978-1-7281-9054-9/24/$31.00 ©2024 IEEE

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

Power-Managed Data Centers for Sustainable Computing

Emi Zeger, Nicholas Bambos, Mert Pilanci
Department of Electrical Engineering, Stanford University

Abstract—Data centers increasingly consume large amounts
of power. In this paper, we develop an efficient and scalable
power management scheme, based on optimizing the trade-
off between a processor’s speed and its response/delay time to
process jobs. Processors/servers are lightly coordinated by a
system manager that sets an internal power 'price' signal to
discourage excessive power usage. The stability of the power
management scheme depends on the power pricing function,
and a rule of thumb is given for pricing functions that guaran-
tee stability. The analysis is consistent with simulations, which
demonstrate the behavior of the scheme. It can be implemented
in a decentralized manner across servers/processors, making it
scalable to large data centers.

I. INTRODUCTION

Demand for large-scale computing (e.g. for machine
learning, model training, Al, the Internet-of-Things) is in-
creasingly pushing (cloud-) computation into data centers.
This has led to those growing in massive proportions, with
‘hyperscale’ data centers (containing hundreds of thousands
of servers) being built in recent years [1]. As a result,
data centers are increasingly becoming severely power-
constrained [2] [3], already consuming about 1% of energy
globally [4]. Much of the energy consumption is driven by
CPUs and the cooling systems required to prevent them
from overheating [3]. Technological progress in hardware
has made data centers more energy-efficient, but new ad-
vancements are in demand to continue making data centers
sustainable, as computing scales up [4]. In this paper, we de-
velop a power management algorithm that 1) accommodates
the processor/server demand for power, while discouraging
its overuse, 2) is stable (power levels converge and don’t
oscillate or explode over time) and 3) is implementable at
scale.

Various methods have emerged for managing power con-
sumption in computing, with one promising approach being
Dynamic Voltage and/or Frequency Scaling (DVES) [5].
Chips can save energy [6] by reducing voltage and/or de-
creasing clock frequency [7]. Power consumption increases
super-linearly with voltage and therefore it is more power-
efficient to slow down CPU or chip clock frequency; how-
ever, this causes computation jobs or tasks to take longer
to process. This creates a trade-off between power usage
and computation job processing speed (or more generally,
performance), as identified in [8]. To optimize this trade-off
[9] proposes minimizing the joint cost of the task completion
time plus energy usage. Motivated by technologies devel-
oped to use DVFS to prolong battery life for Windows XP
operating systems, [10] develops algorithms to implement
this in an efficient manner online, as jobs arrive with known

completion times (under the fastest CPU rate). In contrast,
[11] studies algorithms that scale the CPU speed based on
just the number of current job arrivals without knowing their
job sizes. Instead of considering each individual job’s arrival
and time left to finish, our paper focuses on the average
completion time of jobs as a function of power.

DVFS has been found to save about 23% of energy in data
centers in [12], which simulated applying DVFS when the
CPU was being underutilized. There were especially high
power savings for Webmail tasks [12]. In addition to DVES,
there are other related approaches for energy reduction in
data centers, including switching servers on and off [13] or
allocating servers to customers in a bidding system [14] to
match demand and maximize the data center’s profit, while
minimizing energy consumption.

Power control algorithms to manage similar trade-offs
have been developed in wireless communication [15] and
smart grids [16], where real-time, dynamic pricing of power
has been explored to regulate energy consumption. These
approaches were combined in [17], which developed a
distributed power control architecture for smart grids. In
[17], electric grid operators respond to increased power
demand by setting higher prices. At every time period, each
user (such as a home) buys the optimal amount of power
from the grid to balance its own trade-off between delay and
electricity cost. Then, the grid operator responds by updating
the power price.

Inspired by [17], we develop a processor and server power
management scheme for data centers that can accelerate the
processor/server speed using DVFS. We provide a general,
scalable algorithm that manages the power versus latency
trade-off. Both provable results and simulations are given to
analyze stability, and a rule of thumb is provided for the
algorithm parameters to ensure that the system converges.

The paper is organized as follows. Section II first de-
scribes the system model, and then defines the costs for
latency (Section II-A) and power (Section II-B). Using these
costs, Section II-C describes a power control algorithm and
the system evolution under it. Section III and Section IV
prove the main result that the system converges. Section V
describes simulations and numerical performance analysis.

Notation: Given a set C = {1,2,--- ,C}, and scalars z,
indexed by ¢ € C, we stack them into a vector denoted as
(ze,c€C) = (w1, - ,mc) € RY. For a function f, its

inverse is denoted as [f]~!. Define [z]* = z for > 0 and
0 otherwise. The composition of f and g, and g with itself
n times, are denoted as f o g and g", respectively.

2846

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

II. DISTRIBUTING POWER TO COMPUTATION QUEUES

Jobs sent to a data center come in different classes,
differentiated by characteristics such as arrival rate and job
priority. Consider a model in which a group of servers
(perhaps virtual) is assigned to each class, and for sim-
plicity let us abstract these groups to one "net" server per
class. We consider C' computation job classes, indexed by
c € C ={12,..,C}. Ariving computations jobs of each
class ¢ are modeled as arriving at random times and being
stored in a buffer or queue, awaiting execution; that is, there
is one queue per class, also indexed by c € C.

We define the response time R, to be the average sojourn
time (from arrival to departure) of jobs through queue c.
In traditional systems, CPUs are clocked at a fixed rate so
that the response time cannot be altered by changing power
consumption. However, our power management algorithm
proposes to use DVFS, which makes the response time a
function R.(p) of the power p > 0 consumed by class c.
For each class ¢, there is an ¢, > 0 such that R.(p) =
oo for all p < €., because, 1) when the server processing
rate falls below the workload arrival rate due to low power
usage by a queue, then the sojourn time in that queue will
explode to infinity in that queue over time (see M/M/1
queue discussion below), and 2) even when the server has
zero processing rate, it could be in stand-by or (light) sleep
modes where it is still burning some (low) power. Let P, =
> _ccc €c be the minimum power used by all servers. Assume
that for each class ¢ € C and p € (e., 0), R.(p) is positive,
strictly decreasing, strictly convex, and twice differentiable.
We make R.(p) decreasing since processing gets faster and
wait times decrease when servers run on more power.

For concreteness and intuition, consider the simplest sce-
nario, a M/M/1 queue. We will return to this example
throughout the paper. In a M/M/1 queue, jobs of class ¢
arrive to their queue c according to a Poisson process of
rate \. > 0. If the server of queue ¢ € C uses power p, that
queue’s processing time for each job is exponential with
rate fi.(p). The response/sojourn time is R.(p) = m,
which sets the minimum power level to e, = [uc] 71 ().
The rate p.(p) is strictly increasing in p and is determined
by DVEFS as follows: the speed 1 vs. power p dependence
in computer processors is typically of the form p = nu’ + ¢
with n > 0, £ > 0 and ¢ € [2, 3] [18], [19]. For example, if
n =1 and £ = 0, the response time of queue ¢ € C is

1
R.(p) = 2750 —a,
Remark 1. The response time is nonlinear. If queue c uses
an insufficient amount of power, the system is unstable and
the response time R.(p) would explode to infinity (leaving
nothing to optimize). The paper considers conditions to
prevent R.(p) from exploding.

(D

A. Quality-of-Service Targets and Performance Loss Cost

Each class ¢ € C has a quality-of-service or performance
target, which is expressed as an average response time R,

that jobs of class ¢ want to attain. We let R = D oecc R, be
the sum of response times. Any overshoot [R.(p) — R.]"
of the response time target R, caused by queue ¢ € C using
(insufficient) power p leads to a performance loss cost

lo(p) = ac ([Re(p) — R T) .)

In (2), a. > 0 is a weighting factor, and v > 1 reflects how
‘aggressive’ the cost is to response time overshoot. Since
R.(p) is strictly decreasing in p, there is a unique target
power level P, that achieves the performance target: R, =
R.(p.). Observe p, = R_*(R.), with performance loss cost
l.(p,) = 0. We define the total target power as P =) _P,.

As an example, for the M /M /1 resgonse time given in (1),

the target power is p, = ()\C + %) *. The derivative of the
performance loss (2) with respect to power is
= \7-1
le(p) = acYR(p) (Re(p) — Re)’ 3)
when p. < p., and 0 otherwise.

Remark 2 (Properties of Performance Loss {.(p) function).
Observe that the performance loss cost (2) has the following
properties (recalling that v > 1):
1) l.(p) = oo for p € [0,¢.] and I.(p) = 0 for p >
[P, 00).
2) l.(p) > 0 and is strictly decreasing for p € [e;, D.)-
3) Since v > 1, Equation (3) gives I.(p}) = 0 = I.(p.),
so l.(p) is differentiable at j, (and hence, differentiable
everywhere) and in particular I,(p) = 0. [

The later results (in Proposition 1) leverage the properties
in Remark 2. Next, we make two assumptions about the
performance loss function I.(p).

Assumption 1. Assume that [.(p) is strictly convex over
(€e Do), icens 1 (p) > 0. n

Assumption 1 is used to prove Proposition 1, and its
combination with the next assumption is used to prove
convergence results in Section IV.

Assumption 2. Assume [!/(p) < 0 for p € (ec, D).

It can be verified that the M/M/1 queue response time (1)
with v = 2 in (2) satisfies Assumption 1 and Assumption 2.

The system is incentivized to draw more power to reduce
the performance loss [., a decreasing function of power.
The next subsection introduces a cost to push back against
drawing too much power, formulated as a power price.

B. Push-Back Pressure and Power Cost

To disincentivize using power excessively or frivolously,
the power management algorithm imposes a "push-back"
power cost. This power cost is an internal pricing signal
sent by the system operator to its servers, aiming to manage
the performance versus power trade-off.

Let P =) .. pc be the total power consumption. The
power price 7 is a function of the total power used by all

2847

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

queues: m = II(P), where the pricing function II(-) has the
following natural properties:

o II(P) > 0 and is is twice differentiable for P € (0, c0).

o II(P) is strictly increasing (I'(P) > 0) for P €
(0, 00), reflecting that the higher the usage and demand
for power, the more expensive it becomes.

For concreteness, consider a pricing function of the form
II(P) = P, where 8 > 0. 4)

IT is strictly convex (concave) when 5 > 1 (8 < 1). A
strictly convex price II(P) models an aggressively managed
system, where the power price’s increase rate gets larger as
more power is consumed. Such a pricing system may reflect
an uncooperative setting such as an electric grid, where
the grid operator aims to aggressively regulate independent,
greedy users that work for their own self-interest. On the
other hand, a data center is a “cooperative" setting where the
system manager controls all the servers. In other words, all
queues share the same goal of managing power efficiently for
the data center as a whole. This motivates using a concave
function for determining a power price that is internal to the
data center. Concavity reflects that the system is “naturally”
well-regulated: the system only consumes high amounts of
power when it sufficiently needs it, and therefore high power
usage should be accommodated by slowing down the rate of
price increase. Indeed, when § < 1, the power management
scheme discussed below is proven to be stable. Exploring
a convex power cost that reflects the actual market price of
electricity set by an external power provider, for example,
in dollars per Watt, is an area for future work.

We assume the response time R.(p) and performance loss
costs are a continuous function of p. Discrete-valued costs
with different levels of performance is also an area of future
work.

Remark 3. The parameter choices for a.,v, are
application-specific. The parameters -y, 3 reflect how aggres-
sively the system designer penalizes the overshoot penalty
and applies it as negative feedback. The parameter a.. reflects
how much the system designer values performance versus
power. Section V also discusses convergence effects of -, 3.

The previous two subsections demonstrate a trade-off
between the performance loss cost I.(p) that is decreasing
and the power cost 7p that is increasing with power. The
next subsection defines an algorithm to balance this trade-
off over time.

C. Power Management Algorithm and System Evolution

The algorithm can be formulated as a discrete-time dy-
namical system that determines the power consumption, as
follows. The system evolves in phases or periods indexed by
t=1,2,3,---. Let p. be the power used by queue ¢ € C
at time ¢, and let p' = (p!,c € C) € RY be its vector form.
To start the algorithm, in the first period ¢ = 1, the system

manager sets a price 7! € (0,00) (perhaps even arbitrarily
or randomly) and broadcasts it to the queues. Each queue
c € C responds by selecting powers p.. This determines
the next period’s price 72 = IT(}_ .. pl). This induces
the queues’ next powers pg, and so on, according to the
following iteration. Given the power price 7 during a period,
each queue ¢ € C autonomously (and selfishly) chooses its
power to minimize its own total cost during that period,

kex(p) = le(p) + 7p, (5)

comprised of the performance loss cost {.(p) and the power
cost mp. Let ®.(7m) = argminy, k. (p). At time ¢, if the
power price is 7! then queue ¢ € C uses power

p' = ®.(7") = argmin {ac ([Re(p) — Ec}"’)'y + th} .
P
(6)

Note p! = —I(—mt), where [} is the convex conjugate
function of /. [20]. The weight .. reflects the sensitivity of
job class c to response performance loss vs. power. Writing
the vector ®(w) = (®.(m),c € C), the vector of powers
chosen at period t is p* = ®(x). Let P* =) _.pl be
the aggregate power consumption throughout period ¢. After
the queues choose power p at period ¢ according to (6), the
power manager observes their total P’ and sets the power

price 7t*! for the next period ¢ + 1 as

it = TI(PY), (7)

which it then broadcasts to all queues. Let F, = ®, o Il
Combining (6) and (7) gives for every ¢ € C,

pe = . <H <szl>> = F.(P'7). ®)
ceC

Define F = > F. = Y . ®. o Il. Summing (8) over ¢ €
C, the total power P! evolves as P'™! = [(P?). For the
system to be stable and therefore practically implementable,
for every ¢ € C, pl. must converge as ¢ — oo. Therefore,
we are primarily interested in the convergence of p’. Since
pitl = @.(P') by (8) and P' = > _pl, the powers p'
converges for every ¢ € C if and only if P! converges.

Remark 4 (Separation of timescales). In our analysis, we
assume that parameters such as the arrival rate \. are
constant over time. In practice, if they are unknown or vary
over time, they can be learned/estimated online. We assume
that 1) the timescale for the queues to converge to their
steady states (and for estimation of steady state response)
is significantly smaller than 2) the timescale of convergence
of the power management algorithm P! and 3) the latter
is significantly smaller than the timescale of variations of
parameters (like average average arrival rates). Thus, there
is significant separation of timescales.

Remark 5. In practice, to implement the power control
algorithm, the power values are transmitted as quantized
values. For our analysis, we assume that the communication

2848

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

bandwidth between the queues and the system manager can
support enough bits to transmit the power values, so that the
power can be approximated as having continuous values.
In addition, in practice, the queues are of finite length,
but we assume they are long enough so that they can be
approximated as infinite (i.e. they are oveflowing with very
low probability).

Because of the many characteristics that may distinguish
a class, there can be many classes. The response time R,
quantifies the quality of experience for each class c as a
function of power. Per period, the power manager observes
only the aggregate power consumption P across all queues
and broadcasts only a single price value to all queues. Hence,
the system requires minimal communication can scale up
to large populations of queues. Some more useful system
properties are summarized below.

Proposition 1. Under the assumptions given before on the
price TI(-), and Assumption 1, for every queue ¢ € C:
1) For w € (0,00), Equation (5) admits a unique mini-
mizer p, given by p. = ®o(r) =]} (=) € (cc, D).
2) Let P = %" p. be the aggregate optimal power,
where p. is as defined above. Then P € (P,, P).
3) The minimizer p. = ®.(7) of (5) is a continuous and
strictly decreasing function of 7.
4) F.(P) and F(P) are continuous and strictly decreasing
for P > 0.
5) When P is close enough to P, (denoted by P°P' ~
P,), F(P°) > P° When P is close enough to P
(denoted by P°P' =~ P), F(P') < P,

Proof sketch. By convexity of [, (Assumption 1) and
Property (3) in Remark 2, I/(p) strictly decreases from
oo at p = €. down to O for p > p.. Therefore, setting
the derivative of the cost (6) to zero gives the equation
I (p) = —m < 0, which has a unique solution p. € (e, D).
This proves (1). Then, (2) follows directly from (1).
Property (3) also follows from (1), together with I’ being
continuous and strictly decreasing (given by Remark 2).
Next, (3) and TI(-) being strictly increasing and continuous
gives (4). For (5), when P°P' ~ P_, as the optimal powers
p. — €., l.(p.) — —oo and so eventually it holds that
pl < [IL]7Y(=TI(P°)) = pttl. On the other hand when
PP ~ P, as pi — P, I.(p}) — 0 and so eventually
pl > [IL]7H(~II(P°PY)) = p'Tt. Summing over ¢ € C gives
the result. (]

As an example, consider M/M/1 queues with response
time (1). Suppose all C' queues/classes are identical with
Ae =N a.=1,8,=2R,=1forall c€C. Then ¢, = \?
and the target response time is attained for p, = (1 + \)2.
The performance loss vs. power cost (5) minimized by each
queue ¢ € C over p € (€., D,) given the price 7 is

1 il
— 1) + 7. ®

hen(p) = (\/]3A

Because the queues are identical, the system is "symmetric"
and all queues ¢ € C will have the same minimizer p. of
(9). Therefore, P°* = Cp; is the aggregate power of the
queues, while P, = C\? and P = C(1 + \)2. For example,
if A = 1 then by Property (2) of Proposition 1, the total
power consumption P ranges between P, = C and P = 4C,
scaling linearly with the number of queues.

In general, Property (1) in Proposition 1 yields the fol-
lowing. First, since the minimizer of (5) is unique, (6) is
well-defined. Second, if /. is simple enough that a closed-
form expression for [I.] 71 exists, then p! = [I.]71(—n") can
be easily found. Otherwise, gradient descent can be used to
solve (6) and compute p. Third, at every time period ¢, the
power used is bounded as p!, € (e, p,) and P* € (P., P).
Thus in practice, F' and F,. will only take in P € (P., P),
although F(P), F.(P) are still well-defined for all P > 0.

Note that as pz > €., the algorithm ensures finite response
time for all ¢. Since p’, < p,, the response times will exceed
their target: R.(p) > R.. The target response time man-
dates a lower bound that delineates priority between different
queues: a less urgent queue will tolerate a larger "minimum"
delay R. < R.(pt) for jobs to finish, allowing more power
to be allotted to higher priority, faster queues. The power
cost dampens the response time from overshooting its target
too much and causing the performance loss to explode over
time. Instead, the power trajectory P! converges to a steady
state value, as we next prove. First, we describe some key
lemmas about fixed points.

III. HELPER LEMMAS FOR CONVERGENCE PROOF

Recall that z* is a fixed point of a function g if g(z*) =
z*. In this section we state some results about fixed points
that will be useful in showing convergence of P!.

Remark 6. If ¢ R — R is nondecreasing and
bounded then for any x, ¢g"(z) is a monotone, bounded
sequence that converges to some z*. If g is also contin-
wous, g(a*) = g(limy 00 g"(z)) = limy o g(g" (x)) =
lim,, o0 "1 (x) = 2%, so z* is a fixed point of g.

Remark 6 will be used to show that the even and odd
subsequences of P? converge, as described next.

Lemma 1. For any initial aggregate power P!, the limits of
P2t and P2+ exist, and are fixed points of F'2.

Proof sketch. By Property (4) of Proposition 1, F' is
continuous and nonincreasing. Therefore F'? is continuous
and nondecreasing. From any initial state P*, for all ¢t > 1,
P! € [0, P]. Applying Remark 6 with g = F?,z = P! and
with g = F? 2 = F(P') gives the result. O

Lemma 1 suggests that the even and odd subsequence
limits of P* will coincide if £ has only one fixed point.

Lemma 2. If 2 has a unique fixed point P*, then for any
initial state P! > 0, lim;_, ., P* = P*.

Proof sketch. By Lemma 2, P?' and P?*! converge
to fixed points of F2, but F? has only one fixed point.

2849

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

So limy_yoo FZ(PY) = P* = limy_o F?(F(PY)) =
limg o F2HL(PO). So Pt — P*. O
The next lemma relates the fixed points of F' and F2.

Lemma 3. F' has a unique fixed point P*, and P* is also
a fixed point of F2

Proof sketch. By Property (4) in Proposition 1, F' is
strictly decreasing. Also, F(0) = P. So, g(P) = F(P)— P
is strictly decreasing and continuous, with g(0) > 0. So
g(P) — P =0 for exactly one P. Therefore F has a unique
fixed point P* at which g(P*) = 0. And P* is a fixed point
of F? since F?(P*) = F(F(P*)) = F(P*) = P*. O

Since a unique fixed point of F'? guarantees convergence,
the next step is to find conditions that ensure this fixed point.

Lemma 4. If F is strictly convex, then F'? has a unique
fixed point.

Proof sketch. Let P* be the fixed point of F and F? as
described in Lemma 3. Let a = P*. Suppose to the contrary
that 2 has another fixed point b # a. If b < a then letting
d=F(b) > F(a) = a gives F?(d) = F(F?(b)) = F(b) =
d, so d > a is another fixed point of F 2. So, without loss
of generality, assume b > a. Since F' is strictly decreasing
and strictly convex, so is F'~!. For any fixed point d of
F?, observe that F'(d) = F~1(d). Therefore, b < P since
otherwise, F~1(b) < F~1(P) = 0 but F(b) > 0 so F(b) #
F~1(b). So for some 6 € (0,1),b = 0a + (1 —) P.

We will split into two cases: a < Panda > P.If a < P
we will use the tangent inequality for differentiable, strictly
convex functions g: for any ;7 # 2, g(x2) > ¢'(z1)(x2 —
x1). If a > P we will use the secant inequality for strictly
convex functions g: For any x7 < 22 < x3, 9lza)=9(@1)

ro—Tq1
g(zs)—g(z1)
r3—T1 :

Case 1 : First suppose a < P/2. Since F~! is strictly
convex, F(b) = F71(b) = F~'fa + (1 - 0)P) <
OF~(a) + (1 — O)F~Y(P) = fa. We will reach a con-
tradiction by showing that 8a < F(b), as follows. Since F
is convex, F(b) > F(a)+ F'(a)(b—a) = a+ F'(a)(b—a).
Plugging in b = fa + (1 — 0)P, we get F(b) — fa >
(1 —0)a+ F'(a)(b—a) = (1 —0)(a+ (P — a)F'(a)),
which we now show is positive. Since F' is strictly convex,
by the tangent inequality, P = F(0) > F(a)+ (a—0)F"(a).

So F'(a) > a=L Therefore a + (P — a)F'(a) > a + (P —
a)@ = %(aQ _ (a —ﬁ)Q) = %(ﬁ_ 2&) > 0, using
a < P/2. Hence, F(b) > 0a, a contradiction.

Case 2: Suppose a < P/ 2. The secant inequality ap-
=Y =1
plied to a < b < P makes ng_)*a _ Fl(Y)-a

o - a b—a
F l(bZ:aF Ya) o F I(P%:GF Ha) _ —=%-. So aF)

a P/2 : N3]
P 2T = 1, using @ > P/2. Therefore a — F'(b) >

b—a. So a > £F(b) + 3b. On the other hand, since F
is strictly decreasing and strictly convex, a = F(a) <
F(3F(b) + 3b) < $F2(b) + 3F(b) = b+ $F(b), a
contradiction.]

We note that Lemma 4 clarifies and rigorizes the sketch
of the argument about the (potentially) unique fixed point
property of F'2 used in [17] to argue for system convergence.

The next section uses the above lemmas to prove conver-
gence of Pt

IV. SYSTEM CONVERGENCE PROOF

Lemma 5. If Assumption 1 and Assumption 2 hold and

II(P) is concave, F is convex on P € [0, P].

Proof sketch. By Property (1) in Proposition 1, F.(P) =
[I)] " (<II(P)). Let y = F.(P). So for P > 0, F/(P) =
—([L]=YHY (-1(P)) II'(P) = —%. Using the standard
quotient rule for derivatives, the numerator of —F(P) is,
" (P)l(y) + ll/‘;cl/l((i)) IT'(P)?%, which is negative for P > 0
under our assumptions. Therefore F.(P) is strictly convex
for P > 0. Since F¢ is strictly decreasing for P > 0 by
Property (4) of Proposition 1, it can be shown that F is
also strictly convex at P = 0. O

Convexity of F, will be key in establishing convergence.

Lemma 6. If F. is convex on [0, P| for all ¢ € C, then P!
converges to the fixed point of F2,

Proof sketch. Since F, is convex on [0, P] for all ¢ € C,
F is convex on [0, P]. By Lemma 4, F? has a unique fixed
point. Applying Lemma 2 gives the result. U

Finally, the next result gives convergence of P?.

Proposition 2. Under Assumption 1, Assumption 2 and a
pricing function II(P) = P? given in (4) with 8 < 1, P?

converges to the fixed point P* of F?, ie., P! 12, pr,

Proof sketch. Since § < 1, TI(P) is concave. Therefore
we can apply Lemma 5, and then apply Lemma 6. U
The next theorem describes the convergence of the system.

Theorem 1. Under Assumption 1 and Assumption 2 (e.g.
M/M/1 queue response time (1) with v = 2 in (2)), and
pricing function II(P) = P? (4) with 3 < 1, the power
management system satisfies the following properties:

1) F has a unique fixed point P* = F'(P*) with F(P) >

P for P € (P.,P*) and F(P) < P for P € (P*,P).
2) The aggregate power converges to P* as t — oo.
3) The prices ' converge to m* = II(P*).

4) The power in each queue converges to p}: = F.(P*).

Proof sketch. Property 1) follows from Lemma 3 and
the property that F' is strictly decreasing, as shown in
Proposition 1. Proposition 2 gives 2). Property 3) holds from
continuity of II. Continuity of F. and (8) give 4). 0

Property (4) of Theorem 1 implies that the system con-
verges to optimal powers p} and a price 7 satisfying the
equation p} = arg min,{l.(p) + 7*p} for every c € C. The
algorithm arrives over time at a power usage that strikes a
balance between the power cost and performance loss. For
all t, pt. < p, by Property (1) of Proposition 1, which gives
the bound p} < p..

2850

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

=0.7
=
wn

0.8,y
-
o

B=
o

=0.9
—
"

=
o

alliia

0.8, v

e

0.0 05 1.0 1.5 2.0 25 0.0 50 10.0 15.0 20.0
p t
Figure 1. Power management simulation for C' = 1 class, A = 0.3 and
R = 1. Left column: F(P) (blue) and F2(P) (green) are plotted. They
intersect the orange line g(P) = P at their fixed points. Right column: P?*
illustrating convergence or divergence.

Lemma 5 suggests that Theorem 1 also holds for more
general, reasonable pricing functions beyond (4) that are
strictly increasing, twice differentiable and concave. Conver-
gence analysis for § > 1 will be analyzed in future work.
We also note that in this model, the queues are synchronized
to update their power the same time periods. Asynchronous
convergence of the system will be explored in future work.

V. PERFORMANCE ANALYSIS

This section uses numerical experiments to analyze per-
formance. First, Section V-A verifies system stability under
the conditions given in Theorem 1 for a simple example, and
gives example of oscillatory behavior when those conditions
are violated. Then, when the power consumption does con-
verge to a limit, we analyze its limit in Section V-B as a
function of the parameters o and R. Finally, Section V-C
demonstrates that the system can handle a large population

of queues, including random arrivals and removals of queues.

A. Stability versus Oscillation Analysis

We simulate the simple M /M /1 example with total cost
(9), arrival rate A = 0.3, and C' = 1 class. The simplicity
of this example allows isolating the effects of the pricing
and performance loss exponents, 5 and -y, respectively,
and examining the relationship between stability and fixed
points. The result of a simulation with a different pair of
(8,7) is plotted in each row of Figure 1. The left column

1.5

. 1.0
Q

— vary a

0.5 vz

— vary R

00 25 50 7.5 10.0 12.5 150 17.5 20.0

a orR

Figure 2. The power P* that the system converges to is plotted as a function
of o and R. In the blue curve, « is varied as R = 1. In the red curve, R
is varied as a = 1. There is C' = 1 class, A = 0.3,y = 2, and 8 = 0.8.

of Figure 1 plots F in blue and F? in green. The right
column plots the trajectory P?. In all plots in the left column,
F intersects the orange line g(P) = P at a single fixed
point, and F? also intersects and shares this fixed point.
This is consistent with Lemma 3. In the middle three rows,
F? only intersects the orange line at the point where F
does, demonstrating that F'? has a unique fixed point, and
P? converges to that point, as seen in the right column.
However, in the first and last row, F? intersects the orange
line at multiple other fixed points, and P! oscillates. This
demonstrates Lemma 2.

In the bottom three rows, v = 2. When 8 < 1 in the third
row, the blue curve F' is convex (and P! converges, demon-
strating Theorem 1), but not when 3 > 1, as consistent with
Lemma 5. As [increases from the middle to the bottom
row, we see that F' becomes more concave, making the
green curve F'2 "rotate counterclockwise" until in the bottom
row, it hits the orange line at multiple fixed points that P!
oscillates between. In the fourth row, even though g > 1,
P? still converges, showing that the sufficient condition in
Proposition 2 is not necessary for convergence, which will
be further analyzed in future work.

Next, the significance of the v > 1 assumption is analyzed
by reducing ~ to be under 1 in the first two rows of Figure 1.
We see that this makes F' initially flat, breaking convexity.
When + is only slightly less than 1, P! still converges, as
seen in the second row. However, when ~ is too small, P?
oscillates, as seen in the first row. Thus, + being too small
[being too large can induce oscillations in the system. The
system engineer must carefully design system parameters to
ensure stability, e.g. following a rule of thumb that v > 1
(e.g. y=2)and f < 1.

B. Trade-off Between Weighting Parameter and Target Time

Here, § = 08 < 1 and v = 2 are fixed so that
Proposition 2 guarantees the power P! converges to a limit
P*. Figure 2 then plots the value of P* as a function of the
weighting factor « (in blue) and the target response time R
(in red). As « increases, the queues place more weight on
minimizing the performance loss ., so they use more power,
as shown by the increasing blue curve. As R increases, the
jobs can tolerate more latency as the target response time
becomes longer, so the queues need less power, as shown
by the decreasing red curve.

2851

2024 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium

©
N}

(c=500)
o
o

U

500

% 4001

300+

40 60 80 100

time phase t

0 20

Figure 3. System evolution with C' = 1000 queues. We set v = 2,8 =
0.8, and Ac, ac, P, ~ Unif(0.1, 1). At any time, each queue independently
enters or leaves the system with 5% probability. Top plot: the trajectory of
pt for an arbitrarily chosen queue (c = 500). Bottom plot: the aggregate
power P! over timer period t.

C. Robustness in Time-Varying, Large Systems

Now, we increase the number of queues to C' = 1000,
where each queue follows the M /M/1 response time (1)
with 6. = 2. Each queue is independently and randomly
assigned ., o, D, according to a uniform distribution over
(0.1,1). We set 8 = 0.8,y = 2 to ensure stability by
Proposition 2. In a data center, queues may leave the system
and re-enter, so the number of queues is time-varying. This
can be caused by random server crashes or idle periods in
the network. To model this, we assign a "on" or "off" status
to every queue. We initially set all 1000 queues to "on," i.e.
all being in the system. At each time period ¢, every queue
has a 5% probability of changing its status: i.e. deactivating
and leaving the system if it is in the system ("on" to "off"),
or activating and entering if it is not ("off" to "on"). In the
bottom plot, the aggregate power P! stabilizes after t = 20
time phases. The top plot shows the trajectory of a particular
queue, ¢ = 500, chosen arbitrarily. After an initial transitory
period, the power level is stable during the periods that the
queue is awake. The system demonstrates fault tolerance and
stability. Further quantification of robustness and simulation
of data center applications is analysis for future work.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship
under Grant No. DGE-1656518.

REFERENCES

[1] D. Mytton and M. Ashtine, “Sources of data center energy estimates:
A comprehensive review,” Joule, vol. 6, no. 9, p. 2032-56, 2022.
[Online]. Available: https://www.cell.com/joule/pdf/S2542-4351(22)
00358-0.pdf

[2] A. S. G. Andrae and T. Edler, “On global electricity usage

of communication technology: Trends to 2030,” Challenges,

vol. 6, no. 1, pp. 117-157, 2015. [Online]. Available: https:

/fwww.mdpi.com/2078-1547/6/1/117

M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption

modeling: A survey,” IEEE Communications Surveys Tutorials,

vol. 18, no. 1, pp. 732-794, 2016.

[4] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey,
“Recalibrating global data center energy-use estimates,” Science,
vol. 367, no. 6481, pp. 984-986, 2020. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.aba3758

3

—_

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

2852

I. RatkoviA, N. BeAYaniA, O. S. Ansal, A. Cristal, and
V. MilutinoviA, “Chapter one - an overview of architecture-level
power- and energy-efficient design techniques,” ser. Advances in
Computers, A. R. Hurson, Ed. Elsevier, 2015, vol. 98, pp. 1-57.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0065245815000303

P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” in 37th IEEE International
Conference on Solid-State Circuits, Feb. 1990.

M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for
Reduced CPU Energy. Boston, MA: Springer US, 1996, pp. 449—471.
[Online]. Available: https://doi.org/10.1007/978-0-585-29603-6_17
K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for
dynamic speed-setting of a low-power CPU,” in Proceedings of
the Ist annual international conference on Mobile computing and
networking, ser. MobiCom ’95. New York, NY, USA: Association
for Computing Machinery, Dec. 1995, pp. 13-25.

S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time
minimization,” ACM Trans. Algorithms, vol. 3, no. 4, Nov. 2007.

N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weighted flow
time,” SIAM Journal on Computing, vol. 39, no. 4, pp. 1294-1308,
2010.

T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong, “Speed scaling
functions for flow time scheduling based on active job count,” in
Algorithms-ESA 2008: 16th Annual European Symposium, Karlsruhe,
Germany, September 15-17, 2008. Proceedings 16. Springer, 2008,
pp. 647-659.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” ACM SIGARCH computer architecture
news, vol. 35, no. 2, pp. 13-23, 2007.

M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance
management of green data centers: A profit maximization approach,”
IEEE transactions on Smart Grid, vol. 4, no. 2, pp. 1017-1025, 2013.
J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,”
ACM SIGOPS operating systems review, vol. 35, no. 5, pp. 103-116,
2001.

B. N. BACCELLLI F. and N. GAST, “Distributed delay-power control
algorithms for bandwidth sharing in wireless networks,” IEEE/ACM
Trans. on Networking, vol. 19, no. 5, 2011.

A. R. Khan, A. Mahmood, A. Safdar, Z. Khan, and N. Khan, “Load
forecasting, dynamic pricing and dsm in smart grid: A review,”
Renewable and Sustainable Energy Reviews, 01 2015.

N. Master, J. Mounzer, and N. Bambos, “Distributed smart grid
architecture for delay and price sensitive power management,” in 2014
IEEE International Conference on Communications (ICC), 2014, pp.
3670-3675.

K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: Modeling and experimental validation
on mobile devices,” in Int. Conf. Parallel Processes Appl. Math.,2013.
A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar, “Critical power slope: understanding the runtime effects
of frequency scaling.” 01 2002, pp. 35-44.

S. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

Cambridge

