ∈ RN×d be a data54
matrix consisting of N training samples x1, · · ·xN ∈ R1×d. We consider regression tasks and55
call y ∈ RN the target vector. The (non-convex) neural net training problem is56

min
θ∈Θ

1

2
∥fL (X; θ)− y∥22 +

β

L̃
∥θw∥L̃(1.1)57

where β > 0 is a regularization coefficient for a subset of parameters θw ⊂ θ that incur a weight58
penalty when training. We denote ∥θw∥L̃ =

∑
q∈θw ∥q∥L̃2 , which penalizes the total network59

weight. The results can be generalized to other p-norm regularizations as well. L̃ is the effective60
regularized depth, defined to be the usual depth L for ReLU, leaky ReLU, and absolute value61
activations, but defined to be just 2 for threshold and sign activations. This is motivated by62
the property that neurons with sign or threshold activations are invariant to the magnitude of63
their neuron weights, so it does not make sense to penalize the inner weights (Remark H.1).64

A central element of this paper is the Lasso problem65

(1.2) min
z,ξ

1

2
∥Az+ ξ1− y∥22 + β̃∥z∥166

where z is a vector, ξ ∈ R, 1 is a vector of ones, and β̃ > 0 (whose relation to β in (1.1) is67
defined in Subsection 3.1). A is called the dictionary matrix, with columns Ai ∈ RN .68

A neural net is trained by searching for θ that optimizes (1.1). A neural net fL (x; θ) is69
called optimal if θ is a global minimizer in (1.1). Unfortunately, training is complicated by the70
non-convexity of the optimization problem. However, for data of dimension d=1, we reformulate71
the training problem (1.1) into the equivalent but simpler Lasso problem (1.2), where A is72
a fixed matrix that is constructed based on the training data X and neural net architecture.73
Moreover, the dictionary matrix columns Ai correspond to piecewise linear functions we call74
features that satisfy the following: 1) the value of the feature when evaluated on xn is Ai,n,75
and 2) the function consisting of their affine combination, where the coefficients are elements76
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of a Lasso solution, is equal to an optimal neural net. The set of features for a given network is77
a dictionary. We call a collection of dictionaries a library when referring to the features from78
multiple depths.79

We explicitly provide the elements of A, making it straightforward to build and solve the80
convex Lasso problem instead of solving the non-convex training problem. This reformulation81
allows for exploiting fast Lasso solvers based on the proximal gradient method and Least Angle82
Regression (LARS) (12).83

Whereas in the training problem (1.1), the quality of the neural net fit to the data is measured84
by the l2 loss as 1

2 ||fL (X; θ)−y||22, our results generalize to a wide class of convex loss functions85

Ly : RN → R. With a general loss function, (1.1) becomes min
θ∈Θ

Ly(fL (X; θ)) +
β

L̃
∥θw∥L̃. This86

is shown to be equivalent to the generalization of (1.2), namely min
z,ξ

Ly(Az+ ξ1− y) + β̃∥z∥1.87

The Lasso problem selects solutions z that generalize well by penalizing their total weight88
in l1 norm (37). The l1 norm typically selects a small number of elements in z to be nonzero.89
The Lasso equivalence demonstrates that neural networks can learn a sparse representation of90
the data by selecting certain features to fit y.91

The Lasso representation also elucidates the solution path of neural networks. The solution92
path for the Lasso or training problem is the map from β ∈ (0,∞) to the solution set. The93
Lasso solution path is well understood (37; 38; 12), providing insight into the solution path of94
the ReLU training problem (29).95

This paper is organized as follows. Section 2 defines various neural network architectures.96
Section 3 describes our main theoretical result: neural networks are solutions to Lasso problems.97
One important consequence is that deep networks with ReLU and absolute value activations98
learn geometric reflections in the data. The next sections describe applications of the Lasso99
equivalence. Section 4 uses our theory to find explicit optimal neural networks for examples of100
binary data, and Section 5 uses the Lasso formulation to improve training of neural networks101
that predict financial time-series. Appendix F examines the relationship between the entire set of102
optimal neural nets given by the training problem versus the Lasso problem, while Appendix G103
applies the Lasso model to examine neural net behavior under minimum regularization, finding104
closed-form solutions. Appendix H presents experiments that support our theoretical results,105
and shows examples where neural networks trained with Adam naturally exhibit Lasso features.106

1.1. Contributions. Our contributions can be summarized as follows:107
• Training various neural network architectures on 1-D data is equivalent to solving Lasso108

problems with finite, explicit and fixed dictionaries of basis signals that grow richer with109
depth (Theorems 3.12, 3.7 and 3.17). We identify dictionaries for various architectures110
in closed form (Lemma B.2).111

• Features with reflections of training data appear in libraries for simple 3-layer and deeper112
architectures with ReLU (Theorem 3.5) or absolute value activation (Theorem 3.2).113
Experimentally, training these networks using the Adam optimizer leads to the same114
reflection features that we prove and matches our theoretical results on the global115
optima (Appendix H). In contrast, no reflection features are generated for the sign116
activation for any depth.117

• Although the sign activation does not produce reflection features, its features become118
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richer for depth 3 networks compared to depth 2. Accordingly, for certain binary119
classification tasks, we analytically observe that optimal 3-layer sign activation networks120
generalize better than their 2-layer counterparts in the sense that their predictions are121
more uniform. Moreover, the Lasso problem yields closed-form expressions for these122
neural networks (Corollaries D.2 and D.4)123

• After depth 3, the libraries freeze for networks with ReLU activation that have the same124
number of biased neurons in the middle and final layers (Lemma 3.8), and for networks125
with sign activation that have a constant number of neurons per layer (Theorem 3.17).126
But, the libraries grow when the width expands to twice as many neurons in the middle127
layer as the final layer for networks with ReLU activation (Theorem 3.12), and a tree128
structure for networks with sign activation (Theorem 3.17).129

• A similar Lasso equivalence extends to neural networks trained on 2-D data in the130
upper half plane (Theorem C.3).131

1.2. Notation. Assume 1-D training data is ordered as x1 > x2 > · · · > xN . The indicator132
function of a logical statement z is 1{z}. Let [n] = {1, 2, . . . , n}. For a matrix Z, let ZS be the133
submatrix of Z corresponding to indices in S. The number of nonzero elements in a vector z is134
||z||0. Let 1,0 ∈ RN be the all-ones and all-zeros vectors, respectively.135

A network that uses ReLU activation is a "ReLU network" or "ReLU-activated network,"136
and a feature in a Lasso problem that is equivalent to a ReLU network is a "ReLU feature."137
Similar terminology holds for other activations and architectures.138

2. Neural net architectures. This section is devoted to defining neural net terminology
and notation to be used throughout the rest of the paper. Let L ≥ 2 be the depth of a neural
network (which has L−1 hidden layers). We assume the activation σ : R → R is piecewise
linear around 0 , i.e., of the form

σ(x) =

{
a−x+ b− if x < 0

a+x+ b+ else

for some a−, a+, b−, b+ ∈ R. As shorthand, "piecewise linear" will mean "piecewise linear139
around 0." We focus on the piecewise linear activations of ReLU, leaky ReLU, absolute value,140
sign, and threshold functions. The ReLU activation is σ(x) = (x)+ := max{x, 0}, and absolute141
value activation is σ(x) = |x|. The leaky ReLU generalizes ReLU and absolute value as142
σ(x) = (a+1{x > 0}+ a−1{x < 0})x where a+ ̸= a−. ReLU, leaky ReLU and absolute value143
activations will be referred to as "continuous piecewise linear." The threshold activation is144
σ(x) = 1{x ≥ 0}, and the sign activation is σ(x) = sign(x), where sign(x) is −1 if x < 0, and 1145
if x ≥ 0. Note sign(0) = 1.146

For Z ∈ Rn×m, s ∈ Rm, let σs(Z) = σ(Z)Diag(s). When the columns of σ(Z) are neuron147
outputs, the ith column of σs(Z) ∈ RN×m represents a neuron scaled by an amplitude parameter148
si ∈ R. Amplitude parameters are (trainable) parameters for only the sign and threshold149
activations, and are to be ignored by interpreting them as 1 for ReLU, leaky ReLU, and absolute150
value activations.151

Next, we define some neural net architectures. The parameter set is partitioned into152
θ = θw ∪ θb ∪ {ξ}, where θb is a set of internal bias terms, and ξ is an external bias term. We153
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define the elements of each parameter set below. We define neural nets by their output on row154
vectors x ∈ R1×d. Their outputs then extend to matrix inputs X ∈ RN×d row-wise.155

2.1. Standard networks. The following is a commonly studied neural net architecture.156
Let L ≥ 2, the number of layers. Let m0 = d,mL−1 = 1 and ml ∈ N for l ∈ [L− 2], which are157
the number of neurons in each layer. For l ∈ [L− 1], let W(l) ∈ Rml−1×ml , s(l) ∈ Rml ,b(l) ∈158
R1×ml , ξ ∈ R, which denote weights, amplitude parameters, internal biases, and external bias,159
respectively. Let X(1) = x ∈ R1×d be the input to the neural net and X(l+1) ∈ R1×ml be viewed160
as the inputs to layer l + 1, defined by161

(2.1) X(l+1) = σs(l)
(
X(l)W(l) + b(l)

)
.162

Let α ∈ RmL , which is the vector of final layer coefficients. A standard neural network is163
fL (x; θ) = ξ +X(L)α. The regularized and bias parameter sets are164
θw=

{
α,W(l), s(l) : l ∈ [L−1]

}
and θb=

{
b(l) : l ∈ [L− 1]

}
, respectively.165

The ultimate goal is analyzing the training problem for standard networks, but this appears166
to be challenging. However, by changing the architecture to a parallel structure defined next, we167
show that the training problem simplifies to the Lasso problem. These alternative architectures168
allow neural nets to be reconstructed more tractably from a Lasso solution than with a standard169
network. In the parallel architecture, mL is the number of neurons in the final layer and for170

i ∈ [mL], we define the disjoint unions θw =
⋃

i∈[mL]

θ(i)w and θb =
⋃

i∈[mL]

θ
(i)
b .171

2.2. Parallel networks. A parallel network is a linear combination of standard networks in172
parallel, as we now define. Each standard network is called a parallel unit. Let L ≥ 2,m0 =173
d,mL−1 = 1 and ml ∈ N for l ∈ [L]− {L− 1}. For i ∈ [mL], l ∈ [L− 1], let W(i,l) ∈ Rml−1×ml ,174
s(i,l) ∈ Rml , b(i,l) ∈ R1×ml , ξ ∈ R, which are the weights, amplitude parameters, and biases of175
the ith parallel unit. Let X̂(i,1) = x ∈ R1×d be the input to the neural net and X̂(i,l+1) ∈ R1×ml176
be viewed as the input to layer l + 1 in unit i, defined by177

(2.2) X̂(i,l+1) = σs(i,l)
(
X̂(i,l)W(i,l) + b(i,l)

)
.178

Let α ∈ RmL . A parallel neural network is fL (x; θ) = ξ +

mL∑
i=1

X̂(i,L)αi. The regularized and179

bias parameter sets are θ
(i)
w =

{
αi, s

(i,l),W(i,l) : l ∈ [L− 1]
}
, θ

(i)
b =

{
b(i,l) : l ∈ [L− 1]

}
, for180

i ∈ [mL]. We view parallel units as functions X̂(i,L) : R1×d → R and with abuse of notation181
write X̂(i,L)(x) ∈ R as the output of X̂(i,L) evaluated on a sample x. For a training dataset182
X ∈ RN×d, we denote the evaluations of the functions X̂(i,L) on the training data as X̂(i,L)(X).183
This paper primarily focuses on parallel architectures. However, a parallel network can be184
converted into a standard network (Remark A.1).185

3. Main results. In this section, we show that non-convex deep neural net training problems186
are equivalent to Lasso problems, that is, their optimal values are the same, and given a Lasso187
solution, we can reconstruct a neural net that is optimal in the training problem. We say that188
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a neural network model is equivalent to a Lasso model to mean that the optimal models are189
convertible to each other. We note that the optimal solutions may not be unique. Discussion190
of the relation between the solution sets of the Lasso and non-convex training problems with191
respect to a specified straightforward reconstruction is given in Appendix F. Further analysis192
of all possible reconstruction maps between the models is an area of future work. Analysis of193
the span or uniqueness and the generalizing abilities of different optimal or stationary solutions194
to the training problem is also an area for future work.195

Unless otherwise stated, for the rest of this paper assume the data is 1-D. Define β̃ = β
2 in196

(1.1),(1.2) for 3-layer symmetrized networks (defined below). For all other networks, let β̃ = β.197

3.1. 2-layer networks with piecewise linear activations and deep networks with con-198
tinuous piecewise linear activations. A deep narrow network is a parallel network where the199
number of neurons in each parallel path is equal to 1, i.e., m1=· · ·=mL−1=1. In other words,200
a deep narrow network has mL parallel units, each of which has one neuron in every layer,201
i.e., mL neurons across units in each layer, adding up to LmL total neurons. For a 2-layer202
network, the parallel and deep narrow networks are the same as the standard network. A203
symmetrized 3-layer network is a parallel network with continuous piecewise linear activation204
where m1=2 (which means each ith unit out of m3 parallel units has 2-D weight vectors W(i,1)205
and W(i,2) for the first and second layer, respectively) and the parameter space Θ enforces the206

constraint
∣∣∣W(i,l)

1

∣∣∣= ∣∣∣W(i,l)
2

∣∣∣ for l ∈ [2], i ∈ [m3]. Therefore a symmetrized 3-layer network has207

2m3 neurons in the "middle" layer. A symmetrized network extends the expressibility of a deep208
narrow network network by expanding its width. For other architectures, see Subsection 3.2.209

In this section, we focus on the architectures discussed above to derive explicit, simple210
features that provide some of the first steps towards intuitively understanding the representation211
power of neural networks. We reformulate the training problem for 2-layer networks and for212
deeper depths with absolute value, ReLU and leaky ReLU activations into a convex Lasso213
problem. In general, our convexification approach and proofs provide a framework to analyze214
neural networks with more arbitrary widths. Additional results are deferred to Appendix B215
due to space, and proofs are deferred to Appendix H.3.216

We first discuss networks with absolute value activation, as the symmetry of |x| significantly217
simplifies the features. However, absolute value activation models are equivalent to ReLU218
activation models, as long as a skip connection is present. A 2-layer network with a skip219
connection is f skip

L (x; θ) = fL (x; θ)+ωx if x ∈ R (or more generally, f skip
L (x; θ) = fL (x; θ)+xω)220

where ω ∈ Rd is a trainable parameter in θ.221

Lemma 3.1. The training problem for a 2-layer network with skip connection and ReLU222
activation remains equivalent if the activation is changed to absolute value, and there is a map223
between the solutions for either activation.224

By Lemma 3.1, the absolute value activation is of interest to analyze as it can map to ReLU225
when skip connections are incorporated. Next we define some terms used to state our results.226

For a piecewise linear function f : R → R, x is a breakpoint of f (alternatively, f has a227
breakpoint at x) if f changes slope or is discontinuous at x. A breakpoint is a "kink" in the228
graph of f . For a, b, c ∈ R, the reflection of a about b is R(a,b) = 2b− a. A double reflection is229
a reflection of a reflection, i.e., is of the form R(R(a,c),b) or R(b,R(a,c)). The generalized reflection230
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xj2 xj1 R(xj2
,xj1)

R( xj1
+xj2
2 ,xj2

) xj2 xj1
+xj2

2

xj1 R( xj1
+xj2
2 ,xj1

)

xj2 xj3 xj1R(xj3
,xj2)

R(xj3
,xj1)

R(xj2
,xj1)

R(
R
(xj3

,xj2)
,xj1

)

Figure 3.1: Example features, not including reversed directions, for deep narrow networks with
absolute value activation. Top row: 3-layer features. The top left feature contains a breakpoint
at the reflection of xj2 (red) across xj1 (yellow), which is denoted as R(xj2

,xj1)
(red encircling

yellow). Other breakpoints are colored similarly. Bottom row: an example of a 4-layer feature,
which contains a double reflection of xj3 (blue) reflected across xj2 (red), then reflected across
xj1 (yellow), which is denoted as R(

R(xj3
,xj2

),xj1

) (blue encircling red, encircling yellow). All

lines have slopes ±1, and xj1 , xj2 , xj3 are training data.

of a and c about b is a+ c− b = R(b,a+c
2 ), the reflection of b about the average of a and c. When231

a = c, the generalized reflection of a and c about b is the reflection of a about b. A breakpoint232
that is of the form R(xj1

,xj2)
for training data xj1 , xj2 is called a reflection breakpoint and233

a feature with a reflection breakpoint is called a reflection feature; and similarly for double234
reflections. Networks with absolute value activation can be modeled as Lasso problems with235
reflection features, as stated next.236

Theorem 3.2 (Lasso equivalent of deep absolute value networks). A deep narrow network of237
arbitrary depth with σ(x) = |x| is equivalent1 to a Lasso model with a finite set of features. Its238
dictionary matrix for 2 layers is Ai,j = |xi−xj |. For 3 and 4 layers, its library includes features239

whose ith element is
∣∣|xi−xj1 |− |xj2 −xj1 |

∣∣ and
∣∣∣∣∣|xi−xj1 |−|xj2−xj1 |

∣∣−∣∣|xj3−xj1 |−|xj2−xj1 |
∣∣∣∣∣,240

respectively, over all training samples xi, xj1 , xj2 , xj3. A similar pattern holds for deeper241
networks. The 2-layer features have breakpoints exactly at training data. The libraries for 3242
and 4 layers additionally include reflection and double reflection features, respectively.243

Theorem 3.2 implies that an absolute value network learns to model data with a discrete244
and fixed dictionary of features. Figure 3.1 plots these features for L=3 and L=4. It illustrates245

1See Section 3 for the definition of model equivalence.
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(xn, yn)
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L=
5

5 0 5
x

Figure 3.2: Lasso and Adam-trained deep narrow networks with absolute value activation.
For L=3, the breakpoint at 2 is not a training point; it is the reflection of x2=0 across x1=1.
For L=4, the breakpoint at 6 is not a training point; it is x2=0 reflected about x3=−1 to −2
(which not a training point) and then reflected across x1=2. Similarly the 5-layer network
contains more complex reflections.

that the breakpoints of the L=3 features occur at training data reflections, averages, and246
reflections about averages. The bottom row plots a possible feature for 4 layers, which shows247
breakpoints at reflections and double reflections. Even with just one neuron per layer (per path248
for parallel networks), adding a third layer in neural networks with absolute value activation249
adds features to the dictionary, and adds new locations of breakpoint to those features, namely250
at reflections R(xi,xj) of data points about themselves. Adding a fourth layer creates double251
reflections. In Figure 3.2, standard 3, 4, and 5-layer networks are trained with Adam. We252
make β=10−7 close to zero, and also solve the Lasso problem as β→0 (Appendix G). The253
Adam-trained networks closely match the Lasso solutions. Moreover, the 5-layer networks254
suggest that features continue to gain more complex reflections with depth. Simulations details255
are given in Appendix H.256

Theorem 3.2 describe a subset of the library for L ≥ 3 layers. The full library for 3 layers is257
defined in Theorem 3.12 and the features are explicitly described in Lemma B.2. Our approach258
lays a foundation to enumerate the full library for L ≥ 4 layers as an area of future work.259

In contrast, as will be shown in Theorem 3.17, the sign activation dictionary has no reflection260
features at any depth, which may limit its expressibility (28). A similar argument applies to the261
threshold activation. Reflection features allow neural networks to fit functions with breakpoints262
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ReLU+
a (x)

a

ReLU−
a (x)

a

Ramp+
a1,a2(x)

a1 a2

Ramp−
a1,a2(x)

a1 a2

Figure 3.3: Examples of capped ramp functions in Definition 3.3. If a, a1, a2∈{x1, · · ·, xN},
these functions are Lasso features for 3-layer deep narrow networks with ReLU activation.

at locations in between data points. The reflection breakpoints for absolute value networks263
suggest that they can learn geometric structures or symmetries from the data. Moreover, as264
the depth increases, this dictionary expands, which deepens its representation power.265

With intuition from absolute value networks, we next discuss ReLU networks. Since266
reflection features appear in 3-layer networks with absolute value activation and |x|= (x)++(−x)+

2 ,267
we might expect reflections to also appear in 3-layer ReLU networks with twice as many neurons268
in the middle layer as the absolute value network. This is indeed the case, as shown below.269
First, we define parameterized families of functions from R to R that will be used to describe270
features for ReLU networks.271

Definition 3.3. Let a1 ∈ [−∞,∞), a2 ∈ (−∞,∞]. The capped ramp functions are272

Ramp+a1,a2(x) =


0 if x ≤ a1

x− a1 if a1 ≤ x ≤ a2

a2 − a1 if x ≥ a2

, Ramp−a1,a2(x) =


a2 − a1 if x ≤ a1

a2 − x if a1 ≤ x ≤ a2

0 if x ≥ a2

273

provided that a1 ≤ a2, and otherwise Ramp+a1,a2 = Ramp−a1,a2 = 0. In particular, the ramp274

functions are ReLU+
a (x) = Ramp+a,∞ = (x− a)+ and ReLU−

a (x) = Ramp−−∞,a = (a− x)+.275

276
In Definition 3.3, the parameters a, a1, a2 are the breakpoints of ramp and capped ramp277
functions. This is illustrated in Figure 3.3. Using these features, we state our results on Lasso278
equivalence for ReLU networks.279

Theorem 3.4 (deep narrow ReLU network representation capability stagnates). A deep narrow280
network of arbitrary depth with ReLU activation is equivalent to a Lasso model with a finite281
set of features. Its library contains only ramps and capped ramps, and beyond 3 layers, ReLU282
features do not change as the network deepens.283

In contrast to absolute value activation, for deep narrow networks, the ReLU library never284
gains reflection features. However, a symmetrized ReLU architecture creates reflections.285

Theorem 3.5 (wider ReLU networks do not stagnate and generate reflections). A three-layer286
symmetrized network with ReLU activation is equivalent to a Lasso model with a finite set of287
features, including those with breakpoints at reflections.288

Figure 3.5 plots ReLU features. A 2-layer ReLU network learns ramp features. Extending289
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Figure 3.4: Lasso and Adam-trained 3-layer symmetrized ReLU networks. Most crucially, the
breakpoint at 2 is not a training point; it is the reflection of x4 = 0 across x3 = 1.

the depth to one more layer without changing the width creates a deep narrow 3-layer network,290
which additionally learns capped ramp features. Extending both the depth and width enables291
creating a 3-layer symmetrized network, which learns an additional host of features, including292
generalized reflection features shown in the bottom row of the figure. The generalized reflections293
xj+xk−xi are reflections when j=k. Reflection features appear in Adam-trained ReLU networks294
as predicted by the Lasso formulation, as shown in Figure 3.4. Details of this simulation are295
given in Appendix H. Next, we formally define a feature function and its properties.296

Remark 3.6. Theorem 3.12 and Definition B.3 below show that the training problem is297
equivalent to a Lasso problem with solution (z∗, ξ∗) and a dictionary matrix whose ith column Ai298
maps to a parallel unit function X̂(i,L) : R → R such that X̂(i,L) (X) = Ai and

∑
i z

∗
i X̂

(i,L)(x)+299
ξ∗ is the same function as an optimal neural net. In this section we define a feature as described300
in Section 1 to be a parallel unit function X̂(i,L) corresponding to Ai such that z∗i ̸= 0.301

In addition to ReLU and absolute value networks, leaky ReLU networks are also equivalent to302
Lasso models. Moreover, we can upper bound the size of the libraries.303

Theorem 3.7. A deep narrow network of any depth L ≥ 2 and piecewise linear activation is304
equivalent to a Lasso problem with a finite set of features. The number of features is O(N2) for305
ReLU activation and O(NL−12LL!) for leaky ReLU and absolute value activations.306

In particular, the number of features is finite and at most polynomial in the number of training307
points and exponential in the depth. However, the number of features is an overestimate and308
in fact saturates for certain activations and architectures, as seen in the next result.309

Lemma 3.8. Training a deep narrow ReLU network with an arbitrary number of layers310
(L ≥ 2) is a Lasso problem where features are ReLU or capped ramp functions with breakpoints311
at data points. The number of features is O(N2).312

Adding only one neuron per layer limits the expressibility of ReLU networks. In contrast313
to absolute value, ReLU networks rely more heavily on wider layers for expressibility.314
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Definition 3.9. For α, β, a+, a− ∈ R such that a+ ̸= a−, let the normalized midpoint be315

(3.1) mα,β = −a+max{α, β} − a−min{α, β}
a+ − a−

.316

Note mα,β is the midpoint α+β
2 between α and β if σ(x)=|x|. If σ(x)=(x)+, or if σ(x)=|x| and317

α=β, then mα,β=α. We use the normalized midpoint to define bias parameters for features.318

Recall that X̂(1,L) denotes a parallel unit, which is a standard network (Subsection 2.2). Let319
X̂(l)=X̂(1,l),W(l)=W(1,l), and b(l)=b(1,l). The output X̂(l) of each layer can be interpreted as320
a feature extracted by that layer. This motivates the following definition.321

Definition 3.10. A bias parameter b(l) is a data feature bias if b(l)=−X̂(l)(x0)W
(l) for some322

column vector x0∈{x1, · · ·, xN}ml. The bias parameter b(1) is a first-layer midpoint feature323
bias if b(1)=−mxj1

,xj′1
W(1) for some j1, j

′
1 ∈ [N ] and it is in a 3-layer deep narrow network324

with a non-monotone, continuous piecewise linear activation (such as σ(x) = |x|.)325

In the simplest case when L=2, a data feature bias is of the form b = −wxn. These bias326
parameters are used to define a deep library.327

Definition 3.11 (Deep Library). Consider a 3-layer symmetrized or L-layer deep narrow328
network. The deep library is the set of all network outputs X̂(L)(X) defined in (2.2) with data329
or midpoint feature biases and all elements of W(1) being ±1.330

The deep library contains a finite number of standard networks evaluated on the training data.331
The next result shows that a neural network learns features in the deep library.332

Theorem 3.12 (complete Lasso libraries for general activations). Consider a deep narrow333
L-layer network where L∈{2, 3} and with activation σ which is ReLU, leaky ReLU, absolute334
value, sign, or threshold if L=2, and ReLU, leaky ReLU or absolute value if L=3. Consider335
a Lasso problem whose dictionary is the deep library and where ξ=0 if σ is sign or threshold.336
Suppose (z∗, ξ∗) is a solution, and let m∗=∥z∗∥0. This Lasso problem is equivalent to the337
training problem for the network, provided mL ≥ m∗.338

The notion of equivalence between optimization problems is defined in the beginning of Section 3.339
Definition B.3 defines a map to reconstruct an optimal neural network from a Lasso solution340
(Lemma B.4). The map is especially straightforward for 2-layer networks (Definition B.5).341
These results are given in Appendix B due to space. The next theorem generalizes Theorem 3.5342
to leaky ReLU activations.343

Theorem 3.13. The training problem for a 3-layer symmetrized network with monotone344
activations such as ReLU is equivalent to a Lasso problem with solution (z∗, ξ∗) and whose345
dictionary contains the deep library, provided mL ≥ m∗, where m∗ = ∥z∗∥0.346

Theorem 3.13 states that the deep library is a sub-dictionary for symmetrized networks.347
Finding the full dictionary for a symmetrized network is an area of future work. Theorem 3.12348
shows that instead of training a neural network with a non-convex problem and reaching a349
possibly local optimum, we can simply solve a straightforward Lasso problem whose convexity350
guarantees that gradient descent approaches global optimality. Figure H.3 shows an example351
where a network trained with Lasso achieves a better function fit than training with the non-352
convex problem. In previous work (13), a similar Lasso formulation is developed for networks353
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Figure 3.5: Example ReLU features, excluding reverse directions. Bottom row: 3-layer
symmetrized ReLU features with breakpoints at generalized reflections of xj1 (yellow) across
xj2 (red) and xj3 (blue) xj2+xj3−xj1 (yellow encircling purple). Lines have slopes ±2,±1 or 0.

with threshold activation but requires up to 2N features of length N in the dictionary for a354
2-layer network. In contrast, with 1-D data, Theorem 3.12 shows that at most 2N2 features355
are needed for a 2-layer network.356

Remark 3.14. Note that when the network is 2 layers, the equivalent Lasso dictionary only357
contains features with breakpoints at training data, leading to a prediction with breakpoints358
only at data locations. In contrast, when the network has 3 layers there can be breakpoints at359
reflections of data points with respect to other data points due to the reflection features. As a360
result, for activations such as absolute value and ReLU with symmetrized networks, the sequence361
of dictionaries as the network gets deeper converges to a richer library that includes reflections.362

Our approach lays the foundation to further analyze the evolution of feature libraries over363
expanding depth and widths as an area of future work. For 2-layer networks, the dictionary364
(Theorem 3.12) is simple, as described next.365

Corollary 3.15 (2-layer libraries). Let A+,A− ∈ RN×N with (A+)i,n=σ(xi−xn), (A−)i,n=366
σ(xn−xi). We can write the dictionary matrix for 2-layer networks as A=A+ for absolute367
value and sign activations, and A=[A+,A−] ∈ RN×2N for ReLU, leaky ReLU, and threshold368
activations.369

In Corollary 3.15, A+ and A− contain features X̂(2)(X) where W(1) = 1 and W(1) = −1,370
respectively (Definition 3.11). Figure 3.6 illustrates A+ for the ReLU and sign activations.371
Using the notation of Definition 3.11, the 3-layer deep narrow absolute value features are372
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n
i

n
i

Figure 3.6: Generic shape of A+ ∈ RN×N defined by A+i,n = σ(xi − xn), where σ is ReLU
(left) and sign activation (right). Each ith curve represents a feature. The points

(
i, n,A+i,n

)
are plotted in 3-D, with A+i,n represented by the curve height and color. Here, n ∈ [N ] but
each curve interpolates between integer values of n.

of the form X̂(3)(x)=
∣∣|x−xj1 |−|xj2−xj1 |

∣∣, and for 4 layers, include features of the form373

X̂(4)(x)=
∣∣∣∣∣|x−xj1 |−|xj2−xj1 |

∣∣−∣∣|xj3−xj1 |−|xj2−xj1 |
∣∣∣∣∣. These features are plotted in Figure 3.1,374

which highlights their reflection and double reflection breakpoints. Figure 3.5 shows a subset375
of the ReLU library, with generalized reflection features for 3-layer symmetrized networks.376
Figure 3.5 illustrates general feature shapes not including mirrored directions. In Figure B.1,377
we choose distinct training samples xi, xj , xk∈{−1, 0, 2} and numerically compute all possible378
deep library features for 3-layer, symmetrized ReLU networks using Definition 3.11. Since the379
features X̂(L)(x) are continuous with respect to xi, xj , xk, the features for non-distinct xi, xj , xk380
can be extrapolated by merging adjacent training points. The numerically plotted features are381
consistent with Figure 3.5. In addition to graphical representations, Lemma B.2 in Appendix B382
gives examples of simple, explicit expressions for features defined in Definition 3.11.383

So far, we have emphasized deep ReLU and absolute value networks as having reflection384
features. Next, we show that in contrast, deep networks with sign activation do not have385
reflection features, even if they have many neurons per layer, suggesting the importance of386
choice of activation. The results for sign activation can be similarly extended to threshold387
activation (13).388

3.2. Deep neural networks with sign activation. In this section, we analyze the training389
problem of an L-layer deep network with sign activation, which need not be a deep narrow390
network. The formal statements of a few results are deferred to Appendix C due to space.391
Proofs in this section are deferred to Appendix H.4.392

We say the vector h∈{−1, 1}N switches at n > 1 if hn ̸= hn−1. For n ∈ N, let the switching393
set H(n) be the set of all vectors in {−1, 1}N that start with 1 and switch at most n times.394
For a set of vectors Z, let [Z] be a matrix whose set of columns is Z. The next result relates395
the switching set to the Lasso dictionary matrix in Theorem 3.12.396

Lemma 3.16. The dictionary matrix for a 2-layer network with sign activation is
[
H(1)

]
.397

We will show in Theorem 3.17 that the training problem (1.1) for deeper networks with sign398
activation is also equivalent to a Lasso problem (1.2) whose dictionary is a switching set.399

We now consider another architecture. While each unit of the parallel neural network is a400
standard network, every branch of a tree network is a parallel network. A detailed definition401
is given in Appendix C.1 due to space. Parallel and tree nets have the same architecture for402
L = 3 layers. For L ≥ 3, a rectangular network is a parallel network (Subsection 2.2) with403
m1 = · · · = mL−2. A deep narrow network is a special case of a rectangular network. Now404
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we state the main result of this section: networks with sign activation are equivalent to Lasso405
models with libraries that increase until depth 3 and then freeze for rectangular networks but406
continue multiplying geometrically for tree networks.407

Theorem 3.17. Consider a Lasso problem whose dictionary is the switching set H(K), ξ = 0,408
and with solution z∗. Let m∗ = ∥z∗∥0. This Lasso problem is equivalent to the training problem409
for a neural network with sign activation, mL ≥ m∗, and mL−2 = K when it is a rectangular410
network, and

∏L−1
l=1 ml = K when it is a tree network.411

Similar to Remark 3.6, we can formally define features for rectangular and tree networks as412
parallel units and subtrees, respectively.413

Corollary 3.18. The features defined and described in Remark 3.6 also apply to arbitrarily414
deep parallel networks with sign activation, and analogously for tree networks.415

Features for sign activation are step functions that take on the value Ai,n=±1 at xn (where416
Ai is the corresponding column of the dictionary matrix) and remain at that value until the417
next data point xn+1. They only switch value at data points, and do not have breakpoints at418
reflections. The green graph in Figure B.2 illustrates an example of a sign activation feature.419

Theorem 3.17 generalizes Theorem 3.12 for sign networks. By Lemma 3.16, for L=2,420
1=d=m0=L−2, so the sign activation dictionary is also H(mL−2)=H(1). Adding a third layer421
to a parallel network with sign activation expands the library to encompass features with up422
to m1 switches. But no new features enter the library if the depth increases beyond 3. This423
limited library suggests that the representation power of sign activation networks may stagnate424
after three layers, unless the architecture is changed. Indeed, for a tree architecture, the library425
continues to expand, and the features have as many breakpoints as the product of the number426
of neurons in each layer.427

An explicit and efficient reconstruction of an optimal 3-layer neural net with sign activation428
is described in Lemma C.1 in Appendix C. It is drawn in Figure B.2. Reconstructions for other429
architectures are given in Appendix H.4. The Lasso dictionary for deep neural nets in previous430
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Figure 3.8: The bottom figures plot training data (xn, yn). The top figures plot sign-activated
neural net predictions by color for each x, as parameterized by β on the vertical axis. With
abuse of notation, in this figure (only), β̃ = β/T .

work (13) uses a dictionary that depends on the training data. However, Lemma 3.16 and431
Theorem 3.17 show that networks with sign activation have dictionaries that are invariant to432
the training data. So to train multiple neural nets on different data, the dictionary matrix A433
only needs to be constructed once.434

Our theory for 1-D data provides a lens to analyze higher dimensional data. Using a similar435
approach, Theorem C.3 in Appendix C gives an example of 2-D data for which a neural net436
can be recast as a Lasso model. Extending this to more general data and higher dimensions is437
an area for future work. The next remark summarizes the expansion of libraries over depth.438

Remark 3.19. The dictionary for an architecture discussed in Theorem 3.12, Theorem 3.17439
or Theorem C.3 is a superset of any dictionary with the same architecture but shallower depth.440

This section analyzed the equivalence of neural networks with sign activation and Lasso models.441
While their features do not contain reflections, they are straightforward binary features that442
elucidate how depth increases the representation power of 2 versus 3-layer networks. For443
example, Corollary C.2 in Appendix C uses the Lasso problem to bound the training loss for444
2-layer networks with sign activation between those of depth 3. The next section leverages the445
sign activation features to show that in a case of binary, periodic data, 3-layer networks have a446
solution path indicating better generalization properties than 2-layer networks.447

4. Solution path for sign activation and binary, periodic labels. This section examines448
solution paths of Lasso problems for 2 and 3-layer neural nets with sign activation and 1-D data449
where the target vector y is binary. Such data appears in temporal sequences such as binary450
encodings of messages communicated digitally (24), neuron firings in the brain (18), and other451
applications, where xn represents time. These real-world sequences are in general aperiodic.452
However, in the special case that the target vector is periodic and binary, the Lasso problem453
gives tractable solutions for optimal neural networks. This offers a step towards analyzing454
neural network behavior for more general, aperiodic data, which is an area for future work.455
We call the binary, periodic sequence a square wave, defined as follows. For a positive even456
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Figure 5.1: Comparison of neural autoregressive models of the form xt = f(xt−1; θ) + ϵt
using convex and non-convex optimizers and the classical linear model AR(1) for time series
forecasting. The horizontal axis is the training epoch. The dataset is BTC-2017min from Kaggle,
which contains all 1-minute Bitcoin prices in 2017 (1). The non-linear models outperform the
linear AR(1) model. Moreover, SGD underperforms in training and test loss compared to the
convex model which is guaranteed to find a global optimum of the NN objective.

integer T that divides N , define a square wave to be h(T ) ∈ {−1, 1}N that starts with 1 and is457
periodic with period T . If the real line is split into a finite number of regions by binary labels,458
the square wave represents the labels of a monotone sequence of points, with the same number459
of samples in each region. The black dots in Figure 3.7 plot an example of a square wave.460

Consider training a 2-layer neural net with sign activation when y = hT . When β > T , an461
optimal neural net is the constant zero function. When β ≤ T

2 , we can find an optimal neural462

net f2 (X; θ) which is is periodic over
[
T
2 , N − T

2

]
with period T , and has amplitude 2 β

T less463
than that of y. Theorem D.1 gives the entire Lasso solution path and Corollary D.2 gives a464
closed form expression for the resulting optimal neural net. Theorem D.3 and Corollary D.4465
give the solution path and an optimal neural net when L = 3. Only one parallel unit is466
active in this network, and so it is also a standard neural net. The neural net has output467
f3 (x; θ) (X) = (1− βT )+y. If β > N , then the optimal neural net is the constant zero function.468
These results are in Appendix D due to space.469

Figure 3.7 illustrates the solution path of fL (X; θ) when y = h(T ). It suggests that as the470
regularization increases, the 2-layer network focuses on preserving the boundary points of the471
data (first and last T points) to closely match the target vector. Therefore the network will472
generalize well if noise occurs in the middle of the data. In contrast, if noise occurs uniformly473
over the data, the 3-layer network will generalize well.474

We verify our theoretical predictions for optimal neural nets in Theorem D.1 and The-475
orem D.3 by solving the Lasso problem on sample training data with target vector h(T ).476
Figure 3.8 illustrates the training data in the bottom plot and neural net predictions for each477
β in the rows of the top plot. The 2-layer network is biased towards predicting strongly in the478
first and last intervals, suggesting worse generalizability than the 3-layer network. In addition,479
the 3-layer net changes more uniformly with β than the 2-layer net, making it easier to tune β.480
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5. Application: Time-series modeling. In this section, we apply the Lasso problem for481
neural networks to an autoregression problem. Suppose at times 1, · · · , T + 1 we observe data482
points x1, · · · , xT+1 ∈ R that follow the time-series model483

(5.1) xt = f (xt−1; θ) + ϵt,484

where f : R → R is parameterized by some parameter θ and ϵt ∼ N (0, σ2) represents observation485
noise. The parameter θ is unknown, and the goal is find θ that best fits the model (5.1) to the486
data x1, · · · , xT+1. For example, the auto-regressive model with lag 1 (AR(1)) is a linear model487

f(x; θ) = ax where θ = {a} is chosen as a solution to min
θ∈Θ

T∑
t=1

(f (xt; θ)− xt+1)
2 . For a more488

expressive model, instead of f(x; θ) = ax suppose we use a 2-layer neural network489

(5.2) fNN
2 (x; θ) =

m∑
i=1

|xwi + bi|αi,490

which has m neurons and absolute value activation. The parameter set is θ = {wi, bi, αi}mi=1.491
Here, we show how to find a neural network model fNN

2 (xt; θ) (5.2) that represents the492
τ -quantile of the distribution of xt+1 given the observation xt, where τ ∈ [0, 1], by using the493
quantile regression loss Lτ (z) = 0.5|z|+ (τ − 0.5)z and choosing θ that solves the neural net494
(NN) quantile regression (QR) training problem495

(5.3) min
θ∈Θ

1

T

T∑
t=1

Lτ

(
fNN
2 (xt; θ)− xt+1

)
+

β

2
∥θw∥22.496

Problem (5.3) can be solved by converting it to an equivalent Lasso problem. Figure 5.1 shows497
that using the Lasso model to predict Bitcoin price reaches a lower loss than training with the498
non-convex model. More details are found in Appendix E.499

6. Conclusion. Our results show that deep neural networks with a variety of activation500
functions trained on 1-D data with weight regularization can be recast as convex Lasso models501
with simple dictionary matrices. This provides critical insight into their solution path as the502
weight regularization changes. The Lasso problem also provides a fast way to train neural503
networks for 1-D data. Moreover, the understanding of the neural networks through Lasso504
models could also be used to explore designing better neural network architectures.505

We proved that reflection features can emerge in the Lasso dictionary when the depth is 3506
or deeper. This leads to predictions that have breakpoints at reflections of data points about507
other data points. In contrast, for networks of depth 2, the breakpoints are only located at508
a subset of training data. We believe that this mechanism enables deep neural networks to509
generalize to the unseen by encoding a geometric regularity prior.510

Our analysis of various architectures provides a foundation for studying more complex511
network topologies. The 1-D results can extend to sufficiently structured or low rank data in512
higher dimensions. Generalizing to higher dimensions is also an area of future work. Building513
on a similar theme, (30) showed that the structure of hidden neurons can be expressed through514
convex optimization and Clifford’s Geometric Algebra. The techniques developed in this paper515
can be combined with the Clifford Algebra to develop higher-dimensional analogues of the516
results.517
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Appendix A. Detailed results for Section 2.621

Remark A.1 (Parallel to standard architecture conversion). Let W(1) =
[
W(1,1) · · ·W(m1,1)

]
.622

For l ≥ 1, let b(l) =
(
b(1,l) · · ·b(ml,l)

)
. For l > 1, let W(l) = blockdiag

(
W(1,l) · · ·W(ml,l)

)
.623

And let α, ξ be the same in the standard network as the parallel one.624

Appendix B. Detailed results for Subsection 3.1. Proofs are defered to Appendix H.3.625

Definition B.1. Define the function Wα,β : R → R parameterized by α, β ∈ R as626

Wα,β(x) =


α− x if x ≤ α

x− α if α ≤ x ≤ β

R(α,β) − x if β ≤ x ≤ R(α,β)

x−R(α,β) if x ≥ R(α,β).

627

Lemma B.2 (Examples of the Deep Library). ReLU features X̂(L)(x) are those plotted in628
Figure 3.5. As shown in the figure, symmetrized ReLU network features contain generalized629
reflections of the form xi+xj−xk. We now describe features for other activations. Let L ∈ {2, 3}.630
If L = 2: for b(1) = −xjW

(1),631

X̂(L)(x) =

{
σ(xj1 − x) if W(1) = −1

σ(x− xj1) if W(1) = 1
632

If L = 3:633
if σ(x) = ReLU(x) and m1 = 1: for b(1) = −xj1W

(1),634
if W(2) = 1:635

X̂(2)(x) =

ReLU−
min{xj1

,xj2}
(x) if W(1) = −1

ReLU+

max{xj1
,xj2}

(x) if W(1) = 1
636

if W(2) = −1:637

X̂(L)(x) =

{
Ramp+xj2

,xj1
(x) if W(1) = −1

Ramp−xj1
,xj2

(x) if W(1) = 1.
638

if σ(x) = |x| and m1 = 1: for a ∈
{
xj1 ,

xj1
+xj2
2

}
,639

X̂(L)(x) =


W

min

{
xj2

,R(xj2 ,a)

}
,a
(x) if b(1) = −aW(1)

W
min

{
R(a,xj1)

,R(a,xj2)

}
,a
(x) if b(1) = −aW(1).

640

B.1. Reconstruction results. In this section, let (z∗, ξ∗) be a solution to the Lasso problem.641
We give a map to efficiently and explicitly reconstruct an optimal neural net from (z∗, ξ∗)642
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Figure B.1: Figure for Appendix B. Deep library features for a 3-layer symmetrized ReLU
network. Each row corresponds to a different set of weights W(1)∈{−1, 1}1×2,W(2)∈{−1, 1}2×1.
Each column corresponds to a different ordering of xi, xj , xk. The generalized reflections of xj1
(yellow) across xj2 (red) and xj3 (blue) are depicted by yellow encircling purple.
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by leveraging the structure of the deep library (Definition 3.11). Proofs are deferred to643
Appendix H.3.644

Definition B.3 (Reconstructed parameters). The reconstructed parameters for a parallel645
network are constructed as follows. For each ith column Ai of the dictionary matrix such that646
z∗i ̸= 0, let X̂(i,L) be the parallel unit X̂(L) corresponding to that column in the deep library. Let647
α=z∗ and ξ=ξ∗. For sign and threshold activation, let all amplitude parameters be 1. Finally,648
unscale parameters (Definition H.17).649

A reconstructed network is a network with reconstructed parameters.650

Lemma B.4. A reconstructed parallel network is optimal in the training problem.651

Recall that each 2-layer feature corresponds to W(1)∈{−1, 1},b(1)=−W(1)xn for some n∈[N ].652

Definition B.5. Consider a 2-layer ReLU, absolute value, or leaky ReLU network. Let653
Rz→α(z)=sign(z)

√
|z|. For w∈{−1, 1}, b∈{−xn : n∈[N ]}, let Rα,w,b→θ(α)= (α, αw,−αwb).654

Let Rw,b(z)=Rα,w,b→θ (Rz→α(z)). Define the 2-layer reconstruction function R(z) which outputs655
a vector whose ith element is Rw,b(zi), where (w, b) =

(
W(1),b(1)

)
corresponds to the ith feature.656

For a 2-layer network, let wi=W(i,1), bi=b(i,1)∈R and w,b,α be vectors stacking together657
all wi, bi, αi respectively. The reconstructed parameters are (α,w,b) = R(z∗) and ξ = ξ∗.658

Appendix C. Detailed results for Subsection 3.2. Proofs are deferred to Appendix H.4.659

C.1. Tree network definition. Let L ≥ 3,m2, · · · ,mL ∈ N. Given l ∈ {0, · · · , L− 2}, let660
u be an l-tuple where if l = 0, we denote u = ∅ and otherwise, u = (u1, · · · , ul) such that661
ui ∈ [mL−i] for i ∈ [l]. For an integer a, denote u⊕ a as the concatenation (u1, · · · , ul, a). For662
l ∈ [L− 1], and u of length l, let α(u), s(u), b(u),w(u) ∈ R, except let w(u1,··· ,uL−1) ∈ Rd. For663
all u of length L − 1, let X(u1,··· ,uL−1) = x ∈ R1×d. For u of length l ∈ {0, · · · , L − 2}, let664
X(u) ∈ R be defined by665

(C.1) X(u) =

mL−l∑
i=1

σs(u⊕i)

(
X(u⊕i)w(u⊕i) + b(u⊕i)

)
α(u⊕i).666

A tree neural network is fL (x; θ) = ξ +X(∅). Visualizing the neural network as a tree, X(∅)667
is the “root," u = (u1, · · ·ul) specifies the path from the root at level 0 to the ul

th node (or668
neuron) at level l, X(u) represents a subtree at this node, and (C.1) specifies how this subtree669
is built from its child nodes X(u⊕i). The leaves of the tree are all copies of X(u1,··· ,uL−1) =670
X. Let U =

∏L−2
l=0 [mL−l]. The regularized and bias parameter sets (Subsection 2.1) are671

θ
(i)
w =

{
α(u), s(u),w(u) : u ∈ U , u1 = i

}
, θ

(i)
b =

{
b(u) : u ∈ U , u1 = i

}
. For tree networks, let672

α =
(
α(1), · · · , α(mL)

)
∈ RmL .673

The rest of this section includes additional results. The reconstruction defined below uses674
the unscaling operation (Definition H.17).675

Lemma C.1. Consider a 3-layer sign-activated network. Suppose z∗ is optimal in the Lasso676

problem, and mL ≥ ||z∗||0. Let ξ=0. Let α=z∗. Suppose Ai switches at I(i)1 < I
(i)
2 < · · · < I

(i)

m(i) .677

Let W(i,1)
n =1,b

(i,1)
n =− x

I
(i)
n −1

,W
(i,2)
n =(−1)n+1 and b(i,2)=− 1

{
m(i) odd

}
. Let all amplitude678
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f3 (X; θ) =
∑m2

i=1 αi σs(i,3) ( σ (X W(i,1) + 1· b(i,1)) W(i,2) + 1· b(i,2) )

(
XW(i,1) + 1 · b(i,1)

)
j
= X− x

I
(i)
j
1

· · ·

−

−1 1

j = 1

+ −

σ

I
(i)
j

+ −

j = m1

−2 0 −1 1 −αi αi

∑
σ

αi =
zi√
|zi|

s(i,3) =
√

|zi|
∑

z∗1

z∗m3

f3 (X; θ)

Figure B.2: Figure for Appendix B. Output of an optimal 3-layer neural net with sign activation
reconstructed from a Lasso solution z∗ using Lemma C.1 . The pulse colors correspond to
network operations. The alternating +,− represent W(i,2) = (1,−1, 1,−1, · · · ). The red
and green pulses illustrate 2 and 3-layer dictionary features, respectively (Theorem 3.12,
Theorem 3.17), while the other colors represent multiplication by weights and amplitudes.

parameters be 1. Let I={i : zi ̸=0}. If i /∈ I, set s(i,l), αi,W
(i,l),b(i,l) to zero. These parameters679

are optimal when unscaled (Definition H.17).680

In the next result, we only consider networks with sign activation. The number of neurons681
in each layer l of a 2 and 3-layer network is denoted by m′

l and ml, respectively.682

Corollary C.2. Consider a 3-layer sign-activated network. There exists an equivalent 2-layer683
network with m′

2 = m1m3 neurons. Let p∗L,β be the optimal value of the training problem684
(1.1) for L layers, regularization β and sign activation. Then, for 2-layer nets trained with685
m′

2 ≥ m1m2 neurons, p∗L=3,β ≤ p∗L=2,β ≤ p∗L=3,m1β
.686

Corollary C.2 states that a 3-layer net can achieve lower training loss than a 2-layer net,687
but only while its regularization β is at most m1 times stronger.688
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C.2. Example of 2-D data. The next result extends Theorem 3.17 to 2-D data on the689
upper half plane. We consider parallel neural nets without internal bias parameters, that is,690
b(i,l) /∈θ (they can be thought of as set to 0). Proofs are located in Appendix H.6.691

Theorem C.3. Consider a Lasso problem whose dictionary is the switching set H(K), ξ = 0,692
and with solution z∗. Let m∗ = ∥z∗∥0. This Lasso problem is equivalent to the training problem693
for a sign-activated network without internal biases that is 2-layer or rectangular, satisfies694
mL ≥ m∗, mL−2 = K, and is trained on 2-D data with unique angles in (0, π).695

The next result reconstructs an optimal neural net from the Lasso problem in Theorem C.3.696
The unscaling operation is used (Definition H.17).697

Lemma C.4. Let Rπ
2
=

(
0 −1
1 0

)
be the counterclockwise rotation matrix by π

2 . An optimal698

parameter set for the training problem in Theorem C.3 when L = 2 is the unscaled version of699

θ=
{
αi=z∗i , s

(i,1)=1,W(i,1)=Rπ
2

(
x(i)
)T

, ξ=0 : z∗i ̸=0
}
, where z∗ is optimal in the Lasso problem.700

Appendix D. Detailed results for Section 4. Proofs in this section are deferred to701
Appendix H.8. Given a square wave of period T , let k=N

T be the number of cycles it has. There702
is a critical value βc=maxn∈[N ] |AT

ny| such that when β>βc, z∗ = 0 is optimal in the Lasso703

problem (12). Let βT= β
βc

. Theorem 3.12 specifies the Lasso problem for a 2-layer network with704
sign activation. We will use the N ×N dictionary matrix A with Ai,n = σ(xi − xn), as defined705
in Corollary 3.15. The Lasso solution z∗ ∈ RN is unique, by Proposition G.3.706

Theorem D.1. Consider the Lasso problem for a 2-layer net with sign activation and square707
wave target vector of period T . The critical value is βc = T . And the solution is708

(D.1) z∗T
2
i
=



{
1
2 (1− βT )+ if i ∈ {1, 2k − 1}
0 else

if βT ≥ 1
2{

1− 3
2βT if i ∈ {1, 2k − 1}

(−1)i+1 (1− 2βT ) else
if βT ≤ 1

2 .

,709

for i ∈ [2k − 1] and z∗n = 0 at all other n ∈ [N ].710

Corollary D.2. For a square wave target vector with period T , there is an optimal 2-layer711
neural network with sign activation specified by712

f2 (x; θ) = 0, if βT ≥ 1

f2 (x; θ) =


− (1− βT ) if x < xN−T

2

0 if xN−T
2
≤ x < xT

2

1− βT if x ≥ xT
2

if
1

2
≤ βT ≤ 1

f2 (x; θ) =


− (1− βT ) if x < xN−T

2

(−1)i (1− 2βT ) if xT
2
(i+1) ≤ x < xT

2
i, i ∈ [2k − 2]

1− βT if x ≥ xT
2

if βT ≤ 1

2

713
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Theorem D.3. Consider the Lasso problem for a 3-layer network with sign activation and714
target vector a square wave of period T and m3 ≥ 2 T

N − 1. Then βc = N and Ai = −h(T ) for715
some i. The solution to the Lasso problem is z∗i = − (1− βT )+ and z∗n = 0 at all other n.716

Corollary D.4. Let x0 = ∞. For a square wave target vector with period T , there is an717
optimal 3-layer neural net with sign activation specified by f3 (x; θ) = (1 − βT )+(−1)(i−1) if718
xT

2
i ≤ x < xT

2
(i−1) for i ∈ [2k − 1], and f3 (x; θ) = −(1− βT )+ if x < xN−T

2
.719

Consider the 2-layer network in the left plot of Figure 3.7. When β → 0, the network720
interpolates the target vector perfectly. As βT increases to 1

2 (red dots) from 0, the magnitude721
of the middle segments decrease at a faster rate than the outer segments until at βT = 1

2 , the722
net consists of just the outer segments (magenta dots). As βT increases to 1 from 1

2 (blue dots),723
these outer segments decrease until the neural net is the zero function.724

In Figure 3.8, the training data is chosen randomly from a uniform distribution on725
[−100, 100]. Suppose we use the neural net as a binary classifier whose output is the sign of726
fL (x; θ), where the network is "undecided" if fL (x; θ) = 0. The red, blue and white indicate727
classifications of −1, 1, and "undecided," respectively. For β < βc, the 3-layer net always728
classifies the training data accurately, but the 2-layer net is undecided on all but the first and729
last interval if β > βc/2. When used as a regressor, for each β, the magnitude of the 3-layer730
net’s prediction is the same over all samples, while the 2-layer net is biased toward a stronger731
prediction on the first and last intervals. In this sense, the 3-layer network generalizes better.732

Appendix E. Detailed results of Section 5.733
The neural net (NN) autoregression training problem is734

(E.1) min
θ∈Θ

1

T

T∑
t=1

(
fNN
2 (xt; θ)− xt+1

)2
+

β

2
∥θw∥22.735

This model represents predictors of xt+1 from xt. By Theorem 3.12, this non-convex736
problem is equivalent to the convex Lasso problem (1.2) where Ai,j = |xi − xj | and yi = xi+1.737

We now compare solving the autoregression (E.1) and quantile regression (5.3) problems738
directly with 5 trials of stochastic gradient descent (SGD) initializations versus using the739
Lasso problem (1.2). We also compare against the baseline linear method f (x; θ) = ax + b740
(AR1+bias), where we include an additional bias term b. We test upon real financial data for741
bitcoin price, including minutely bitcoin (BTC) price (BTC-2017min) and hourly BTC price742
(BTC-hourly). We consider the training problem on τ -quantile regression (Appendix E) with743
τ = 0.3 and τ = 0.7. For each dataset, we first choose T data points as a training set and the744
consecutive T data points as a test set. The numerical results are presented in Figure 5.1. We745
observe that cvxNN provides a consistent lower bound on the training loss and demonstrates746
strong generalization properties, compared to large fluctuation in the loss curves of NN. More747
results can be found in Appendix H.12.748

We first build a network fNN
2 (x; θ) (5.2) with m known, or planted neurons. We use this net-749

work to generate training samples x1, . . . , xT+1 based on (5.1) with f(x; θ) = fNN
2 (x; θ) where750

x1 ∼ N (0, σ2). Using the same model fNN
2 (x; θ), we also generate test samples xtest

1 , . . . , xtest
T+1751

in an analogous way. We use T = 1000 time samples. Then, we try to recover the planted752
neurons based on only the training samples by solving the NN AR/QR training problems.753
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In Figure H.6, we present experiments based on the selection of m planted neurons and754
noise level σ2. More results can be found in Appendix H.12. The neural net trained with Lasso755
is labeled cvxNN, which we observe has lower training loss. This appears to occur because756
different trials of NN (neural net trained directly without Lasso) get stuck into local minima.757
The global optimum that cvxNN reaches also enjoys effective generalization properties, as seen758
by the test loss. The regularization path is the optimal neural net’s performance loss as a759
function of the regularization coefficient β. Figure H.7 plots the regularization path for σ2 = 1760
and m = 5. The regularization path taken by cvxNN is smoother than NN, and can therefore761
be found more precisely and robustly by using the Lasso problem.762

Appendix F. The solution sets of Lasso and the training problem.763
We have shown that training neural networks on 1-D data is equivalent to fitting a Lasso764

model. Now we develop analytical expressions for all minima of the Lasso problem and its765
relationship to the set of all minima of the training problem. These results, which build on the766
existing literature for convex reformulations (29) as well as characterizations of the Lasso (12),767
illustrate that the Lasso model provides insight into non-convex networks. We focus on 2-layer768
models with ReLU, leaky ReLU and absolute value activations, although our results can be769
extended to other architectures by considering the corresponding neural net reconstruction.770
Proofs are deferred to Appendix H.11.771

We start by characterizing the set of global optima to the Lasso problem (1.2). Suppose772
(z∗, ξ∗) is a solution to the convex training problem. In this notation, the optimal model fit ŷ773
and equicorrelation set Eβ are given by774

ŷ = Az∗ + ξ∗1, Eβ =
{
i : |A⊤

i (ŷ − y)| = β
}
,775

where ŷ is unique over the optimal set (39; 38). The equicorrelation set contains the features776
maximally correlated with the residual ŷ − y and plays a critical role in the solution set.777

Proposition F.1. Suppose β>0. Then the set of global optima of the Lasso problem (1.2) is778

(F.1) Φ∗(β) =
{
(z, ξ) : zi ̸=0 ⇒ sign(zi)=sign

(
A⊤

i (ŷ − y)
)
, zi = 0∀i ̸∈ Eβ, Az+ ξ1 = ŷ.

}
779

The solution set Φ∗(β) is polyhedral and its vertices correspond exactly to minimal models,780
i.e. models with the fewest non-zero elements of z (29). Let R be the reconstruction function781
described in Definition B.5. All networks generated from applying R to a Lasso solution are782
globally optimal in the training problem. The next result gives a full description of such783
networks. The 2-layer parameter notation defined in Subsection 3.1 is used.784

Proposition F.2. Suppose β > 0 and the activation is ReLU, leaky ReLU or absolute value.785
The set of all 2-layer Lasso-reconstructed networks is786

(F.2)
R(Φ(β)) =

{
(w,b, α, ξ) : αi ̸=0 ⇒ sign(αi)=sign

(
A⊤

i (y − ŷ)
)
, bi = −xi

α̃i√
|αi|

,

wi =
α̃i√
|αi|

; αi = 0∀i /∈ Eβ, f2 (X; θ) = ŷ

}
.

787
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Proposition F.2 shows that all neural nets trained using our Lasso and reconstruction share788
the same model fit whose set of active neurons is at most the equicorrelation set. By finding789
just one optimal neural net that solves Lasso, we can form R(Φβ) and compute all others.790

The min-norm solution path is continuous for the Lasso problem (38). Since the solution791
mapping in Definition B.3, Appendix H.3 is continuous, the corresponding reconstructed792
neural net path is also continuous as long as the network is sufficiently wide. Moreover, we793
can compute this path efficiently using the LARS algorithm (12). This is in contrast to the794
under-parameterized setting, where the regularization path is discontinuous (29).795

What subset of optimal, or more generally, stationary, points of the non-convex training796
problem (1.1) consist of Lasso-generated networks R(Φ(β))? First, R(Φ(β)) can generate797
additional optimal networks through neuron splitting, described as follows. Consider a single798
neuron ασs(wx + b) (where α,w, b ∈ R), and let {γi}ni=1 ⊂ [0, 1]n be such that

∑n
i=1 γi = 1.799

The neuron can be split into n neurons
{√

γiασ
(√

γiwx+
√
γib
)}n

i=1
(42). For any collection800

Θ of parameter sets θ, let P (Θ) be the collection of parameter sets generated by all possible801
neuron splits and permutations of each θ ∈ Θ. Next, let C(β) and C̃(β) be the sets of Clarke802
stationary points and solutions to the non-convex training problem (1.1), respectively.803

Proposition F.3. Suppose L = 2, β > 0, the activation is ReLU, leaky ReLU or absolute804
value and m∗ ≤ m ≤ 2N . Let ΘP = {θ : ∀i ∈ [m], ∃j ∈ [N ] s.t. bi = −xjwi}. Then805

(F.3) P (R(Φ(β))) = C̃(β) ∩ΘP = C(β) ∩ΘP .806

Proposition F.3 states that up to neuron splitting and permutation, our Lasso method gives807
all stationary points in the training problem satisfying bi = −xiwi. Moreover, all such points808
are optimal in the training problem, similar to (19).809

Since optimal solutions are stationary, a neural net reconstructed from the Lasso model is810
in C̃(β) ⊂ C(β). However, C(β) ̸⊂ ΘP . This is because there may be other neural nets with811
the same output on X as the reconstructed net so that they are all in C(β), but that differ in812
the the unregularized parameters b and ξ, so that they are not in ΘP . For example, if β is813
large enough, the Lasso solution is z = 0 (12), so the reconstructed net will have α = 0, which814
makes the neural net invariant to b. In this section, we analyzed the general structure of the815
Lasso solution set when β > 0. Next, we analyze the Lasso solution set for specific activations816
and training data when β → 0.817

Appendix G. Solution sets of Lasso under minimal regularization. One of the insights818
that the Lasso formulation provides is that under minimal regularization, certain neural nets819
perfectly interpolate the data.820

Corollary G.1. For the ReLU, absolute value, sign, and threshold networks with L = 2 layers,821
and sign-activated deeper networks, if mL ≥ m∗, then fL (X; θ) → y as β → 0.822

Proofs in this section are deferred to Appendix H.7. In Corollary G.1, m∗ depends on L and823
the activation and is defined in Theorem 3.12 and Theorem 3.17. The Lasso equivalence and824
reconstruction also shed light on optimal neural network structure as regularization decreases.825
The minimum (l1) norm subject to interpolation version of the Lasso problem is826

(G.1) min
z,ξ

∥z∥1 s.t. Az+ ξ1 = y.827
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Loosely speaking, as β → 0, if A has full column rank, the Lasso problem (1.2) "approaches"828
the minimum norm problem (G.1), where ξ = 0 for sign and threshold activations. The rest of829
this section describes the solution sets of (G.1) for certain networks.830

Proposition G.2. Let L = 2. Suppose σ is the absolute value activation. Let z∗ be a solution831
to (G.1). Then, we have z∗1z

∗
n ≤ 0. Moreover, the entire solution set of (G.1) for z∗ is832

(G.2)
{
z∗ + t sign(z∗1)(1, 0, · · · , 0, 1)T

∣∣∣− |z∗1 | ≤ t ≤ |z∗N |
}
.833

Proposition G.3. For a 2-layer network with sign activation and β ≥ 0, the Lasso problem834
(1.2) has a unique solution. Furthermore, the minimum norm solution in (G.1) is z∗ = A−1y .835

Given an optimal bias term ξ∗, if A is invertible, then z∗ = A−1(y − ξ∗1) is optimal in836
(G.1). Appendix H.8 explicitly finds A−1 for some activation functions. The structure of A−1837
suggests the behavior of neural networks under minimal regularization: sign-activated neural838
networks act as difference detectors, while neural networks with absolute value activation, whose839
subgradient is the sign activation, act as a second-order difference detectors (see Remark H.41).840
The next result shows that threshold-activated neural networks are also difference detectors,841
but for the special case of positive, nonincreasing yn. An example of such data is cumulative842
revenue, e.g. yn =

∑n
i=1 ri where ri is the revenue in dollars earned on day i.843

Proposition G.4. Let L = 2. Suppose σ is threshold activation and y1 ≥ · · · ≥ yN ≥ 0. Then844

z∗n =


yn − yn−1 if n ≤ N − 1

yN if n = N

0 else
845

is the unique solution to the minimum norm problem (G.1).846

The next result gives a lower bound on the optimal value of the minimum weight problem847
for ReLU networks. If we can find z with a l1-norm that meets the lower bound and a ξ848
such that Az + ξ1 = y, then we know z, ξ is optimal. In this section, for n ∈ [N − 1], let849
µn = yn−yn+1

xn−xn+1
be the slope between the nth and n+ 1th data points. Let µN = 0.850

Lemma G.5. The optimal value ∥z∗∥1 of the minimum norm problem (G.1) for deep narrow851
networks with ReLU or absolute value activation is at least maxn∈[N−1] |µn|.852

When L=2, the next result gives a solution to the min-norm problem. For i∈[N ], let (z+)i853
and (z−)i be the Lasso variable corresponding to the features ReLU+

xi
and ReLU−

xi
, respectively.854

In other words, z+ corresponds to A+, and z− corresponds to A− as defined in Corollary 3.15.855

Lemma G.6. The min-norm problem (G.1) for L=2, σ=ReLU has optimal value ∥z∗∥1=856 ∑N−1
n=1 |µn−µn+1|. An optimal solution is (z+)n+1=µn−µn+1 for n∈[N−1], z−=0, and ξ=yN .857

Lemma G.7. For a 3-layer symmetrized ReLU network and training data as shown in858
Figure 3.2, the optimal value ∥z∗∥1 of the minimum norm problem (G.1) is at least 1.859

Lemma G.7 can be generalized to more complex sets of training data.860

Appendix H. Numerical results. The following simulations support our theoretical results.861
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Figure H.3: Figure for Appendix H. Training objective (left) and function fit (right) for a
neural net using the convex Lasso problem versus the non-convex training problem using STE.

In Figure 3.2, a deep narrow, absolute value network is trained. In Figure 3.4, a 3-layer862
symmetrized ReLU network is trained. Both neural nets have standard architecture, mL=100,863
and are trained with Adam with the non-convex problem. The learning rate is 5(10−3), weight864
decay is 10−4, and β=10−7≈0. When β→0, the Lasso problem approaches the minimum norm865
problem (G.1). For each L∈3, 4, 5, the neural net reconstructed from the single feature in the866
left plot with corresponding Lasso parameter z∗i = 1 and ξ∗ = 0 is optimal in the minimum867
norm problem (G.1) by Lemma G.5 and Lemma G.7. This network is used to initialize a subset868
of the neurons in the non-convex training. All other weights are initialized randomly according869
to Pytorch defaults. The figures show that the networks trained with the non-convex problem870
closely match the Lasso solutions. The networks exhibit breakpoints at data points and their871
reflections not in the training data. The standard architecture in the non-convex model shows872
the applicability of the Lasso formulation. SGD gives similar results as Adam.873

In addition to training ReLU networks under minimal β, we train neural networks with874
threshold activations and larger β. We label N = 40 1-D data samples from an i.i.d. distribution875
x ∈ N (0, 1) with a Bernoulli random variable. We use β=10−3 to train a 2-layer neural network876
with threshold activation using the Lasso problem (1.2) and a non-convex training approach877
based on the Straight Through Estimator (STE) (3). As illustrated in Figure H.3, the convex878
training approach achieves significantly lower objective value than all of the non-convex trials879
with different seeds for initialization. Figure H.3 also plots the predictions of the models. We880
observe that the non-convex training approach fits the data samples exactly on certain intervals881
but provides a poor overall function fitting, whereas our convex models yields a more reasonable882
piecewise linear fit. In particular, the neural net trained with the non-convex problem fits the883
data in Figure H.3 poorly compared to Figure 3.4 and Figure 3.2. This may occur because in884
Figure H.3, the data set is larger and more complex, and STE training is used because of the885
threshold activation, and β is larger instead of being close to zero.886
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Supplementary Material.887

Definitions and preliminaries.888

H.1. Activation function. A function f is bounded if there is M ≥ 0 with |f(x)| ≤ M for889
all x. If σ(x) is piecewise linear around zero, σ(x) is bounded if and only if a− = a+ = 0, e.g.890
σ(x) is a threshold or sign activation. We call f symmetric if it is an even or odd function, for891
example absolute value. The activation σ(x) is defined to be homogeneous if for any a ≥ 0,892
σ(ax) = aσ(x). Homogeneous activations include ReLU, leaky ReLU, and absolute value, and893
don’t have amplitude parameters. We say σ(x) is sign-determined if its value depends only on894
the sign of its input and not its magnitude. Threshold and sign activations are sign-determined.895

H.2. Effective depth.896

Remark H.1. Plugging (2.2) into itself shows that in parallel network, for l∈[L−2],897

X̂(i,l+2)=σs(i,l+1)

(
σ
(
X̂(i,l)W(i,l+1)+b(i,l)

)
s(i,l)W(i,l+1)+b(i,l+1)

)
.898

Similarly, plugging in (C.1) into itself shows that in a tree network, for 0 ≤ l ≤ L− 3,899

X(u)=

mL−l∑
i=1

α(u⊕i)σs(u⊕i)

b(u⊕i)+

mL−l−1∑
j=1

α(u⊕i⊕j)σ
(
X(u⊕i⊕j)w(u⊕i⊕j)+b(u⊕i⊕j)

)
s(u⊕i⊕j)w(u⊕i)

 .900

The inner parameters of a parallel network are s(i,l) for l≤L − 2 and W(i,l) for l≤L − 1.901
In a tree network, they are

(
su⊕1, · · · su⊕mL−l

)
,
(
αu⊕1, · · ·αu⊕mL−l

)
for u of positive length,902

and
(
wu⊕1, · · ·wu⊕mL−l

)
for u of any length. Suppose σ is sign-determined. Then fL (X; θ)903

is invariant to the value of the inner parameters, so they would be driven to 0 by weight904
regularization. We define the minimum value in (1.1) as an infimum which is approached as the905
norms of the inner parameters approach 0. Therefore the inner parameters are not regularized906
(the effective depth is 2), and we optimize for their directions rather than their magnitudes.907

Parallel and tree networks with data dimension d ≥ 1.908
909

For convenience, we will omit ξ when writing fL (X; θ). This does not change the training910

problem because we can write (1.1) as min
θ−{ξ}

β̃

L̃
∥θw∥22+min

ξ
{Ly (fL(X)−ξ1+ξ1)} and apply the911

change of variables/functions θ′=θ−{ξ}, fL(X; θ)′=fL(X; θ)−ξ1 and Ly(z)
′=minξ Ly(z+ξ1).912

The loss function absorbs ξ while preserving its convexity. We begin by assuming the data is913
d-dimensional and consider the general training problem914

min
θ∈Θ

Ly (fL (X; θ)) +
β

L̃
r(θ)915

with a general regularization of the form r(θ)=
∑mL

i=1

∑
θ(i,l)∈θ(i)w

(
r(i,l)

(
θ(i,l)

))L̃, where θ(i,l) is a916

parameter such as W(i,l) and r(i,l) is a regularization function such as r(i,l)
(
W(i,l)

)
=
∥∥W(i,l)

∥∥
p
.917
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Assume r(i,l) is nonnegative and positively homogeneous, i.e., for any α ≥ 0, r(i,l)(αW)=918
αr(i,l)(W)≥0. The training problem (1.1) is a special case of the general training problem.919

Definition H.2. A simplified neural network with sign-determined activation is920

(H.1)

fL (x; θ) = ξ +

mL∑
i=1

X̂(i,L)αis
(i,L−1)

X̂(i,l+1) = σ
(
X̂(i,l)W(i,l) + b(i,l)

)
, l ∈ [L− 1]

θ(i)w =
{
αi, s

(i,L−1)
}
, θ

(i)
b =

{
b(i,l),W(i,l) : l ∈ [L− 1]

}
for i ∈ [mL]

921

for a parallel network, and922

(H.2)

fL (x; θ) = ξ +

mL∑
i=1

σ
(
X(i) + b(i)1

)
αis

(i)

X(u) =

{∑mL−l

i=1 α(u⊕i)σ
(
X(u⊕i) + b(u⊕i)

)
if 1 ≤ l ≤ L− 3∑mL−l

i=1 α(u⊕i)σ
(
Xw(u⊕i) + b(u⊕i)

)
if l = L− 2

θ(i)w =
{
α(i), s(i)

}
θ
(i)
b =

{
α(u), b(u) : u ∈ U , u1 = i

}
for i ∈ [mL]

923

where u has positive length for α(u) ∈ θ
(i)
b , for a tree network.924

In other words, a simplified network has amplitude parameters only in the last layer.925

Lemma H.3. The simplified neural network is equivalent to the original neural network.926

Proof. By Remark H.1, it suffices to only regularize the outermost L̃=2 layers. For parallel927
networks, apply a change of variables W(i,l)′ = s(i,l−1)W(i,l) for 2≤l≤L−1. This removes s(i,l)928
from θ for l≤L−2. Similarly for tree networks, for u of length 1 ≤ l ≤ L−2 and i ∈ [mL−l−1],929

let α(u⊕i)′=α(u⊕i)s(u⊕i)w(u) (note w(u)∈R). This removes w(u) and s(u⊕i) from θ.930

Henceforth, tree networks are assumed to have sign-determined activation and sign-931
determined networks are assumed to be simplified.932

Let D = {L−L̃+1, · · ·, L}. By Lemma H.3, the training problem’s regularization is933

(H.3) r(θ)=

mL∑
i=1

∑
l∈D

(
r(i,l)

(
θ(i,l)w

))L̃
934

where θ(i,L)=αi and θ(i,l)=W(i,l) for l<L in parallel networks with homogeneous σ, θ(i,L)=αi and935
θ(i,L−1)=s(i,L−1) in parallel networks with sign-determined σ, and θ(i,L)=α(i) and θ(i,L−1)=s(i)936
in tree networks. Similar to the parallel network in Subsection 2.2, extend the standard (2.1)937
and tree (C.1) network definitions row-wise to the cases where the input is X ∈ RN×d.938

Lemma H.4. Let X̃(i)∈RN be X̂(i,L) for a parallel network or σ
(
X(i) + b(i)1

)
for a tree939

network, where the input is X ∈ RN×d. The training problem is equivalent to940

(H.4) min
θ∈Θ:r(i,l)(θ(i,l))=1,l∈D−{L}

Ly

(
mL∑
i=1

αiX̃
(i)

)
+ β

mL∑
i=1

r(i,L) (αi)941
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Proof. By the AM-GM inequality on (H.3), a lower bound on the training problem is942

(H.5) min
θ∈Θ

Ly (fL (X; θ)) + β

mL∑
i=1

∏
l∈D

r(i,l)

(
θ(i,l)

)
.943

Consider the minimization problem944

(H.6) min
θ∈Θ:r(i,l)(θ(i,l))=1,l∈D−{L}

Ly (fL (X; θ)) + β

mL∑
i=1

∏
l∈D

r(i,l)

(
θ(i,l)

)
945

Problem (H.6) is an upper bound on (H.5). Given optimal
{
θ(i,l)

}
in (H.5), the rescaled pa-946

rameters θ(i,l)′=θ(i,l)/r(i,l)
(
θ(i,l)

)
for l∈D−{L} and θ(i,L)

′
=θ(i,L)

∏
l∈D r(i,l)

(
θ(i,l)

)
(and rescaled947

bias parameters) achieve the same objective in (H.6). Hence (H.6) and (H.5) are equivalent.948

Given optimal
{
θ(i,l)

}
in (H.6), the rescaled parameters θ(i,l)

′
=|θ(i,L)|

1
L̃ θ(i,l) (and rescaled bias949

parameters) achieve the same objective in the training problem, which is therefore equivalent950
to (H.6). Simplifying (H.6) gives (H.4).951

Lemma H.4 applies to networks without any weight constraints, i.e., it excludes 3-layer952
symmetrized networks. A L-layer symmetrized network is a parallel network with homoge-953
neous activation such that mL−3=1 and the elements of W(i,l) have the same magnitude954
for l∈{L−2, L−1}. In a symmetrized network, the last two layer’s weights are vectors:955
W(i,L−2)∈R1×mL−2 and W(i,L−1)∈RmL−2 . The constraint on the weight magnitudes is en-956
coded in Θ. A 3-layer symmetrized network and a deep narrow network are special cases of a957
symmetrized network.958

Lemma H.5. Let r(i,l)
(
W(i,l)

)
=
∥∥W(i,l)

∥∥
2

for l ∈ {L−2, L−1}. The rescaled problem for959
a symmetrized network is equivalent to960

(H.7)

min
θ∈Θ:r(i,l)(W(i,l))=1 for l∈[L−3];

∣∣∣W(i,l)
j

∣∣∣=1 for l∈{L−2,L−1},j∈[mL−3]

Ly (fL (X; θ)) + β̃

mL∑
i=1

r(i,L) (αi)961

where β̃ = β
mL−2

.962

Proof. Since mL−3 = 1, we have W(i,L−2)∈R1×mL−2 and W(i,L−1)∈RmL−2 . The constraint963

states that for l∈{L−2, L−1},
∣∣∣W(i,l)

1

∣∣∣=· · ·=
∣∣∣W(i,l)

mL−2

∣∣∣. For l∈{L−2, L−1}, given W(i,l),b(i,l)964

and αi in apply a change of variables W(i,l)′=
√
mL−2W

(i,l) and b(i,l)′=
√
mL−2

l+3−Lb(i,l) and965
α′
i =

1
mL−2

αi to the parameters in (H.4) to arrive at (H.7).966

Henceforth, assume r(i,L) (αi) = |αi|.967

Definition H.6. Define the rescaled training problem as968

(H.8) min
θ∈Θ

Ly

(
mL∑
i=1

αiX̃
(i)

)
+ β

mL∑
i=1

|αi|.969
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If the network is symmetrized, β̃= β
mL−2

and Θ includes the constraints that r(i,l)
(
W(i,l)

)
970

=1 for l ∈ [L−3] and
∣∣∣W(i,l)

j

∣∣∣=1 for l ∈ {L−2, L−1}. Otherwise, β̃=β and r(i,l)
(
θ(i,l)

)
=1 for971

l ∈ D−{L}. X̃(i) is defined as in Lemma H.4.972

For 3-layer networks with l2 regularization (r(i,l)
(
W(i,l)

)
= ∥W(i,l)∥2), Θ constrains the973

absolute value of all elements of all inner layer weights to be 1 in the rescaled training problem.974
The rescaled training problem is equivalent to both symmetrized and non-symmetrized networks.975

Lemma H.7. The rescaled training problem (H.8) is equivalent to the training problem for976
all the architectures and activations discussed above.977

Proof. Follows from Lemma H.4 and Lemma H.5.978

Lemma H.8. A lower bound on the rescaled training problem is the dual problem979

(H.9) max
λ∈RN

− L∗
y(λ) s.t. max

θ∈Θ

∣∣∣λT X̃
∣∣∣ ≤ β̃,980

where X̃ = X̃(1) and f∗(x) := maxx
{
zTx− f(x)

}
is the convex conjugate of f .981

Proof. Find the dual of (H.4), by rewriting (H.4) as982

(H.10) min
θ∈Θ

Ly(z) + β̃||α||1, s.t. z =

mL∑
i=1

αiX̃
(i).983

The Lagrangian of problem (H.10) is L (λ, θ) = Ly(z)+ β̃||α||1−λT z+

mL∑
i=1

λT X̃(i)αi. Minimize984

the Lagrangian over z and α and use Fenchel duality (7). The dual of (H.10) is985

(H.11) max
λ∈RN

− L∗
y(λ) s.t. max

θ∈Θ

∣∣∣λT X̃(i)
∣∣∣ ≤ β̃, i ∈ [mL].986

In the tree and parallel nets, X̃(i) is of the same form for all i ∈ [mL]. So the mL constraints987
in (H.11) collapse to a single constraint. Then we can write (H.11) as (H.9).988

For a parallel network, the dual problem (H.9) is989

(H.12) max
λ∈RN

− L∗
y(λ) s.t. max

θ∈Θ

∣∣∣λT X̂(L)
∣∣∣ ≤ β̃,990

where X̂(1)=X. Henceforth, all regularizations are l2-norm: e.g., for a parallel network,991
r(i,l)

(
W(i,l)

)
=
∥∥W(i,l)

∥∥
2
, denoting the square root of sum of squares of W(i,l)’s elements.992

Deep narrow and symmetrized networks with d=1. In this section, we assume the data is993

1-D and find the maximizers of
∣∣∣λT X̂(L)

∣∣∣ in the dual constraint (H.12). To this end, assume the994

elements of W(l) are ±1. Note that b(L−1) is a scalar and X(l+1)=σ
(
X(l)W(l)+b(l)1

)
∈RN .995

The next remark refers to the leaky ReLU slopes a+ and a− defined in Section 2. Let K(f)996
and Z(f) be the sets of breakpoints and zeros of a function f , respectively.997
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Remark H.9. Let b=b(L−1), an=X̂
(L−1)
n W(L−1), gn(b)=σ (an+b), and g(b)=

∑N
n=1 λngn(b)=998

λTX(L). Let I=
⋃N

n=1K (gn) ⊃ K(g). Then g(b)=
∑N

n=1 λna(an+b)=ab
∑N

n=1 λn+999 ∑N
n=1 λnana for b large enough (with a=a+) and for b small enough (with a=a−). So a−=a+=01000

or
∑N

n=1 λn=0 if and only if g is bounded, if and only if g has a (finite) maximizer and min-1001
imizer. In this case, assuming g is not a constant function, I contains a maximizer and1002
minimizer of g.1003

Henceforth, assume λT1=0 if a− ̸=0 or a+ ̸=0. Suppose b(l), · · ·,b(L−1) are scalar-valued. We1004

call b(l)=b(l)∗ optimal if b(l)∗∈ argmaxb(l) maxb(l+1) · · ·maxb(L−1)

∣∣∣∑N
n=1 λnX̂

(L)
n

∣∣∣. The next1005

result refers to the normalized midpoint defined in (3.1).1006

Lemma H.10. Let σ be leaky ReLU. Let α, β ∈ R with α ̸=β. Let f(x)=σ (x+α)−σ (x+β).1007
For s ∈ {−,+}, let gs(x)=σ(sx). Then, if σ is monotone,1008

(H.13) K (gs(f)) ⊂ {−α,−β}.1009

Otherwise if σ is not monotone,1010

(H.14) K(gs(f)) ⊂ {−α,−β,mα,β}.1011

Proof. Since fα,β is piecewise linear,1012

(H.15) K (gs(f)) ⊂ K(f) ∪ Z(f).1013

Moreover if f(x) has the same sign for all x, then observe that1014

(H.16) K (gs(f))=K(f).1015

Let G(f) = {(x, f(x)) : x ∈ K (f)}. We find that1016

(H.17) G(f) =
{(

−max{α, β}, a−(α−β)
)
,
(
−min{α, β}, a+(α−β)

)}
.1017

In particular, K(f)={−α,−β}. Observe that f has constant value (an in particular, sign)1018
beyond its breakpoints. If σ is monotone, then sign(a+)=sign(a−), so (H.17) implies1019
sign (f(x))=sign (a+(α−β)) for all x, so (H.16) implies (H.13). If σ is not monotone, linearly1020
interpolating between the points in G (f) (H.17) shows that f changes sign exactly when1021
x=mα,β , so (H.15) implies (H.14).1022

Lemma H.11. Let σ be piecewise linear if L=2 and leaky ReLU otherwise. Let l∈{L−1, L−2}.1023
Consider the bias b(l). Let mL−2=1. If σ is monotone there is either a data feature bias that1024
is optimal. If σ is not monotone there is either a data feature bias or a midpoint feature bias1025
b(L−2)=m

X
(L−2)

n(L−2)
,X

(L−2)

n(L−1)

W(L−2) (if l=L−2) that is optimal.1026

Proof. Remark H.9 implies that
⋃N

n=1K
(
X̂

(L)
n

)
contains an optimal b(L−1). The break-1027

point of X̂(L)
n =σ

(
X

(L−1)
n W(L−1)+b(L−1)

)
as a function of b(L−1) is b(L−1)=−X

(L−1)
n W(L−1).1028
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Therefore for some n(L−1)∈[N ], the data feature bias b(L−1)=−X
(L−1)

n(L−1)W
(L−1) is optimal.1029

Plugging in this optimal b(L−1) back into X̂
(L)
n gives1030

λTX(L)=

N∑
n=1

λnσ
((

X̂(L−1)
n −X̂

(L−1)

n(L−1)

)
W(L−1)

)
.1031

For L > 2, expanding X̂(L−1) gives1032
(H.18)

λTX(L)=
N∑

n=1

λnσ
((

σ
(
X̂(L−2)

n W(L−2)+b(L−2)
)
− σ

(
X̂

(L−2)

n(L−1)W
(L−2)+b(L−2)

))
W(L−1)

)
.1033

Since mL−2=1, we have b(L−2)∈R. Applying Lemma H.10 with x=b(L−2), α=X̂
(L−2)
n W(L−2),1034

β=X̂
(L−1)
n W(L−2), s=W(L−1) and a similar argument as Remark H.9 gives the result.1035

Lemma H.12. Let L ≥ 2. Consider a deep narrow ReLU network with L layers. For every1036
l ∈ {2, · · ·, L}, a data feature bias is optimal for layer L−l+1, and with this optimal bias, if1037

l<L, there exists N1, N2∈[N ] such that for all n∈[N ], either X̂
(L)
n =0 or1038

(H.19) X̂(L)
n = ±

(
σ
(
X̂

(L−l)
N1

W(L−l)+b(L−l)
)
−σ
(
X̂

(L−l)
N2

+b(L−l)
))

.1039

Proof. We prove by induction on l.1040
Base case: suppose l = 2. Then the claim holds by (H.18) in the proof of Lemma H.11.1041
Now, suppose the claim holds for l=k∈{2, · · ·, L−1}. Applying argument similar to the proof1042

of Lemma H.11 to (H.19) shows that a data feature bias b(L−k)=−X̂
(L−k)

n(L−k)W
(L−k) is optimal1043

for b(L−l+1) when l=k+1. Plugging in this optimal b(L−k) into X̂(L) in (H.19) for l=k and1044

expanding X̂(L−k)=σ
(
X̂(L−k−1)W(L−k−1)+b(L−k−1)

)
shows that for some s(1), s(2)∈{−1, 1},1045

either X̂
(L)
n =0 or1046

X̂(L)
n =σ

(
s(1)

(
σ
(
s(2)

(
σ
(
X̂

(L−k−1)
n′ W(L−k−1)+b(L−k−1)

)
−σ
(
X̂

(L−k−1)

n(L−2) W(L−3)+b(L−k−1)
)))

−σ
(
s(2)

(
σ
(
X̂

(L−k−1)

n(L−1) W(L−k−1)+b(L−k−1)
)
−σ
(
X̂

(L−k−1)

n(L−2) W(L−k−1)+b(L−k−1)
)))))))

∈
{
s(2)

(
σ
(
X̂

(L−k−1)
n′ W(L−k−1) + b(L−k−1)

)
− σ

(
X̂

(L−k−1)

n(L−2) + b(L−k−1)
))

,

− s(2)
(
σ
(
X̂

(L−k−1)

n(L−1) W(L−k−1) + b(L−k−1)
)
− σ

(
X̂

(L−k−1)

n(L−2) + b(L−k−1)
))

,

s(2)
(
σ
(
X̂

(L−k−1)
n′ W(L−k−1) + b(L−k−1)

)
− σ

(
X̂

(L−k−1)

n(L−1) + b(L−k−1)
))

, 0
}
.

1047

So (H.19) holds for l=k+1. Finally if (H.19) holds for l=L−1 then by a similar argument1048
as the proof of Lemma H.11, a data feature bias for b(L−l+1) is optimal when l=k+1=L. By1049
induction, the result holds.1050

Lemma H.13. Let L ≥ 2. Consider a deep narrow ReLU network with L layers. For1051
l ∈ [L− 1], suppose b(l) is a data feature. For every l∈{2, · · ·, L−1}, there exist N1, N2∈[N ]1052
such that for all x,1053
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(H.20) X̂(l)(x) ∈
{
ReLU±

xN1
(x),Ramp±xN1

,xN2
(x)
}
.1054

Proof. We prove by induction on l. Base case: for l = 2, X̂(2)(x)=σ
(
xW(1)+b(1)

)
=1055

σ
(
(x−xn(1))W(1)

)
=ReLUW(1)

x
n(1)

(x). Now, suppose the claim holds for l = 1, · · · , k<L−1. Then1056

X̂(k+1)(x)=σ
(
X̂(k)W(k)+b(k)

)
=σ
((

X̂
(k)
n −X̂

(k)

n(k)

)
W(k)

)
so either1057

there exist N ′
1, N

′
2∈
{
N1, n

(k)
}
, s∈{+,−} such that for all x,1058

X̂(k+1)(x)=σ
((

ReLU±
xN1

(x)−ReLU±
xN1

(xn(k))
)
W(k)

)
∈
{

ReLUs
xN′

1

(x),Ramps
xN′

1
,xN′

1

(x)

}
, or1059

there exist N ′
1, N

′
2 ∈

{
N1, N2, n

(k)
}
, s ∈ {+,−} such that for all x,1060

X̂(k+1)(x)=σ
((

Ramp±
xN1

,xN2
(x)−Ramp±

xN1
,xN2

(xn(k))
)
W(k)

)
=Ramps

xN′
1
,xN′

2

(x). By induc-1061

tion, the result holds.1062

Lemma H.14. Consider a deep narrow network. Let L ≥ 2. For all l ∈ [L− 1], there exist1063
n(L−l) ∈ [N ] and a l-tuple (a0, a1, · · · , al) such that for all l ∈ [L− 1],1064

(H.21) b(L−l)∗ = −
l∑

i=1

aiX̂
(L−l)

n(L−i)W
(L−l)1065

is optimal. Note that optimal b(1), · · ·,b(L−1) can be found sequentially, by computing b(l)∗1066
as a function of b(l−1)∗ and so on. Moreover, there are O

(
2LL!

)
options for b(1)∗. Additionally,1067

for all l∈[L− 1], under such optimal b(1), · · ·,b(l−1), for all n ∈ [N ],1068

(H.22) X̂(L−l+1)
n = σ

(
X̂(L−l)′

n W(L−l)
)

1069

where1070

(H.23) X̂(L−l)′
n = a0X̂

(L−l)
n +

l∑
i=1

aiX̂
(L−l)

n(L−i) .1071

Proof. We prove (H.21), (H.22) and (H.23) by strong induction on l.1072
Base case: suppose l = 1. Then (H.21), (H.22), (H.23) hold by Lemma H.11 and its proof.1073
Now, suppose (H.21), (H.22) and (H.23) hold for l=1, · · ·, k<L−1. By Equation (H.22) for1074

l=k, X̂(L−k+1)
n (x) is locally a linear combination of the k+1 terms X̂

(L−k+1)

n(L−k−1) , X̂
(L−k+1)

n(L−1) , · · ·1075

, X̂
(L−k+1)

n(L−k) , and hence so is X̂(L). So the breakpoints of X̂(L) as a function of b(L−(k+1))1076
are linear combinations of the k+1 terms, which proves (H.21) for l=k+1. Plugging in this1077

breakpoint b(L−k−1) into X̂
(L−k)
n proves (H.22) and (H.23) for l=k+1. Therefore (H.21), (H.22)1078

and (H.23) hold for all l∈[L−1].1079
Now we prove that the number of options for b(1) is O

(
2LL!

)
. By Equation (H.23) for1080

l=L−1, as a function of b(1), X̂(L−1)′

j has breakpoints at −X̂
(L−l−1)
i W(L−l−1) for i∈{n, n(L−1),1081
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· · ·, n(L−l)}, which totals to l+1=L breakpoints. A piecewise linear function f has up to plus1082
or minus one as many zeros as breakpoints, and the zeros become breakpoints in σ(f). So by1083

Equation (H.22), X̂(L−l+1)
n as a function of b(1) has breakpoints at O(2L) places. Then by1084

Equation (H.23) for l=L−2, X̂(L−l+1)′
n as a function of b(1) has breakpoints at O(2(L−1)(L))1085

places. And by Equation (H.22) for l=L−2, X̂(L−k+2)
n as a function of b(1) has breakpoints1086

at O
(
22L(L− 1)

)
places. By repeating this argument for l=L−1, · · ·, 1, X̂(L)

n as a function of1087

b(1) has breakpoints at O
(
2LL!

)
places.1088

Recall the deep library defined in Definition 3.11. Note that any a in the deep library is of1089
the form a = X̂(L)(X), with an = X̂(L)(xn).1090

Lemma H.15. For L ∈ {2, 3} the maximization constraint in (H.12) is equivalent to: for all1091
vectors a in the deep library,1092

(H.24)

∣∣λTa
∣∣ ≤ β̃

1Tλ = 0 if a+ ̸= 0 or a− ̸= 0.
1093

Proof. Lemma H.11 gives (H.24). Now, if the activation is symmetric, then X̂(L) is invariant1094
under the sign of the components of W(1). Next, recall x1 > · · · > xN and sign(0) = 1. If1095
the activation is sign, then for all n ∈ [N − 1], with W(1) = 1 and b(1) = −xn we have1096
X̂(L=2)(X) = σ(X − xn) =

(
1T1:n,−1Tn+1:N

)
= −σ(xn+1 − X); while for W(1) = −1 and1097

b(1) = xn+1 we have X̂(L=2)(X) = σ(xn+1 −X). And for W(1) = 1 and b(1) = −xN , we have1098
X̂(2)(X) = 1 while for W(1) = −1 and b(1) = x1 we have X̂(2)(X) = 1. So for L = 2 with1099
symmetric or sign activation, (H.24) is unchanged if W(1) ∈ {−1, 1} is restricted to be 1.1100

Lemma H.16. Let A be a matrix whose set of columns is the deep library. Replace the1101
maximization constraint in (H.12) with (H.24). The dual of (H.12) then is1102

(H.25) min
z,ξ∈R

Ly(Az+ ξ1) + β̃∥z∥1, where ξ = 0 if c1 = c2 = 0.1103

Proof. Problem (H.12) can be written as1104

(H.26) − min
λ∈RN

L∗
y(λ) s.t. λT1 = 0 if a− ̸= 0 or a+ ̸= 0, and |λTA| ≤ β̃1T .1105

The Lagrangian of the negation of (H.26) with bidual variables z, ξ is1106

(H.27) L(λ, z, ξ) = L∗
y(λ)− λT (Az+ ξ1)− β̃∥z∥1, where ξ = 0 if a− = a+ = 0.1107

Equation (H.27) holds because the constraint |λTA| ≤ β̃1T i.e., λTA− β̃1T ≤ 0T ,−λTA−1108
β̃1T ≤ 0T , appears in the Lagrangian as λTA

(
z(1) − z(2)

)
− β̃1T

(
z(1) + z(2)

)
with bidual1109

variables z(1), z(2), which are combined into one bidual variable z = z(1) − z(2). This makes1110
z(1) + z(2) = ∥z∥1. Changing variables z′ = −z, ξ′ = −ξ gives (H.27). Since L∗∗ = L (6),1111
infλ L(λ, z, ξ) = −Ly − β̃∥z∥1 and negating its maximization gives (H.25).1112
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Definition H.17 (Parameter unscaling). Let γi = |αi|
1
L̃ . For ReLU, absolute value, or leaky1113

ReLU, parameter unscaling is the following transformation. For symmetrized networks, first1114
change variables as W(i,l)′ = 1√

2
W(i,l) and b(i,l)′ = 1√

2
lb

(i,l) for l ∈ [2], α′
i = 2αi. Then, for1115

all architectures, change variables as q′ = sign(q)γi for q ∈ θ
(i)
w . For parallel networks, change1116

variables as b(i,l)′ = b(i,l) (γi)
l. For tree networks, change variables as bu′ = bu (γi)

l for u ∈ U1117
with length l such that u1 = i. For sign and threshold activations, parameter unscaling is the1118
transformation α′

i = sign(αi)
√
|αi| and s(i,L−1)′ =

√
|αi| for parallel nets, and s(i)

′
=
√

|αi|1119
for tree nets.1120

H.3. Proofs of results in Subsection 3.1 .1121

Proof of Lemma 3.8. The Lasso equivalence follows from a similar argument as the proof1122
of Theorem 3.12. The Lasso features follow from Lemma H.12 and Lemma H.13 with l = L.1123

Proof of Theorem 3.7. By the proof of Lemma H.14 and a similar argument as Theorem 3.12,1124
the training problem is equivalent to a Lasso problem. Moreover Lemma H.14 and choice1125
of n(1), · · · , n(L−1) ∈ [N ] give the number of possible b(1) for given W(1), · · · ,W(L−1) as1126
O
(
NL−12LL!

)
. Note that by (H.22) and (H.23), b(1) determines all other b(l). Finally, there1127

are 2L possibilities of W(l) ∈ {−1, 1}. The ReLU result follows from Lemma 3.8.1128

Proof of Theorem 3.12. By Lemma H.16, problem (H.25) is a lower bound on the training1129
problem (1.1), where the Lasso features are all vectors in the deep library. Let (z∗, ξ∗) be a Lasso1130
solution. From Definition 3.11, it can be seen that Az∗+ξ∗=

∑
i z

∗
iAi+ξ∗=

∑
i αiX̂

(i,L)(X)+ξ∗1131
=fL (X; θ) and ∥z∗∥1=∥α∥1. Therefore a reconstructed neural net achieves the same objective1132
in the rescaled training problem, as (z∗, ξ∗) does in the Lasso objective. Parameter unscal-1133
ing (Definition H.17) makes them achieve the same objective in the training problem (see1134
Remark H.20). Therefore the Lasso problem in Theorem 3.12 is equivalent to the training1135
problem.1136

Proof of Lemma B.4. By Theorem 3.12 and its proof, the reconstructed neural net achieves1137
the same objective as the Lasso problem, which is equivalent to the training problem. So the1138
reconstructed neural net is optimal.1139

Proof of Theorem 3.13. By considering each component of b(l) separately in the proof of1140
Lemma H.11, we see that optimal bias parameters for a symmetrized network can include data1141
features. The Lasso equivalence follows from a similar argument as the proof of Theorem 3.12.1142

Proof of Theorem 3.5. Follows from Theorem 3.13 and evaluating the features. See proof1143
of Figure 3.5 below.1144

Proof of Theorem 3.2. For L∈{2, 3}, apply Theorem 3.7, Theorem 3.12 where σ(x) = |x|1145
and Lemma B.2. For L=4, continue the same line of argument as Lemma H.11 by plugging1146

in b(L−2)=−X̂
(L−2)

n(L−2)W
(L−2) into (H.18), expanding X̂(L−2)=σ

(
X̂(L−3)W(L−3)+b(L−3)

)
, and1147

observing that the breakpoints of λT X̂(L) as a function of b(L−3) include data features, and1148
hence these can be optimal bias parameters. Plugging in these data feature biases in to1149
X̂(4) gives the features and reflections. Continue repeating a similar argument for L > 4.1150
The reconstruction and Lasso equivalence follows from a similar argument as the proof of1151
Theorem 3.12.1152
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Remark H.18. In the proof of Theorem 3.2 for L ≥ 4, we only used one of the possible1153
forms of an optimal b(L−2) specified by Lemma H.11 for absolute value activation, and we only1154
specified one of the possible forms of a breakpoint in λT X̂(L) as a function of b(L−3). So a1155
4-layer network may have additional features not specified.1156

Proof of Theorem 3.4. Follows from Lemma 3.8 and Theorem 3.12 where σ(x) = (x)+ is1157
monotone.1158

Proof of Corollary 3.15. Follows from Theorem 3.12 for L = 2.1159

Remark H.19. For b1, b2 ≥ 0,1160

||x− b1| − b2| =


b1 − b2 − x if x ≤ b1 − b2

x− (b1 − b2) if b1 − b2 ≤ x ≤ b1

b1 + b2 − x if b1 ≤ x ≤ b1 + b2

x− (b1 + b2) if x ≥ s1b1 + b2

= Wb1−b2,b1 .

1161

Proof of Lemma B.2, Figure 3.1, Figure 3.5. Follows from direct computation of Equa-1162
tion (2.1) and application of Remark H.19. In particular, for ReLU symmetrized networks,1163
it can be verified that for W(1) = (−1, 1),W(2) = (−1,−1); W(1) = (−1, 1),W(2) = (1, 1);1164
W(1) = (1,−1),W(2) = (−1,−1); and W(1) = (1,−1),W(2) = (1, 1), the deep library features1165
can contain reflections. Note ReLU symmetrized features are consistent with Figure B.1.1166

Remark H.20. For sign-determined activations, by Remark H.1, the inner weights can be1167
unregularized. So, reconstructed parameters (as defined in Definition B.3) that are unscaled1168
according to Definition H.17 achieve the same objective in the training problem as the optimal1169
value of the rescaled problem.1170

Proof of Lemma 3.1. Since |x|=2(x)++x, we have
∑m2

i=1

∣∣XW(i,1)+b(i,1)
∣∣αi+Xω+ξ1171

=
∑m2

i=1 2
(
XW(i,1)+b(i,1)

)
+
αi+X

(
ω−

∑m2
i=1W

(i,1)αi

)
−
∑m2

i=1 b
(i,1)αi+ξ. Given a solution1172

W(i,l)∗,b(i,l)∗, αi
∗, ξ∗, ω∗ to the training problem for absolute value activation with skip con-1173

nection, the parameters W(i,l)=W(i,l)∗,b(i,l)∗=b(i,l)∗, αi = 2αi
∗, ξ=ξ∗−

∑m2
i=1 b

(i,l)∗αi
∗, ω=ω∗1174

−
∑m2

i=1W
(i,1)∗αi

∗ achieve the same objective in the training problem for ReLU activation with1175

skip connection. Conversely, since (x)+=
|x|+x

2 , we have
∑m2

i=1

(
XW(i,1)+b(i,1)

)
+
αi+Xω+ξ1176

=1
2

∑m2
i=1

∣∣XW(i,1)+b(i,1)
∣∣αi+X

(
ω+1

2

∑m2
i=1W

(i,1)αi

)
+1

2

∑m2
i=1 b

(i,1)αi+ξ. Given a solution1177

W(i,l)∗,b(i,l)∗, αi
∗, ξ∗, ω∗ to the training problem for ReLU activation with skip connection, the1178

parameters W(i,l)=W(i,l)∗,b(i,l)∗=b(i,l)∗, αi =
1
2αi

∗, ξ=ξ∗+1
2

∑m2
i=1 b

(i,l)∗αi
∗,1179

ω=ω∗+1
2

∑m2
i=1W

(i,1)∗αi
∗ achieve the same objective in the training problem for absolute value1180

activation with skip connection. Therefore the problems achieve the same optimal value and1181
we have given a map between the solutions.1182

Deep neural networks with sign activation.1183
In this section, we assume σ(x) = sign(x). First we discuss parallel architectures.1184
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Definition H.21. Define the hyperplane arrangement set for a matrix Z ∈ RN×m as1185

H(Z) := {σ (Zw + b1) : w ∈ Rm, b ∈ R} ⊂ {−1, 1}N .(H.28)1186

Let S0 be the set of columns of X. Let {Sl}L−1
l=1 be a tuple of sets satisfying Sl ⊂ H([Sl−1])1187

and |Sl| = ml. Let ALpar(X) be the union of all possible sets SL−1.1188

In Definition H.21, since mL−1 = 1 in a parallel network, SL−1 contains one vector. The set H(Z)1189
denotes all possible {1,−1} labelings of the samples {zi}Ni=1 by a linear classifier. Its size is upper1190

bounded by |H(Z)| ≤ 2
∑r−1

k=0

(
N−1
k

)
≤ 2r

(
e(n−1)

r

)r
≤ 2N , where r := rank(Z) ≤ min(N,m)1191

(11; 35).1192

Lemma H.22. The lower bound problem (H.12) is equivalent to1193

(H.29) max
λ

− L∗
y(λ), s.t. max

h∈ALpar(X)
|λTh| ≤ β.1194

Proof. For l ∈ [L], there is Sl−1 ⊂ H
(
X(l−1)

)
with X(l) = [Sl−1]. Recursing over l ∈ [L]1195

gives
{
X(L) : θ ∈ Θ

}
= ALpar(X). So, the constraints of (H.12) and (H.29) are the same.1196

Remark H.23. Without loss of generality (by scaling by −1), assume that the vectors in1197
H(Z) start with 1. Under this assumption, Lemma H.22 still holds.1198

Lemma H.24. Let A = [ALpar(X)]. The lower bound problem (H.29) is equivalent to1199

(H.30) min
z

Ly(Az) + β||z||1.1200

Proof. Problem (H.29) is the dual of (H.30), and since the problems are convex with feasible1201
regions that have nonempty interior, by Slater’s condition, strong duality holds (7).1202

Remark H.25. The set AL,par consists of all possible sign patterns at the final layer of a1203
parallel neural net, up to multiplying by −1.1204

Lemma H.26. Let A be defined as in Lemma H.24. Let z be a solution to (H.30). Suppose1205
mL ≥ ∥z∥0. There is a parallel neural network satisfying fL (X; θ) = Az which achieves the1206
same objective in the rescaled training problem as z does in (H.30).1207

Proof. By definition of AL,par (Definition H.21), for every Ai ∈ AL(X), there are tuples1208 {
W(i,l)

}L−1

l=1
,
{
b(i,l)

}L−1

l=1
of parameters such that Ai = X̂(i,L). Let I = {i : zi ≠ 0}. For i ∈ I,1209

set αi = zi. This gives a neural net fL (X; θ) =
∑

i∈I αiX̂
(i,L) = Az with |I| ≤ mL.1210

Remark H.27. Lemma H.26 analogously holds for the tree network by a similar argument:1211
by construction of ALtree, there is a neural net satisfying fL(X; θ) = Az.1212

Proposition H.28. For L-layer parallel networks with sign activation, the Lasso problem1213
(H.30) problem and the original training problem are equivalent.1214

Proof. By Lemma H.24, the Lasso problem is a lower bound for the training problem. By1215
the reconstruction in Lemma H.26 (see Remark H.20), the lower bound is met with equality.1216
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Definition H.29. Recall the set H defined in (H.28). Define a matrix-to-matrix operator1217

(H.31) J (m)(Z) :=

 ⋃
|S|=m

H(ZS)

 .1218

For L = 2, let ALtree(X) = H(X) and for L ≥ 2, let ALtree(X) be the set of columns in1219
J (mL−1) ◦ · · · ◦ J (m2)(H(X)).1220

1221

The columns of J (m)(Z) are all hyperplane arrangement patterns of m columns of Z.1222

Lemma H.30. For L ≥ 3, the lower bound problem (H.9) for tree networks is equivalent to1223

(H.32) max
z∈RN

− L∗
y(λ), s.t. max

h∈ALtree(X)
|λTh| ≤ β.1224

Proof. Let u be a tuple such that u1 = 1. First suppose u has length L− 2. For all nodes i,1225 {
σ
(
Xw(u+i) + b(u+i)1

)
: w(u+i) ∈ Rd, b(u+i) ∈ R

}
= H(X) independently of any other sibling1226

nodes j ̸= i. So every X(u) is the linear combination of m2 columns in H(X), with the choice1227
of columns independent of other u of the same length. Next, for all u of length L− 3, the set1228
of all possible σ

(
X(u+i) + b(u+i)1

)
is J (m2) (H(X)). Repeating this for decreasing lengths of u1229

until u has length 1 gives X̃ = σ
(
X(i) + b(i)1

)
= ALtree(X).1230

H.4. 1-D data. In this section, we assume the data is 1-D. We will refer to a switching set1231
and a rectangular network defined in Subsection 3.2 and Subsection 2.2.1232

Lemma H.31. Let m1,m2 ∈ N, k ∈ [m1m2]. A sequence {hi} in {−1, 1} that starts with 11233
and switches k times is the sum of at most m2 sequences in {−1, 1} that switch at most m11234
times, and the all-ones sequence.1235

Proof. Suppose hi switches at i1 < · · · < ik. Let Q =
⌈

k
m1

⌉
≤ m2. For q ∈ [Q], let

{
h
(q)
i

}
1236

be a sequence in {−1, 1} that starts with (−1)q+1 and switches precisely at i ∈ {I1, · · · , Ik}1237

satisfying i = j mod m2, which occurs at most m1 times. Let si =
∑

j h
(q)
i . Then s1 =1238

1{Q odd} ∈ {h1, h1 − 1}. For i > 1,1239

si =


si−1 + 2 if h(q)i−1 = −1, h

(q)
i = 1 for some q

si−1 − 2 if h(q)i−1 = 1, h
(q)
i = −1 for some q

si else.
1240

So {si} is a sequence in {0,−2} or {−1, 1} that changes value precisely at i1, . . . , ik. Therefore1241
{si} is either {hi} or {hi − 1}.1242

Lemma H.32. Let p,m ∈ N. Let z ∈ {−1, 1}N with at most pm switches. There is an1243
integer n ≤ m, w ∈ {−1, 1}n, and a N×n matrix H with columns in H(p) such that z = σ(Hw).1244

Proof. For x ∈ {−1, 1}, σ(x) = σ(x− 1). Apply Lemma H.31 with m2 = p,m1 = m.1245

Lemma H.33. H(X) consists of all columns in H(1).1246
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Proof. First, 1 = σ(0) = σ(X · 0) ∈ H(X). Next, let h ∈ H(X)−{1} ∈ {−1, 1}N . By1247
definition of H(X), there exists w, b ∈ R such that h = Xw + b1. Note h1 = 1 (Remark H.23).1248
Let i be the first index at which h switches. So xiw + b < 0 ≤ xi−1w + b, which implies1249
xiw < xi−1w. For all j > i, xj < xi so hj = σ(xjw + b) ≤ σ(xiw + b) = σ(hi) = −1, so1250
hj = −1. So h switches at most once.1251

Now, let h ∈ {−1, 1}N with h1 = 1. Suppose h switches once, at index i ∈ {2, · · · , N}.1252
In particular, hi = −1. Let w = 1, b = −xi−1. Then at j < i, xjw + b = xj − xi−1 ≥ 0 so1253
hj = σ (xjw + b) = 1. And for j ≥ i, xjw + b = xj − xi−1 < 0 so hj = −1. So h ∈ H(X).1254

Proposition H.34. The set AL=3,par contains all columns of H(m1).1255

Proof. Note AL=3,par =
⋃

X(1) H
(
X(1)

)
. From Lemma H.33, any possible column in X(1)1256

switches at most once. Apply Lemma H.32 with p = 1,m = m1 (so that mp = m1 switches),1257
to any column z of X(1).1258

Proposition H.35. For a rectangular network, AL,par(X) is contained in the columns of1259
H(m1).1260

Proof. Let W(1) ∈ R1×m1 . For any w, b ∈ R, since the data is ordered, σ (Xw + b1) ∈1261
{−1, 1}N has at most 1 switch. Then X(1) = σ

(
XW(1) + 1 · b(1)

)
has m1 columns each with1262

at most one switch. Therefore X(1) has at most m1 + 1 unique rows. Let R be the set of the1263
smallest index of each unique row. We claim that for all layers l ∈ [L], the rows of X(l) are1264
constant at indices in [N ]−R, that is, for all i ∈ [N ]−R, the ith and (i− 1)th rows of X(l) are1265
the same. We prove our claim by induction. The base case for l = 1 already holds.1266

Suppose our claim holds for l ∈ {1, · · · , L − 1}. Let W(l+1) ∈ R(ml×ml+1). The rows of1267
X(l) are constant at indices in [N ]−R, so for any w ∈ Rml , b ∈ R, the elements of the vector1268
X(l)w + b1 are constant at indices in [N ] − R. This held for any w ∈ Rml , so the rows of1269
X(l+1) = X(l)W(l+1) + 1 · b(l+1) are again constant at indices in [N ]−R. By induction, our1270
claim holds for all l ∈ [L]. So X(L) has at most |R| ≤ m1 + 1 unique rows and hence has1271
columns that each switch at most m1 times.1272

Proposition H.36. For a rectangular network, AL,par(X) contains all columns of H(m1).1273

Proof. Let z ∈ {−1, 1}N with at most min{N − 1,m1} switches. By Proposition H.34,1274
there exists a feasible X(1) = σ

(
XW(1) + 1 · b(1)

)
∈ RN×m and W(2) ∈ Rm×m such that z1275

is a column of X(2) = σ
(
X(1)W(2) + 1 · b(2)

)
. Now for every l ∈ {3, . . . , L − 1} we can set1276

W(l) = Im to be the m×m identity matrix and b(l) = 0 so that X(l) = σ
(
X(l−1)W(l)

)
= X(l−1).1277

Then X(L) = X(2) contains z as a column. Therefore z ∈ AL,par(X).1278

Lemma H.37. Let K =
∏L−1

l=1 ml. The set ALtree(X) consists of all columns in H(K).1279

Proof. For l ∈ [L], let Al = Altree(X). Let pk =
∏k−1

l=1 ml. We claim for all l ∈ {2, · · · , L},1280
Al consists of all columns in H(pl). We prove our claim by induction on l. The base case when1281
l = 2 holds by Lemma H.33. Now suppose Lemma H.37 holds when l = k ∈ {2, · · · , L− 1}.1282
Observe Ak ⊂ Ak+1, so if pk ≥ N − 1, then Lemma H.37 holds for l = k + 1. So suppose1283
pk < N − 1. Then Ak contains all vectors in {−1, 1}N with at most pk switches.1284

Let h ∈ Ak+1. The set Ak+1 contains all columns in J (mk)([Ak]). So, there exist w ∈1285
Rmk , b ∈ R and a submatrix Z = [Ak]S where |S| = mk and h = σ(Zw + b). Each of the at1286
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most mk columns of Z has at most pk switches, so the N rows of Z change at most mkpk = pk+11287
times. So Zw + b changes value, and hence h = σ(Zw + b) switches, at most pk+1 times.1288
Conversely, by Lemma H.32 with p = pk,m = mk, the set Ak+1 of all columns in J (mk)([Ak])1289
contains all vectors with at most pkmk = pk+1 switches. So our claim holds for l = k + 1. By1290
induction, it holds for l = L layers.1291

H.5. Proofs of results in Subsection 3.2.1292

Proof of Lemma 3.16. The result follows from the definition of A, the assumption that the1293
data is ordered and that the output of sign activation is σ is ±1 for sign activation.1294

Proof of Theorem 3.17. For the parallel network, apply Proposition H.28 and then apply1295
Proposition H.34 for L = 3, and Proposition H.35 and Proposition H.36 for L ≥ 3. For1296
tree networks, by Remark H.27 the training problem is equivalent to Lasso lower bound with1297
dictionary AL,tree given by Lemma H.37.1298

Proof of Corollary 3.18. Follows from Theorem 3.17, Lemma H.26 and Remark H.27.1299

Proof of Lemma C.1. By Theorem 3.17 and Lemma H.4, it suffices to show the param-1300
eters without unscaling achieve the same objective in the rescaled problem (H.4) as Lasso.1301
First, |I| ≤ m2 and by Theorem 3.17, m(i) ≤ m1 so the weight matrices are the correct1302

size. Let S
(i)
n be the number of times Ai switches until index n. Since x1 > · · · > xN , we1303

get X̂
(i,2)
n,j = σ

(
XW(i,1) + 1 · b(i,1)

)
n,j

= σ

(
xn − x

I
(i)
j −1

)
= −σ

(
S
(i)
n − j

)
. So X̂(i,3)

n =1304

σ
(
X̂(i,2)W(i,2) + b(i,2)1

)
n

= σ

S
(i)
n∑

j=1

(−1)(−1)j+1 +
m(i)∑

j=S
(i)
n +1

(1)(−1)j+1 − 1
{
m(i) odd

} =1305

σ
(
−2 · 1

{
S(i)
n odd

})
= (−1)S

(i)
n = An,i. So, f3(X; θ) = ξ +

∑
i∈I αiX̂

(i,3) = Az. And,1306

||α||1 = ||z∗I ||1 = ||z∗||1. So the rescaled problem and Lasso achieve the same objective.1307

Remark H.38. For a rectangular network, a reconstruction similar to Lemma C.1 holds by1308
setting additional layer weight matrices to the identity.1309

Proof of Corollary C.2 . By Remark 3.19, p∗L=3,β ≤ p∗L=2,β. Let θ(L) and α(L) denote θ1310
and α for a L-layer net. Since the training and rescaled problems have the same optimal1311
value, to show p∗L=2,β ≤ p∗L=3,m1β

, it suffices to show for any optimal θ(3), there is θ(2) with1312

f2
(
X; θ(2)

)
= f3

(
X; θ(3)

)
and

∥∥α(2)
∥∥
1
≤ m1

∥∥α(3)
∥∥
1
. Let z∗ be optimal in the 3-layer Lasso1313

problem (1.2). Let m∗
3 = ||z∗||0 and let z ∈ Rm∗

3 be the subvector of nonzero elements of z∗. Let1314
m = m1m

∗
3. By Lemma C.1 and its proof, there are W(i,1) ∈ R1×m1 ,b(i,1) ∈ R1×m1 ,W(i,2) ∈1315

{1,−1, 0}m1 ,b(i,2) ∈ R such that X̂(i,2)W(i,2) + b(i,2)1 ∈ {−2, 0}N and f3 (X; θ) =1316
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m∗
3∑

n=1

ziσ
(
X̂(i,2)W(i,2) + 1 · b(i,2)

)
=

m∗
2∑

i=1

z∗i

(
X̂(i,2)W(i,2) + 1 · b(i,2) + 1

)
=

m∗
3∑

i=1

z∗i

(
σ
(
XW(i,1) + 1 · b(i,1)

)
W(i,2) + 1 · b(i,2) + 1

)
=

σ

X
[
W(1,1) · · ·W(m∗

3,1)
]

︸ ︷︷ ︸
(W(1,1),··· ,W(m,1))∈R1×m

+1 ·
[
b(1,1), · · · ,b(m∗

3,1)
]

︸ ︷︷ ︸
(b(1,1),··· ,b(m,1))∈R1×m


 z1W

(1,2)

...
zm∗

3
W(m∗

3,2)


︸ ︷︷ ︸

α(2)

+1

m∗
3∑

i=1

zi

(
1 + b(i,2)

)
︸ ︷︷ ︸

ξ

,

1317

which is f2
(
X; θ(2)

)
with m neurons. And ∥α(2)∥1 ≤ m1∥z∗∥1 = m1∥α(3)∥1.1318

H.6. Proofs of results for 2-D data.1319

Proof of Theorem C.3. Lemma H.24 holds for any dimension d, so the Lasso formulation1320
in Theorem 3.12 and Theorem 3.17 similarly hold for d > 1 but with a different dictionary1321
AL,par and matrix A.1322

Let x′n = ∠x(n) and order the data so that x′1 > x′2 > . . . x′N . Let X′ = (x′1 · · ·x′N ) ∈ RN .1323
Let w ∈ R2 with ∠w ∈

[
π
2 ,

3π
2

]
. Let w′ = ∠w. Note wx(n) ≥ 0 if and only if x′n ∈1324 [

w′ − π
2 , w

′ + π
2

]
. Since x′n < π for all n ∈ [N ], this condition is equivalent to x′n ≥ w′ − π

2 ,1325

ie n ≤ max
{
n ∈ [N ] : x′n ≥ w′ − π

2

}
. So

{
σ(X′w) : w′ ∈

[
π
2 ,

3π
2

]}
= H(1) ∪ {−1}. Similarly1326 {

σ(X′w) : w′ ∈
[
−π

2 ,
π
2

]}
is the "negation" of this set. Therefore, the L = 2 training problem1327

is equivalent to the Lasso problem with dictionary H(1). Proposition H.36 holds analogously1328
for this training data, so for L > 2, the dictionary is H(mL−1).1329

Proof of Lemma C.4. Observe n ≤ i if and only if x(n)W(i,1) ≥ 0 and so1330
σ
(
XW(i,1)

) [
1Ti ,−1TN−i

]
1331

= Ai. Thus fL=2(X; θ)=
∑

i αiσ
(
XW(i,1)

)
=Az∗ so θ achieves the same objective in the1332

rescaled training problem (H.8), as the optimal value of Lasso (1.2). Unscaling (Definition H.17)1333
optimal parameters of the rescaled problem makes them optimal in the training problem.1334

Solution sets of Lasso under minimal regularization.1335

Remark H.39. For each optimal z∗ of the Lasso problem, minimizing the objective over ξ1336
gives the optimal bias term as ξ∗ =

(
y − 11Ty

)
−
(
A− 11TA

)
z∗.1337

Remark H.40. For a neural net with L = 2 layers and sign activation, by Theorem 3.12 the1338
Lasso problem has an objective function f(z) = 1

2∥Az − y∥22 + β∥z∥1 where A ∈ RN×N . By1339
Lemma H.43, A is full rank, which makes f strongly convex. Therefore the Lasso problem has a1340
unique solution z∗ (7). Moreover, for any Lasso problem, z∗ satisfies the subgradient condition1341
0 ∈ δf(z) = AT (Az∗ − y) + β∂∥z∗∥1. Equivalently,1342

1

β
AT

n (Az∗ − y) ∈

{
{−sign(z∗n)} if z∗n ̸= 0

[−1, 1] if z∗n = 0
, n ∈ [N ].1343
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H.7. Proofs of results in Appendix G. Let e(n) ∈ RN be the nth canonical basis vector,1344

that is e
(n)
i = 1{i = n}.1345

Proof of Proposition G.2. We analyze the solution set of Az + ξ1 = y. We note that1346 (
I − 11T /N

)
Az =

(
I − 11T /N

)
y.. As z∗ is optimal in (G.1) , this implies that (I −1347

11T /N)Az∗ = (I − 11T /N)y. This implies that (I − 11T /N)A(z − z∗) = 0. As x1 > x2 >1348
· · · > xN , we have A

(
e(1) + e(N)

)
∝ 1. As A is invertible by Lemma H.44 in Appendix H.8,1349

this implies that there exists t ∈ R such that z− z∗ = t
(
e(1) + e(N)

)
. It is impossible to have1350

z∗1z
∗
N > 0 from the optimality of z∗. Otherwise, by taking t = −sign(z∗1)min{|z∗1 |, |z∗n|}, we have1351

∥z∥1 = ∥z∗∥1 − 2min{|z∗1 |, |z∗n|} < ∥z∗∥1. Therefore, we have z∗1z
∗
n ≤ 0. We can reparameterize1352

z = z∗ + tsign(z∗1)(e(1) + e(N)). It is easy to verify that for t such that −|z∗1 | ≤ t ≤ |z∗n|, we1353
have ∥z∥1 = ∥zn∥1, while for other choice of t, we have ∥z∥1 > ∥zn∥1. Therefore, the solution1354
set of (G.1) is given by (G.2).1355

Proof of Proposition G.3. Follows from Remark H.40 describing the Lasso objective.1356

Proof of Proposition G.4. By Lemma H.45, for n ∈ [N − 1], z+∗
n = yn − yn−1 ≥ 0 and1357

z∗+N
= yN ≥ 0. So z∗ achieves an objective value of ∥z∗∥1 = y1 in (G.1). Now let z1358

be any solution to (G.1). Then Az = y. Since the first row of A is [1T ,0T ], we have1359
y1 = (Az)1 = 1T z+ ≤ ∥z+∥ ≤ ∥z∥1 ≤ ∥z∗∥ = y1. So ∥z+∥1 = ∥z∥1 = y1, leaving z− = 0 = z∗−.1360
Therefore z+ = A−1y = z∗+. Applying Lemma H.45 gives the result.1361

Proof of Corollary G.1 . By Lemma H.43, Lemma H.44, Lemma H.45 and Lemma H.46,1362
the dictionary matrix for the 2-layer net is full rank for sign, absolute value, threshold and1363
ReLU activations. The dictionary matrices for deeper nets with sign activation are also full1364
rank by Remark 3.19. Let u = AT (Az∗ − y). By Remark H.40, as β → 0, we have u → 0, so1365
Az− y = (AAT )−1Au → 0. So as β → 0, the optimal Lasso objective approaches 0, and by1366

Theorem 3.17 and Theorem 3.12, so does the training problem. So fL (X; θ)
β→0−−−→ y.1367

Proof of Lemma G.7. It can be verified that as shown in Figure 3.5, the Lasso features for1368
a symmetrized network all have slope magnitude 0, 1, or 2. However, only monotone features1369
contain a segment with slope magnitude 2, and the training data (xn, yn) in Figure 3.4 is not1370
monotone. There is a "left branch" consisting of {(x5, y5) = (−1, 1), (x4, y4) = (0, 0)} and a1371
"right branch" consisting of {(x2, y2) = (3, 1), (x1, y1) = (4, 2)}. Let z∗, ξ∗ be a Lasso solution1372
that fits the data exactly: Az∗+ξ∗ = y. Let I− (I+) be the set of indices i where the ith feature1373
is monotone and has negative (positive) slope over the left (right) branch. Let I0 be the set of1374
indices corresponding to features that are not monotone. Let m− and m+ be the magnitude1375
of the slopes of the left and right branch, respectively. Then 2

∑
i∈I− |z∗i |+

∑
i∈I0 |z∗i | ≥ m−1376

and 2
∑

i∈I+ |z∗i | +
∑

i∈I0 |z∗i | ≥ m+. Note I−, I+, I0 are all pairwise disjoint. Therefore1377

∥z∗∥1 ≥ m++m−

2 = 1.1378

Proof of Lemma G.5. Since ReLU and absolute value activations have slopes ±1 or 0, and1379
the weights of deep narrow networks are ±1, the features X̂(L)(x) have slopes ±1 or 0. Observe1380

y = fL (X; θ) = ξ∗1+Az∗ = ξ∗1+
∑

i z
∗
iAi. For any n ∈ [N−1], |µn| =

∣∣∣fL(X;θ)n+1−fL(X;θ)n
xn+1−xn

∣∣∣ =1381 ∣∣∣∑i z
∗
i (An+1,i−An,i)
xn+1−xn

∣∣∣ = ∣∣∣∑i z
∗
i
X̂(L)(xn+1)−X̂(L)(xn)

xn+1−xn

∣∣∣1382

≤
∑

i |z∗i |
∣∣∣ X̂(L)(xn+1)−X̂(L)(xn)

xn+1−xn

∣∣∣ ≤∑i |z∗i | = ∥z∗∥.1383
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Proof of Lemma G.6. Let n ∈ [N − 1]. Let S+
n = {i ∈ [N ] : i > n, (z+)i ̸= 0},S−

n = {i ∈1384
[N ] : i ≤ n, (z−)i ≠ 0}. Observe S+

n+1 = S+
n −{n+1} if (z+)n+1 ̸= 0 and S+

n+1 = S+
n otherwise.1385

Similarly, S−
n+1 = S+

n ∪{n+1} if (z−)n+1 ≠ 0 and S−
n+1 = S−

n otherwise. Now, ReLU+
xi

has slope1386
1 after xi and ReLU−

xi
has slope 1 before xi, so µn =

∑
i∈S+

n
(z+)i +

∑
i∈S−

n
(z−)i. Therefore,1387

|µn − µn+1| =
∣∣−(z+)n+1 + (z−)n+1

∣∣ ≤ ∣∣(z+)n+1

∣∣+ ∣∣(z−)n+1

∣∣. So
∑N−1

n=1 |µn−µn+1| ≤ ∥z∗∥1−1388
|(z+)1| − |(z−)1| ≤ ∥z∗∥1.1389

Now, for any n ∈ [N − 1], (Az+ξ1)n− (Az+ξ1)n+1=
∑N

i=1 (z+)i
(
A+n,i−A+n+1,i

)
=1390 ∑N

i=1 (z+)i
(
(xn−xi)+− (xn+1−xi)+

)
=
∑N

i=n+1 (µi−1−µi) (xn − xn+1)= (xn−xn+1)µn=yn −1391

yn+1. And (Az+ ξ1)N=ξ +
∑N

i=1 (z+)i (xN − xi)+=yN+
∑N

i=1 (z+)i (0)=yN . So Az+ξ1=y.1392

And ∥z∥1 =
∑N−1

n=1 |µn−µn+1|, which exactly hits the lower bound on ∥z∗∥1. Therefore z, ξ is1393
optimal.1394

Remark H.41. By Lemma H.44, the absolute value network “de-biases" the target vector,1395
normalizes is by the interval lengths xi − xi+1, and applies E (which contains the difference1396
matrix ∆) twice, acting as a second-order difference detector. By Lemma H.43, the sign1397
network’s dictionary inverse contains ∆ just once, acting as a first-order difference detector.1398

Inverses of 2-layer dictionary matrices.1399
In this section, we consider the 2-layer dictionary matrix A as defined in Corollary 3.15.1400

Define the finite difference matrix1401

(H.33) ∆ =



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
0 0 0 · · · 0 1


∈ RN−1×N−1.1402

Multiplying a matrix on its right by ∆ subtracts its consecutive rows. Define the diagonal1403
matrix D ∈ RN×N by Di,i =

1
xi−xi+1

for i ∈ [N − 1] and DN,N = 1
x1−xN

. For n ∈ N, let1404

(H.34) A(s)
n =


1 1 1 · · · 1
−1 1 1 · · · 1
−1 −1 1 · · · 1
...

...
...

. . .
...

−1 −1 −1 · · · 1

,A
(t)
n =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ Rn×n.1405

Remark H.42. The dictionary matrices for sign and threshold activation satisfy A = A
(s)
N1406

and A+ = A
(t)
N , respectively.1407

H.8. results about 2-layer dictionary matrices.1408

Lemma H.43. The dictionary matrix for σ(x)=sign(x) has inverse A−1=1
2


0
...
0
−1

1 0 · · · 0 1

∆

.1409

Proof. Multiplying the two matrices (see Remark H.42) gives the identity.1410
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Lemma H.44. The dictionary matrix A for absolute value activation has inverse A−1 =1411

1
2PEDE, where P =


0 0 · · · 0 1

0
...
0
0

IN−1

,E =


0
...
0
−1

−1 0 · · · 0 −1

∆

.1412

Proof. For i ∈ [N − 1], j ∈ [N ], Ai,j−Ai+1,j=

{
(xj−xi)−(xj−xi+1)=xi+1−xi if i>j

(xi−xj)−(xi+1−xj)=xi − xi+1 if i≤j.
1413

And for all j ∈ [N ], A1,j +AN,j = (x1 − xj) + (xj − xN ) = x1 + xN . Therefore,1414

DEA =


−1
... A

(s)
N−1

−1

−1 −1 · · · −1

, 1

2
EDEA =


0
... IN−1

0

1 0 · · · 0

.1415

Applying the permutation P makes 1
2PEDEA = I, so A−1 = 1

2PEDE.1416

Lemma H.45. The inverse of A+ for threshold activation is A−1
+ =


0
...
0
−1

0 0 · · · 0 1

∆

.1417

Proof. Multiplying the two matrices (see Remark H.42) gives the identity.1418

Lemma H.46. The submatrix [(A+)1:N,2:N , (A−)1:N,1] ∈ RN×N of the dictionary matrix for1419
ReLU activation has inverse E+DE−, where1420

E+ =


0
...
0
1

0 0 · · · 0 1

∆

, E− =


0
...
0
−1

0 0 · · · 0 −1

∆

.1421

Proof. For i ∈ [N − 1], j ∈ [N ],1422

(A+)i,j − (A+)i+1,j =

{
0 if i ≥ j

(xi − xj)− (xi+1 − xj) = xi − xi+1 if i < j
1423

and (A−)i,1 − (A−)i+1,1 = (x1 − xi) − (x1 − xi+1) = xi+1 − xi. Observe that DE−A =1424 
−1
...

−1
−1

0 0 · · · 0 1

A
(t)
N−1

, and applying E+ gives I.1425

Solution path for sign activation and binary, periodic labels.1426
In this section we assume the neural net uses sign activation, and d = 1. Recall e(n) as the1427

nth canonical basis vector (Appendix H.7). Note that in Figures 3.7 , H.4, nd H.5, y = h(T ),1428
N = 40, T = 10, and vectors v = (v1, · · · , vN ) are depicted by plotting (n, vn) as a dot.1429

Remark H.47. A neural net with all weights being 0 achieves the same objective in the1430
training problem as the optimal Lasso value and is therefore optimal.1431
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In this section, we will find the critical value βc defined in Appendix D. Then for β < βc,1432
we use the subgradient condition from Remark H.40 to solve the Lasso problem (1.2). Note1433
when L = 2, (An)

T = (11:n,−1n+1:N ) switches at n+ 1.1434

H.9. L = 2. Assume the network has 2 layers.1435

Lemma H.48. The elements of ATA ∈ RN×N are (ATA)i,j = N − 2|i− j|.1436

Proof. If 1 ≤ i ≤ j ≤ N then (ATA)i,j=
∑i−1

k=1Ai,kAj,k+
∑j−1

k=i Ai,kAj,k+
∑N

k=j Ai,kAj,k1437

=
∑i−1

k=1(1)(1)+
∑j−1

k=i(−1)(1)+
∑N

k=j(−1)(−1)=(i− 1)−(j−1−i+1)+(N−j+1)=N+2(i−j)1438

=N−2|i−j|. Since ATA is symmetric, if 1 ≤ j ≤ i ≤ N then (ATA)i,j = (ATA)j,i =1439
N + 2(j − i) = N − 2|i− j|. So for any i, j ∈ [N ], (ATA)i,j = N − 2|i− j|.1440

Remark H.49. By Lemma H.48, ATA is of the form1441

(H.35)

ATA =



N N − 2 N − 4 · · · 2 0 −2 · · · 6−N 4−N 2−N
N − 2 N N − 2 · · · 4 2 0 · · · 8−N 6−N 4−N
N − 4 N − 2 N · · · 6 4 2 · · · 10−N 8−N 6−N

...
...

...
. . .

...
...

...
. . .

...
...

...
6−N 8−N 10−N · · · 2 4 6 · · · 10−N 8−N 6−N
4−N 6−N 8−N · · · 0 2 4 · · · 8−N 6−N 4−N
2−N 4−N 6−N · · · −2 0 2 · · · N − 4 N − 2 N


.1442

An example of a column of ATA is plotted in the left plot of Figure H.4.

−20

20

40

n

−1

−0.5

0.5

1

n

T

Figure H.4: Left: Column 10 of ATA for N = 40. Right: Vector h(T ) for T = 10.

1443

Remark H.50. For n ∈ [N ], (ATy)n =
∑n

i=1 yi −
∑N

i=n+1 yi.1444

Definition H.51. For a, b ∈ Z, let Quot(a, b) ∈ Z and Rem(a, b) ∈ {0, · · · , b − 1} be the1445
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quotient and remainder, respectively, when a is divided by b. The modified remainder is1446

rem(a, b) =

{
Rem(a, b) if Rem(a, b) > 0

b if Rem(a, b) = 0
∈ [b].1447

The modified quotient is1448

quot(a, b) =
a− rem(a, b)

b
=

{
Quot(a, b) if Rem(a, b) > 0

Quot(a, b)− 1 if Rem(a, b) = 0.
1449

The quotient and remainder are modified to handle vector indices starting at 1 instead of being1450
zero-indexed.1451

Remark H.52. The square wave has elements h
(T )
n =

{
−1 if rem(T, n) ≤ T/2

1 else.
1452

Remark H.53. Since h(T ) is periodic and zero mean, for i, n ≥ 0,
∑nT

j=iT+1 h
(T )

j = 0.1453

Lemma H.54. The vector ATh(T ) is periodic with period T . For n ∈ [T ],1454

(
ATh(T )

)
n
= 2

{
n if n ≤ T

2

T − n else
∈ [0, T ].1455

Proof. By Remark H.50, Remark H.53, and periodicity of h(T ), for n ∈ [T ], j ∈ [2k − 1],1456

(
ATh(T )

)
n+jT

=

jT+n∑
i=jT+1

h(T )
i−

(j+1)T∑
i=n+jT+1

h(T )
i=



n∑
i=1

1−
T/2∑

i=n+1

1+

T∑
i=1+T/2

1 if n ≤ T
2

T/2∑
i=1

1−
n∑

i=T
2
+1

1 +

T∑
i=n+1

1 else.

1457

Simplifying gives the result.1458

Lemma H.55. Let qn = quot
(
n, T2

)
∈ {0, · · · , 2k − 1}. Then1459

(H.36)
(
ATh(T )

)
n
= 2(−1)qn+1rem

(
n,

T

2

)
− 1{qn odd}T.1460

Proof. Follows from Lemma H.54.1461

Corollary H.56. Suppose z = e(
T
2
)+e(N−T

2 ). Then for n ≤ T
2 and n ≥ N− T

2 , 1
2(A

TAz)n =1462 (
ATh(T )

)
n
. And if T

2 ≤ n ≤ N − T
2 , then (ATAz)n = 2T .1463

Proof. By Lemma H.48, for n ∈ [N ], (ATAz)n = 2
(
N −

∣∣n− T
2

∣∣− ∣∣n−N + T
2

∣∣) .1464
Simplifying and applying Lemma H.54 gives the result.1465

Lemma H.57. If y = h(T ), then the critical β (defined in Section 4) is βc = T .1466
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Proof. By Remark H.47, βc = max
n∈[N ]

|AT
ny| = max

n∈[N ]

∣∣∣(ATh(T )
)
n

∣∣∣ = T .1467

Lemma H.58. Let y = h(T ). If βT ≥ 1
2 then the solution to the Lasso problem (1.2) is1468

z∗ = 1
2 (1− βT )+

(
e(

T
2 ) + e(N−T

2 )
)
.1469

Proof. By Lemma H.57, βc = T . By Lemma H.57, if βT ≥ 1 then z∗ = 0 as desired. Now1470
suppose 1

2 ≤ βT ≤ 1. Let δ = 1− βT ,g = AT
n (Az∗ − y). By Corollary H.56 and Lemma H.54,1471

g =


(δ − 1)

(
ATh(T )

)
n
= −2βTn ∈ [−β, 0] if n ≤ T

2(
δT −

(
AThk,T

)
n

)
=
(
βc − β − (ATh(T ))n

)
∈ [−β, β] if

T

2
≤ n ≤ N − T

2

(δ − 1)
(
ATh(T )

)
n
= −2βT (N − n) ∈ [−β, 0] if N − T

2
≤ n

,1472

where the second set inclusion follows from
(
ATh(T )

)
n

∈ [0, βc] by Lemma H.54 so that1473

−β ≤ g ≤ βc−β ≤ β. Therefore, |AT
n (Az∗ − y) | ≤ β, and at n ∈ {n : z∗n ̸= 0} =

{
T
2 , N − T

2

}
,1474

we have AT
n (Az∗ − y) = −βT

T
2 = −β = −βsign(z∗n). By Remark H.40, z∗ is optimal.1475

Lemma H.59. Let a, b, c, d ∈ Z+, d ∈ R, r = 1− rem(b− a, 2). Then1476
(H.37)

b∑
j=a

(−1)j (c−jd)=(−1)a
(
(c−ad)r+(−1)r

(b−(a+r)+1)d

2

)
=(−1)a

{
(b−a+1)d

2 if r=0

c−ad− (b−a)d
2 else.

1477

Proof. We have1478

b∑
j=a

(−1)j (c− jd) = (−1)a(c− ad)r +

b∑
j=a+r

(−1)j (c− jd)

= (−1)a(c− ad)r + (−1)a+r
∑

a+r≤j≤b−1
j−(a+r) is even

(c− jd)− (c− (j + 1)d)
1479

Simplifying gives (H.37).1480

Lemma H.60. Let L=2, y=h(T ), 0<β<βc

2 . Let wbdry=1−3
2βT , wcycle=2βT−1. Let zbdry=1481

wbdry

(
e(

T
2 )+e(N−T

2 )
)
, zcycle=wcycle

∑2k−2
i=2 (−1)ie(

T
2
i). Then z∗=zbdry+zcycle solves the Lasso1482

problem (1.2).1483

Proof. We show z∗ is optimal using the subgradient condition in Remark H.40. By1484
Corollary H.56,1485

(H.38)
1

2wbdry
(ATAzbdry)n =

{(
ATh(T )

)
n

if n ≤ T
2 or n ≥ N − T

2

T if T
2 ≤ n ≤ N − T

2

, n ∈ [N ].1486
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Figure H.5: Examples of 1
2wbdry

ATAzbdry (left) and 1
wcycle

ATAzcycle (right).

Next,1487

(H.39)
1

wcycle
(ATAzcycle)n =

2k−2∑
j=2

(−1)j
(
N − 2

∣∣∣∣n− j
T

2

∣∣∣∣) .1488

1489
See Figure H.5. If n≤T

2 or n≥N−T
2 then there is s ∈ {−1, 1} such that for all 2≤j≤2k−2,1490

n−j T2 = s(n−j T2 ). Applying Lemma H.59 to (H.39) and simplifying gives (ATAzcycle)n=1491
wcycle (N−skT+2sn). Comparing with Lemma H.54 gives1492

(H.40)
1

wcycle
(ATAzcycle)n = 2

{
n if n ≤ T

2

N − n if n ≥ N − T
2

= (ATh(T ))n.1493

Next suppose T
2 ≤ n ≤ N − T

2 . Let qn = quot
(
n, T2

)
, rn = rem

(
n, T2

)
. Then1494

(H.41)
1

wcycle
(ATAzcycle)n =

qn∑
j=2

(−1)j
(
N − 2

(
n− j

T

2

))
+

2k−2∑
j=qn+1

(−1)j
(
N + 2

(
n− j

T

2

))
.1495

Applying Lemma H.59 to (H.41) and simplifying gives1496

1

wcycle

(
ATAzcycle

)
n
=

{
N−2n+2T+ qn−2

2 T−2k−2−qn
2 T=2

(
T−rem

(
n, T2

))
if qn is even

1−qn
2 T+N+2n−(1+qn)T−2k−3−qn

2 T=T+2rem
(
n, T2

)
if qn is odd

=(2− 1{qn odd})T+2(−1)qn+1rem
(
n,

T

2

)
=2T−

(
AThk,T

)
n
,

1497

where the last equality follows from Lemma H.55. Combining with (H.40) gives1498

(H.42) (ATAzcycle)n = wcycle ·

{(
ATh(T )

)
n

if n ≤ T
2 or n ≥ N − T

2

2T −
(
ATh(T )

)
n

if T
2 ≤ n ≤ N − N

2 .
1499

Add (H.38) and (H.42) and plug in y = h(T ) to get1500
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(H.43)

(ATAz)n=

{
(wcycle+2wbdry)(A

Ty)n=(1−βT ) (A
Ty)n if n≤T

2 or n≥N−T
2

(wbdry+wcycle)2T−wcycle(A
Ty)n=β+(1−2βT ) (A

Ty)n if T
2≤n ≤ N−N

2 .
1501

Therefore,1502

(H.44) − 1

β
AT (Az− y)n =

{
1
βc
(ATy)n if n ≤ T

2 or n ≥ N − T
2

1 + 2
βc
(ATy)n if T

2 ≤ n ≤ N − N
2 .

1503

By Lemma H.57, βc = T . By Lemma H.54, 0 ≤ 1
βc
(ATh(T ))n = 1

βc
(ATy)n ≤ 1, and1504

1
βc
(ATy)n = 1 when n is an odd multiple of T

2 . Since 0 < β < βc

2 , we have wbdry > 0 and1505

wcycle < 0. Therefore 1
βA

T (Az− y)n = −sign(z∗n) when z∗n ̸= 0, ie n is an integer multiple of1506

T
2 . And for all n ∈ [N ],

∣∣∣ 1βAT (Az− y)n

∣∣∣ ≤ 1. By Remark H.40, z∗ is optimal.1507

The nonzero indices of zbdry and zcycle partition those that are multiples of T
2 .1508

Proof of Theorem D.1. By Lemma H.58 and Lemma H.60,1509

z∗ =

{
1
2 (1− βT )+

(
e(

T
2 ) + e(N−T

2 )
)

if βT ≥ 1
2

zbdry + zcycle if 0 < βT ≤ 1
2 .

1510

Proof of Corollary D.2. Note that unscaling (defined in Section 2) does not change the1511
neural network as a function. The reconstructed neural net (Definition B.3) before unscaling is1512

f2 (x; θ)=
∑N

i=1 z
∗
i σ(x−xi). For 1

2≤βT≤1, f2 (x; θ)=1
2 (1−βT )+

(
σ
(
x−xT

2

)
+σ
(
x−xN−T

2

))
.1513

We can compute f2 (x; θ) similarly for βT ≤ 1
2 .1514

H.10. L = 3 layer nets.1515

Theorem D.3. Since y=h(T ) switches 2k−1 times, by Theorem 3.17, Ai=h(T ) for some i.1516
Since y=−Ai, and for all n ∈ [N ], ∥An∥2=N , we have i∈argmaxn∈N |AT

ny|. By Remark H.47,1517
βc=maxn∈N |AT

ny|=yTAi=N . So if β>βc then z∗=0, consistent with zi=− (1−βT )+.1518

Next, z∗ satisfies the subgradient condition in Remark H.40, since for n ∈ [N ],
∣∣AT

n (Az∗ − y)
∣∣1519

=
∣∣AT

n (ziAi −Ai)
∣∣ = (zi−1)

∣∣AT
nAi

∣∣ = ∣∣∣∣ ββcAT
ny

∣∣∣∣ ≤ β

βc
argmaxn∈N

∣∣AT
ny
∣∣ =≤ β. Since z∗i < 0,1520

when i = n, AT
i (Az∗ − y) = β = −βsign(z∗i ). By Remark H.40, z∗ is optimal.1521

Corollary D.4. Follows from the reconstruction in Lemma C.1.1522

The solution sets of Lasso and the training problem.1523

H.11. Proofs for results in Appendix F.1524

Proposition F.1. The result is almost a sub-case of that given by Mishkin and Pilanci1525
(29) with the exception that the bias parameter ξ, is not regularized. Therefore optimality1526
conditions do not impose a sign constraint and it is sufficient that 1⊤(Az+ ξ1−y) = 0 for ξ to1527
be optimal. This stationarity condition is guaranteed by Az+ ξ1 = ŷ. Now let us look at the1528
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parameters zi. If i ̸∈ E(β), then zi = 0 is necessary and sufficient from standard results on the1529
Lasso (38). If i ∈ E(β) and zi ̸= 0, then A⊤

i (ŷ − y) = βsign(zi), which shows that zi satisfies1530
first-order conditions. If zi = 0, then first-order optimality is immediate since |A⊤

i (ŷ−y)| ≤ β,1531
holds. Putting these cases together completes the proof.1532

Proposition F.2. This result follows from applying the reconstruction in Definition B.3 to1533
each optimal point in Φ. The reconstuction sets αi = sign(zi)

√
|zi|. From this we deduce1534

sign(αi)=sign
(
A⊤

i (y − ŷ)
)
. The solution mapping determines the values of wi and bi and in1535

terms of αi. Finally, the constraint f2 (X; θ) = ŷ follows immediately by equality of the convex1536
and non-convex prediction functions on the training set.1537

Lemma H.61. Suppose L = 2, and the activation is ReLU, leaky ReLU or absolute value.1538
Suppose m∗ ≤ m ≤ 2N . Since m ≤ 2N , we can let ΘLasso,stat = {θ : ∃j ∈ [N ] s.t. bi =1539
−xjwi} ⊂ Θ. Let θ∗ ∈ ΘLasso,stat ∩ C(β). Then θ∗ is a minima of the Lasso problem.1540

Proof. We can ignore ξ since its derivative and reconstruction are straightforward, and it1541
does not interact with any other parameters. We denote vector-vector operations as being1542
performed elementwise.1543

Since m∗ ≤ m, a neural net reconstructed from Lasso is optimal in the training problem.1544
Let F (θ) and FLasso (z) be the objectives of the non-convex training problem (1.1) and Lasso1545
(1.2), respectively. The parameters θ are stationary if θ ∈ C(β), i.e., 0 ∈ ∂F (θ).1546

Let ΘLasso= {θ : ∃j∈[N ] s.t. |wi|=|αi|, bi=−xjwi} ⊂ ΘLasso,stat. By a similar argument as1547
the proof of Theorem 3 in (42), since 0∈∂F (θ∗), we have |wi|=|αi| for all neurons i. Therefore1548
θ∗∈ΘLasso. Thus for α∗∈θ∗, observe that θ∗=Rα,w,b→θ(α∗). Let F̃ (α)=F

(
Rα,w,b→θ(α)

)
.1549

Since 0∈∂F (θ∗) at (α∗)=
(
Rα,w,b→θ

)−1
(θ∗), we have F̃ (α∗)=F (θ∗). Perform the follow-1550

ing operations elementwise. The chain rule gives ∂F̃ (α∗)=∂F (θ∗)∂Rα,w,b→θ(α∗)∋0. Let1551
Rαtoz(α) = sign(α)α2. At z∗=Rα→z (α∗), we have FLasso(z∗)=F̃ (α∗). The chain rule gives1552
∂FLasso(z∗)=∂F̃ (α∗)∂R(z∗)∋0. Since the Lasso problem (1.2) is convex, the result holds.1553

Proof of Proposition F.3. Observe that R(Φ(β)) ⊆ C̃(β)∩ΘLasso,stat ⊆ C(β)∩ΘLasso,stat ⊆1554
R(Φ(β)), where the first and last subset inequality follow from Theorem 3.12 and Lemma H.61,1555
respectively. Therefore all subsets in the above expression are equal. Observe that1556
P
(
ΘLasso,stat

)
=ΘP and so P

(
C(β) ∩ΘLasso,stat

)
=C(β)∩P

(
ΘLasso,stat

)
=C(β)∩ΘP and sim-1557

ilarly P
(
C̃(β) ∩ΘLasso,stat

)
=C̃(β) ∩ΘP . Now apply P to all subsets above.1558

Numerical results.1559

H.12. Autoregression figures. In all figures except for the regularization path, the hori-1560
zontal axis is the training epoch.1561
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m = 2

m = 5.

m = 10.

Figure H.6: Planted data. σ2 = 1.
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Figure H.7: The regularization path. Here, σ2 = 1, m = 5.

BTC-2017min.

BTC-hourly.

Figure H.8: Regression with L2 loss.
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BTC-hourly.

Figure H.9: Regression with quantile loss. τ = 0.3

BTC-2017min.

Figure H.10: Regression with quantile loss. τ = 0.7
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