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in COVID-19 modeling.16
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1. Introduction. Bayesian inference is a crucial method for determining model20

parameters based on observational data. It is widely used in fields such as inverse21

problems, scientific computing, information science, and machine learning [46]. The22

core issue in Bayesian inference is obtaining samples from a posterior distribution,23

which describes the distribution of parameters based on both data and prior informa-24

tion.25

The Wasserstein gradient flow, as first introduced in references such as [41, 2, 28],26

has been proven to be an efficient method for obtaining samples from a posterior27

distribution. This has led to growing interest in recent years. For example, the28

Wasserstein gradient flow of the Kullback-Leibler (KL) divergence is related to over-29

damped Langevin dynamics. Discretizing the overdamped Langevin dynamics results30

in the classical Langevin Monte Carlo Markov Chain (MCMC) algorithm. Therefore,31

the computation of the Wasserstein gradient flow offers a unique perspective on sam-32

pling algorithms. Additionally, the direction of the Wasserstein gradient also offers33

a deterministic method for updating a particle system as demonstrated in [10]. A34

number of efficient sampling algorithms have been developed by utilizing approxima-35
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tion or generalization of the Wasserstein gradient direction. Such examples include36

the Wasserstein gradient descent (WGD) with kernel density estimation (KDE) [35],37

Stein variational gradient descent (SVGD) [36], and neural variational gradient de-38

scent [15].39

Neural networks have demonstrated impressive abilities in learning complex func-40

tions from data, as well as in Bayesian inverse problems [44, 40, 30, 32]. According to41

the universal approximation theorem of neural networks [23, 38], any complex func-42

tion can be learned by a two-layer neural network with non-linear activations and a43

sufficient number of neurons. Furthermore, functions represented by neural networks44

provide a natural approximation to the Wasserstein gradient direction.45

However, due to the nonlinear and nonconvex nature of neural networks, op-46

timization algorithms such as stochastic gradient descent may not always find the47

global optimal solutions for the training problem. Recently, based on a line of re-48

search [42, 45, 4], the regularized training problem of two-layer neural networks with49

ReLU/polynomial activation and a convex loss function can be formulated as a con-50

vex program. By solving this convex program, it is possible to construct the entire51

set of global optima for the nonconvex training problem [52]. Theoretical analysis52

[51] has also shown that global optima of the training problem correspond to simpler53

models with better generalization properties. Numerical experiments have also shown54

that neural networks found by solving the convex program can achieve higher train55

accuracy and test accuracy compared to neural networks trained by SGD with the56

same number of parameters.57

In this paper, we investigate a variational problem whose optimal solution corre-58

sponds to the Wasserstein gradient direction. Our focus is on the family of two-layer59

neural networks with squared ReLU activation. We formulate the regularized varia-60

tional problem in terms of samples, and instead of directly training the neural network61

to minimize the loss, we analyze the convex dual problem of the training problem and62

study its semi-definite program (SDP) relaxation by analyzing the geometry of dual63

constraints. The resulting SDP can be efficiently solved by convex optimization solvers64

such as CVXPY [16]. We also analyze the choice of the regularization parameter and65

present a practical implementation using subsampling and dimension reduction to im-66

prove computational efficiency. Numerical experiments for PDE-constrained inference67

problems and Covid-19 parameter estimation problems demonstrate the effectiveness68

and efficiency of our method.69

1.1. Related works. The time and spatial discretizations of Wasserstein gra-70

dient flows are extensively studied in literature [27, 28, 9, 10, 6, 37, 22]. Recently,71

neural networks have been applied in solving or approximating Wasserstein gradi-72

ent flows [39, 34, 33, 1, 8, 24, 20]. For sampling algorithms, [15] learns the trans-73

portation function by solving an unregularized variational problem in the family of74

vector-output deep neural networks. Compared to these studies, we focus on a convex75

SDP relaxation of the variational problem induced by the Wasserstein gradient direc-76

tion. Meanwhile, [21] form the Wasserstein gradient direction as the minimizer of the77

Bregman score and they apply deep neural networks to solve the induced variational78

problem. In short, we study the same variational variational problem but we focus79

on the two-layer neural networks, provide convex SDP relaxations and give sufficient80

conditions when the relaxation is exact.81

In comparison to previous works on the convex optimization formulations of neural82

networks using SDP [4, 5], they focus on the polynomial activation and give the exact83

convex optimization formulation (instead of convex relaxation). In comparison, we84
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focus on the neural networks with the squared ReLU activation, which has not been85

considered before. Our method can also apply to the analysis of supervised learning86

problems using neural networks with squared ReLU activation. Moreover, previous87

works on the convex optimization formulation of neural networks mainly focus on the88

supervised learning problem of two-layer neural networks using convex loss functions89

(e.g., squared loss, logistic loss). Our work utilizes a similar convex analytic framework90

to solve the variational problem of approximating the Wasserstein gradient direction,91

which is different from supervised learning. The convex optimization approach is92

based on the idea of infinite-width neural networks modeled as probability measures.93

The dual problem itself is equivalent to the convex dual problem when the neural94

network in the primal problem has infinitely many neurons. However, the convex95

optimization approach tackles networks of arbitrary width that are able to learn useful96

representations, while the infinite width is often limited to kernel methods.97

2. Background. In this section, we briefly review the Wasserstein gradient de-98

scent and present its variational formulation. In particular, we focus on the Wasser-99

stein gradient descent direction of KL divergence functional. Later on, we design a100

neural network convex optimization problem to approximate the Wasserstein gradient101

in samples.102

2.1. Wasserstein gradient descent. Consider an optimization problem in the103

probability space:104

(2.1) inf
ρ∈P

DKL(ρ‖π) =

∫
ρ(x)(log ρ(x)− log π(x))dx,105

Here the integral is taken over Rd and the objective functional DKL(ρ‖π) is the KL106

divergence from ρ to π. The variable is the density function ρ in the space P = {ρ ∈107

C∞(Rd)|
∫
ρdx = 1, ρ > 0}. The function π ∈ C∞(Rd) is a known probability density108

function of the posterior distribution. By solving the optimization problem (2.1) , we109

can generate samples from the posterior distribution.110

A known fact [47, Chapter 8.3.1] is that the Wasserstein gradient descent flow for111

the optimization problem (2.1) satisfies112

∂tρt =∇ ·
(
ρt∇

δ

δρt
DKL(ρt‖π)

)
=∇ · (ρt(∇ log ρt −∇ log π))

(a)
=∆ρt −∇ · (ρt∇ log π),

113

where ρt(x) = ρ(x, t), δ
δρt

is the L2 first variation operator w.r.t. ρt, ∇·F denotes the114

divergence of a vector valued function F : Rd → Rd and ∆ is the Laplace operator.115

In step (a) we use the fact that ρt∇ log ρt = ∇ρt. This equation is also known as116

the gradient drift Fokker-Planck equation. It corresponds to the following updates in117

terms of samples :118

(2.2) dxt = −(∇ log ρt(xt)−∇ log π(xt))dt.119

Clearly, when ρt = π, the above dynamics reaches the equilibrium, which implies that120

the samples xt are generated by the posterior distribution.121

To solve the Wasserstein gradient flow (2.2), we consider a forward Eulerian dis-122

cretization in time. In the l-th iteration, suppose that {xnl } are samples drawn from123
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ρl. The update rule of Wasserstein gradient descent (WGD) on the particle system124

{xnl } follows125

(2.3) xnl+1 = xnl − αl∇Φl(x
n
l ),126

where Φl : Rd → R is a function which approximates log ρl − log π and αl > 0 is the127

step size.128

2.2. Variational formulation of WGD. Given the particles {xn}Nn=1, we de-129

sign the following variational problem to choose a suitable function Φ approximating130

the function log ρ− log π. Consider131

(2.4) inf
Φ∈C1(Rd)

1

2

∫
‖∇Φ(x)− (∇ log ρ(x)−∇ log π(x))‖22ρ(x)dx.132

The objective function evaluates the least-square discrepancy between∇ log ρ−∇ log π133

and ∇Φ weighted by the density ρ. The optimal solution follows Φ = log ρ − log π,134

up to a constant shift. Let H ⊆ C1(Rd) be a finite-dimensional function space. The135

following proposition gives a formulation of (2.4) in H.136

Proposition 2.1. Let H ⊆ C1(Rd) be a function space. The variational problem137

(2.4) in the domain H can be reformulated to138

(2.5)

inf
Φ∈H

1

2

∫
‖∇Φ(x)‖22ρdx+

∫
∆Φ(x)ρ(x)dx

+

∫
〈∇ log π(x),∇Φ(x)〉 ρ(x)dx.

139

Proof. We first note that140

(2.6)

1

2

∫
‖∇Φ−∇ log ρ+∇ log π‖22ρdx

=
1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π −∇ log ρ,∇Φ〉 ρdx

+
1

2

∫
‖∇ log ρ−∇ log π‖22ρdx.

141

We notice that the term 1
2

∫
‖∇ log ρ−∇ log π‖22ρdx does not depend on Φ. Utilizing142

the integration by parts, we can compute that143

(2.7)

∫
〈∇ log ρ,∇Φ〉 ρdx =

∫ 〈
∇ρ
ρ
,∇Φ

〉
ρdx

=

∫
〈∇ρ,∇Φ〉 dx

=−
∫

∆Φρdx.

144

Therefore, the variational problem (2.4) is equivalent to145

(2.8) inf
Φ∈C1(Rd)

1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π,∇Φ〉 ρdx+

∫
∆Φρdx.146

By restricting the domain to H, we complete the proof.147
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Remark 2.2. A similar variational problem has been studied in [15]. If we replace148

∇Φ for Φ ∈ H by a vector field Ψ in a certain function family, then, the quantity149

in (2.5) is the negative regularized Stein discrepancy defined in [15] between ρ and150

π based on Ψ. This problem is also similar to the variational problem for the score151

matching estimator in [25] by parameterizing Φ in a given probabilistic model. In152

comparison, our method can be viewed as a special case of score matching by using a153

two-layer neural network.154

Therefore, by replacing the density ρ by finite samples {xn}Nn=1 ∼ ρ, the problem155

(2.5) in terms of finite samples forms156

(2.9)

inf
Φ∈H

1

N

N∑
n=1

(
1

2
‖∇Φ(xn)‖22 + ∆Φ(xn)

)

+
1

N

N∑
n=1

〈∇ log π(xn),∇Φ(xn)〉 .

157

3. Optimal neural network approximation of Wasserstein gradient. In158

this section, we focus on functional space H of functions represented by two-layer neu-159

ral networks. We derive the primal and dual problems of the regularized Wasserstein160

variational problems. By analyzing the dual constraints, a convex SDP relaxation of161

the dual problem is obtained. We also present a practical implementation estimation162

of ∇ log ρ−∇ log π and discuss the choice of the regularization parameter.163

Let ψ be an activation function. Consider the case where H is a class of two-layer164

neural network with the activation function ψ(x):165

(3.1) H =
{

Φθ ∈ C1(Rd)|Φθ(x) = αTψ(WTx)
}
,166

where θ = (W,α) is the parameter in the neural network with W ∈ Rd×m and α ∈ Rm.167

Remark 3.1. We can extend this model to handle by adding an entry of 1 in168

x1, . . . , xn, .169

For two-layer neural networks, we can compute the gradient and Laplacian of Φ ∈ H170

as follows:171

(3.2) ∇Φθ(x) =

m∑
i=1

αiwiψ
′(wTi x) = W (ψ′(WTx) ◦ α),172

173

(3.3) ∆Φθ(x) =

m∑
i=1

αi‖wi‖22ψ′′(wTi x).174

Here ◦ represents the element-wise multiplication. By adding a regularization term175

to the variational problem (2.9), we obtain176

(3.4)

min
θ

1

2N

N∑
n=1

∥∥∥∥∥
m∑
i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥
2

2

+
1

N

N∑
n=1

〈
m∑
i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉

+
1

N

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) +
β

2
R(θ),

177
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where β > 0 is the regularization parameter. We focus on the squared ReLU activation178

ψ(z) = (z)2
+ = (max{z, 0})2

. Note that a non-vanishing second derivative is required179

for the Laplacian term in (3.3), which makes the ReLU activation inadequate. For180

this activation function, we consider the regularization function R(θ) =
∑m
i=1(‖wi‖32+181

|αi|3).182

Remark 3.2. We note that ∇Φθ(x) and ∆Φθ(x) are all piece-wise degree-3 poly-183

nomials of the parameters θ. Hence, we consider a specific cubic regularization term184

above, analogous to [4]. By choosing this regularization term, we can derive a simpli-185

fied dual problem.186

By utilizing the arithmetic and geometric mean (AM-GM) inequality, we can187

rescale the first and second-layer parameters and formulate the regularized variational188

problem (3.4) as follows.189

Proposition 3.3 (Primal problem). The regularized variational problem (3.4)190

can be reformulated to191

(3.5)

min
W,α

1

2

N∑
n=1

∥∥∥∥∥
m∑
i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥
2

+

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn)

+

N∑
n=1

〈
m∑
i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉
+ β̃‖α‖1,

s.t. ‖wi‖2 ≤ 1, i ∈ [m],

192

where β̃ = 3 · 2−5/3Nβ and we denote [m] = {1, . . . ,m}.193

Proof. Suppose that ŵi = β−1
i wi and α̂i = β2

i αi, where βi > 0 is a scale parameter194

for i ∈ [m]. Let θ′ = {(ŵi, α̂i)}mi=1. We note that195

(3.6) α̂iŵiψ
′(ŵTi xn) = βiαiwiψ

′ (β−1
i wTi xn

)
= αiwiψ

′(wTi xn),196

and197

(3.7) α̂i‖ŵi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(wTi xn).198

This implies that Φθ(x) = Φθ′(x) and ∇ · Φθ(x) = ∇ · Φθ′(x). For the regularization199

term R(θ), we note that200

(3.8)

‖ŵi‖32 + ‖α̂i‖32 =β6
i |αi|3 + β−3

i ‖wi‖
3
2

=β6
i |αi|3 +

1

2
β−3
i ‖wi‖

3
2 +

1

2
β−3
i ‖wi‖

3
2

=3 · 2−2/3‖wi‖22|αi|.

201

The optimal scaling parameter is given by αi = 2−1/9 ‖wi‖1/32

|αi|1/31

. As the scaling operation202

does not change ‖wi‖22|αi|, we can simply let ‖wi‖2 = 1. Thus, the regularization term203

β
2R(θ) becomes β̃

N

∑m
i=1 ‖wi‖1. This completes the proof.204

In short, the optimal value of (3.4) and (3.5) are the same. We can obtain the205

optimal solution of (3.5) by rescaling the optimal solution of (3.4) and vice versa.206
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For simplicity, we write Y ∈ RN×d whose n-row is ∇ log π(xn) for n ∈ [N ]. We207

introduce the slack variable zn =
∑m
i=1 αiwiψ

′(xTnwi) for n ∈ [N ] and denote Z =208 [
z1 . . . zN

]T ∈ RN×d. Then, we can simplify the problem (3.5) to209

(3.9)

min
W,α,Z

1

2
‖Z‖2F +

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn)

+ tr(Y TZ) + β̃‖α‖1,

s.t. zn =

m∑
i=1

αiwiψ
′(xTnwi), n ∈ [N ],

‖wi‖2 ≤ 1, i ∈ [m].

210

To derive the convex relaxation of the neural network training problem, the dual211

problem plays an important role. By applying the Lagrangian duality, we can derive212

the dual problem of (3.9) as follows.213

Proposition 3.4 (Dual problem). The dual problem of the regularized varia-214

tional problem (3.9) is215

(3.10)

− 1

2
‖Λ + Y ‖2F ,

s.t. max
w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(xTnw)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃,
216

which provides a lower-bound on (3.9). .217

Proof. Consider the Lagrangian function218

(3.11)

L(Z,W,α,Λ) =
1

2
‖Z‖2F +

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1

+

N∑
n=1

λTn

(
zn −

m∑
i=1

αiwiψ
′(xTnwi)

)

=β̃‖α‖1 +
m∑
i=1

αi

N∑
n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

)
+

1

2
‖Z‖2F + tr((Y + Λ)TZ).

219

For fixed W , the constraints on Z and α are linear and the strong duality holds. Thus,220

we can exchange the order of minZ,α and maxΛ. Thus, we can compute that221

(3.12)
min

W∈W,Z,α
max

Λ
L(Z,W,α,Λ)

= min
W∈W

max
Λ

min
α,Z

L(Z,W,α,Λ)

= min
W∈W

max
Λ

min
α,Z

β̃‖α‖1 +

m∑
i=1

αi

N∑
n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

)
+

1

2
‖Z‖2F + tr((Y + Λ)TZ)

= min
W∈W

max
Λ
−1

2
‖Λ + Y ‖2F +

m∑
i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃
)
.

222
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By exchanging the order of min and max, we can derive the dual problem:223

(3.13)

max
Λ

min
W∈W

−1

2
‖Λ + Y ‖2F +

m∑
i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃
)

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃, i ∈ [m]

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(wTxn)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃, i ∈ [m]

224

This completes the proof.225

We note that the dual problem can be infeasible if the regularization parameter226

β̃ is below a certain threshold. In other words, if the regularization term is missing227

or the regularization parameter is not large enough, the optimal value of the dual228

problem is −∞ and the primal problem is not lower bounded.229

3.1. Analysis of dual constraints and the relaxed dual problem. Now,230

we analyze the constraint in the dual problem. We note that it is closely related231

to the regularization parameter, which we will discuss later. For simplicity, we take232

ψ′′(0) = 0 as the subgradient of ψ′(z) at z = 0, i.e., taking the left derivative of ψ′(z)233

at z = 0. Let X = [x1, . . . , xN ]T ∈ RN×d. Denote the set of all possible hyper-plane234

arrangements corresponding to the rows of X as235

(3.14) S = {diag(I(Xw ≥ 0))|w ∈ Rd, w 6= 0}.236

Here I(s) = 1 if the statement s is correct and I(s) = 0 otherwise. Let p = |S| be237

the cardinality of S, and write S = {D1, . . . , Dp}. According to [12], we have the238

upper bound p ≤ 2r
(
e(N−1)

r

)r
, where r = rank(X). Based on the analysis of the239

dual constraints, we can derive a convex SDP as a relaxed dual problem.240

Proposition 3.5 (Relaxed dual problem). The relaxed dual problem is the fol-241

lowing SDP:242

(3.15)

max
Λ,{r(j,−),r(j,+)}pj=1

−1

2
‖Λ + Y ‖2F ,

s.t. Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0

r(j,+) ≥ 0, r(j,−) ≥ 0, j ∈ [p],

243

where we denote [p] = {1, . . . , p}. For j ∈ [p], we denote Aj(Λ) = −ΛTDjX−XTDjΛ,244

Bj = 2 tr(Dj)Id, Ãj(Λ) =

[
Aj(Λ) 0

0 0

]
, B̃j =

[
Bj 0
0 0

]
, H

(j)
0 =

[
Id 0
0 −1

]
and H

(j)
n =245 [

0 (1− 2(Dj)nn)xn
(1− 2(Dj)nn)xTn 0

]
, n ∈ [N ] The vector ed+1 ∈ Rd+1 satisfies that246

(ed+1)i = 0 for i ∈ [d] and (ed+1)d+1 = 1.247

The optimal value of (3.15) gives a lower bound on the dual problem (3.10), and248

hence on the primal problem (3.9).249
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Proof. Based on the hyper-plane arrangements D1, . . . , Dp, the dual constraint is250

equivalent to that for all j ∈ [p],251

(3.16)
∣∣2 tr(Dj)‖w‖22 − 2wTΛTDjXw

∣∣ ≤ β̃252

holds for all w ∈ Rd satisfying ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0. This is equivalent to say253

that for all j ∈ [p]254

β̃ ≥min 2 tr(Dj)‖w‖22 − 2wTΛTDjXw,(3.17)255

s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0,256

−β̃ ≤max 2 tr(Dj)‖w‖22 − 2wTΛTDjXw,257

s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0.258259

From a convex optimization perspective, the natural idea to interpret the con-260

straint (3.17) is to transform the minimization problem into a maximization problem.261

We can rewrite the minimization problem in (3.17) as a trust region problem with262

inequality constraints:263

(3.18)
min
w∈Rd

wT (Bj +Aj(Λ))w,

s.t. ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0.
264

As the problem (3.18) is a convex problem, by taking the dual of (3.18) w.r.t. w,265

we can transform (3.18) into a maximization problem. However, as (3.18) is a trust266

region problem with inequality constraints, the dual problem of (3.18) can be very267

complicated. According to [26], the optimal value of the problem (3.18) is bounded268

by the optimal value of the following SDP269

(3.19)

min
Z∈Sd+1

tr((Ãj(Λ) + B̃j)Z),

s.t. tr(H(j)
n Z) ≤ 0, n = 0, . . . , N,

Zd+1,d+1 = 1, Z � 0.

270

from below.271

Lemma 3.6. The dual problem of SDP (3.19) takes the form272

(3.20) max−γ, s.t. S = Ãj(Λ) + B̃j +

N∑
n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0,273

in variables r =

 r0

...
rN

 ∈ RN+1 and γ ∈ R.274

Proof. Consider the Lagrangian275

(3.21) L(Z, r, γ) = tr((Ãj(Λ) + B̃j)Z) +

N∑
n=0

rn tr(H(j)
n Z) + γ(tr(Zed+1e

T
d+1)− 1),276

where r ∈ RN+1
+ and γ ∈ R. By minimizing L(Z, r, γ) w.r.t. Z ∈ Sd+1

+ , we derive the277

dual problem (3.20).278
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The constraints on Λ in the dual problem (3.10) include that the optimal value279

of (3.19) is bounded from below by −β̃. According to Lemma 3.6, this constraint is280

equivalent to that there exist r ∈ RN+1 and γ such that281

(3.22) − γ ≥ −β̃, S = Ãj(Λ) + B̃j +

N∑
n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0.282

As ed+1e
T
d+1 is positive semi-definite, the above condition on Λ is also equivalent to283

that there exist r ∈ RN+1 such that284

(3.23) Ãj(Λ) + B̃j +

N∑
n=0

rnH
(j)
n + β̃ed+1e

T
d+1 � 0, r ≥ 0.285

Therefore, the following convex set of Λ286

(3.24)
{

Λ : Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,−) ≥ 0

}
287

is a subset of the set of Λ satisfying the dual constraints288

(3.25)

{
Λ : min
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≥ −β̃
}
.289

On the other hand, the constraint on Λ290

(3.26) max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃291

is equivalent to292

(3.27) min
‖w‖2≤1,(2Dj−I)w≥0

−wT (Bj +Aj(Λ))w ≥ −β̃.293

By applying the previous analysis on the above trust region problem, the following294

convex set of Λ295

(3.28)
{

Λ : −Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,+) ≥ 0

}
296

is a subset of the set of Λ satisfying the dual constraints297

(3.29)

{
Λ : max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃
}
.298

Therefore, replacing the dual constraint by299

(3.30)

Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p],

300

we obtain the relaxed dual problem. As its feasible domain is a subset of the feasible301

domain of the dual problem, the optimal value of the relaxed dual problem gives a302

lower bound for the optimal value of the dual problem.303
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Now we consider the case when the relaxation is inexact, i.e., the relaxed dual304

problem has a smaller optimal value compared to the dual problem. In this case, the305

relaxed bi-dual problem provides insights on approximating the primal problem via306

convex optimization, which is derived as follows. As an equivalent formulation of the307

convex dual problem (3.15), it can be viewed as a convex relaxation of the primal308

problem (3.9).309

Proposition 3.7 (Relaxed bi-dual problem). The dual of the relaxed dual prob-310

lem (3.15) is as follows311

(3.31)

min
Z,{(S(j,+),S(j,−))}pj=1

1

2
‖Z + Y ‖2F −

1

2
‖Y ‖2F

+

p∑
j=1

tr(B̃j(S
(j,+) − S(j,−)))

+ β̃

p∑
j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
,

s.t. Z =

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)),

tr(S(j,−)H(j)
n ) ≤ 0, tr(S(j,+)H(j)

n ) ≤ 0,

n = 0, . . . , N, j ∈ [p].

312

Here A∗j is the adjoint operator of the linear operator Aj.313

Proof. Consider the Lagrangian function314

(3.32)
L(Λ, r,S)

=− 1

2
‖Λ + Y ‖22 −

p∑
j=1

tr

(
S(j,−)

(
Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))

−
p∑
j=1

tr

(
S(j,+)

(
−Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))
,

315

where we write316

(3.33)
r =

(
r(1,−), . . . , r(p,−), r(1,+), . . . , r(p,+)

)
∈
(
RN+1

)2p
,

S =
(
S(1,−), . . . , S(p,−), S(1,+), . . . , S(p,+)

)
∈
(
Sd+1

+

)2p
.

317

Here we write Sd+1
+ = {S ∈ Sd+1|S � 0}. By maximizing w.r.t. Λ and r, we derive318

the bi-dual problem (3.31).319

As (3.15) is a convex problem and the Slater’s condition is satisfied, the optimal values320

of (3.15) and (3.31) are same. The bi-dual problem (3.31) is closely related to the321

primal problem (3.9). Indeed, any feasible solutions of the primal problem (3.5) can322

be mapped to feasible solutions of (3.31). We note that the mapping from the primal323

solution to the bi-dual solution cannot go both ways unless these two problems are324

equivalent.325
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Theorem 3.8. Suppose that (Z,W,α) is feasible to the primal problem (3.9).326

Then, there exist matrices {S(j,+), S(j,−)}pj=1 constructed from (W,α) such that327

(Z, {S(j,+), S(j,−)}pj=1) is feasible to the relaxed bi-dual problem (3.31). Moreover,328

the objective value of the relaxed bi-dual problem (3.31) at (Z, {S(j,+), S(j,−)}pj=1) is329

the same as objective value of the primal problem (3.9) at (Z,W,α).330

Proof. Suppose that (Z,W,α) is a feasible solution to (3.5). Let Dj1 , . . . , Djk be331

the enumeration of {diag(I(Xwi ≥ 0))|i ∈ [m]}. For i ∈ [k], we let332

(3.34) S(ji,+) =
∑

l:αl≥0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
, S(ji,−) = 0,333

and334

(3.35) S(ji,+) = 0, S(ji,−) = −
∑

l:αl<0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
.335

For j /∈ {j1, . . . , jk}, we simply set S(j,+) = 0, S(j,−) = 0. As ‖wi‖2 ≤ 1 and Dji =336

I(Xwi ≥ 0), we can verify that tr(S(j,−)H
(j)
n ) ≤ 0, tr(S(j,+)H

(j)
n ) ≤ 0 are satisfied for337

j = j1, . . . , jm and n = 0, 1, . . . , N . This is because for n = 0, as H
(ji)
0 =

[
Id 0
0 −1

]
,338

it follows that339

(3.36)

tr(S(ji,+)H
(ji)
0 ) =

∑
l:αl≥0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑
l:αl<0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0.
340

For n = 1, . . . , N , we have341

(3.37)

tr(S(ji,+)H
(ji)
0 ) =

∑
l:αl≥0,diag(I(Xwl≥0))=Dji

2αl(1− 2(Dji)nn)xTnwl ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑
l:αl<0,diag(I(Xwl≥0))=Dji

αl(1− 2(Dji)nn)xTnwl ≤ 0.
342

Based on the above transformation, we can rewrite the bidual problem in the343

form of the primal problem (3.9). For S ∈ Sd+1, we note that344

tr(SÃj(Λ))

=− tr((ΛTDjX +XTDjΛ)S1:d,1:d)

=− 2 tr(ΛTDjXS1:d,1:d),

345

where S1:d,1:d denotes the d × d block of S consisting the first d rows and columns.

This implies that Ã∗j (S) = −2DjXS1:d,1:d. Hence, we have

Ãji(S
(ji,+) − S(ji,−)) =−

∑
l:diag(I(Xwl≥0)

2αlDjiXwlw
T
l

=−
∑

l:diag(I(Xwl≥0)

2αl(Xwl)+w
T
l .
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Therefore, we have

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)) = 2

m∑
i=1

αi(Xwi)+w
T
i .

As n-th row of Z satisfies that zn = 2
∑m
i=1 αiwi(x

T
nwi)+, this implies that

Z = 2

m∑
i=1

αi(Xwi)+w
T
i =

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)).

Hence (Z, {(S(j,−), (S(j,−)}pj=1) is feasible to the relaxed bi-dual problem (3.31).346

We can also compute that

p∑
j=1

tr(B̃j(S
(j,+) − S(j,−))) = 2

m∑
i=1

αi

N∑
n=1

I(xTnwi ≥ 0)‖wi‖22,

and
p∑
j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
=

m∑
i=1

|αi|.

Thus, the primal problem (3.9) with (Z,W,α) and the relaxed bi-dual problem (3.31)347

with (Z, {(S(j,−), (S(j,−)}pj=1) have the same objective value.348

Let J(Z, {S(j,+), S(j,−)}pj=1) denote the objective value of the relaxed bi-dual prob-349

lem (3.31) at a feasible solution (Z, {S(j,+), S(j,−)}pj=1). Let (Z∗,W ∗, α∗) denote a350

globally optimal solution of the primal problem (3.9). By Theorem 3.8, there exist351

matrices {S(j,+), S(j,−)}pj=1 such that (Z∗, {S(j,+), S(j,−)}pj=1) is a feasible solution of352

the relaxed bi-dual problem (3.31) and J(Z∗, {S(j,+), S(j,−)}pj=1) is the same as the353

objective value of (3.9) at its global minimum (Z∗,W ∗, α∗). On the other hand, let354

(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) denote an optimal solution of the relaxed bi-dual problem355

(3.31). From the optimality of (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1), we have356

J(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) ≤ J(Z∗, {S(j,+), S(j,−)}pj=1).357

Note that at (Z∗,W ∗, α∗) we obtain the optimal approximation of ∇ log ρ−∇ log π at358

x1, . . . , xN in the family of two-layer squared-ReLU networks (3.1). Smaller or equal359

objective value of the relaxed bi-dual problem (3.31) can be achieved at the pair360

(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) than at (Z∗, {S(j,+), S(j,−)}pj=1). Therefore, we can view Z̃∗361

gives an optimal approximation of ∇ log ρ − ∇ log π evaluated on x1, . . . , xN in a362

broader function family including the two-layer squared ReLU neural networks.363

From the derivation of the relaxed bi-dual problem, we have the relation Z̃∗ =364

−Λ∗−Y , where (Λ∗, {r(j,+), r(j,−)) is optimal to the relaxed dual problem (3.15) and365

(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) is optimal to the relaxed bi-dual problem (3.31). Therefore,366

by solving Λ∗ from the relaxed dual problem (3.15), we can use −Λ∗ − Y as the367

approximation of ∇ log ρ−∇ log π evaluated on x1, . . . , xN .368

Remark 3.9. We note that solving the proposed convex optimization problem369

3.15 renders the approximation of the Wasserstein gradient direction. Compared to370

the two-layer ReLU networks, it induces a broader class of functions represented by371

{S(j,+), S(j,−)}pj=1. This contains more variables than the neural network function.372
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3.2. Choice of the regularization parameter. As the constraints in the re-373

laxed dual problem (3.15) depend on the regularization parameter β̃, it is possible374

that for small β̃, the relaxed dual problem (3.15) is infeasible. Consider the following375

SDP376

(3.38)

min β̃, s.t. Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

377

Here the variables are β̃,Λ and {r(j,+), r(j,−)}pj=1. Let β̃1 be the optimal value of378

the above problem. Then, only for β̃ ≥ β̃1, there exists Λ ∈ RN×d satisfying the379

constraints in (3.15). In other words, the relaxed dual problem (3.15) is feasible. We380

also note that β̃1 only depends on the samples X and it does not depend on the value381

of ∇ log π evaluated on x1, . . . , xN . On the other hand, consider the following SDP382

(3.39)

min β̃, s.t. Ãj(Y ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Y )− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p],

383

where the variables are β̃ and {r(j,+), r(j,−)}pj=1. Let β̃2 be the optimal value of the384

above problem. For β̃ ≥ β̃2, as Y is feasible for the constraints in (3.15), the optimal385

value of the relaxed dual problem (3.15) is 0. In short, only when β̃ ∈ [β̃1, β̃2], the386

variational problem (3.15) is non-trivial. To ensure that solving the relaxed dual387

problem (3.15) gives a good approximation of the Wasserstein gradient direction, we388

shall avoid choosing β̃ either too small or too large.389

3.3. Practical implementation. Although the number p of all possible hyper-390

plane arrangements is upper bounded by 2r((N − 1)e/r)r with r = rank(X), it is391

computationally costly to enumerate all possible p matrices D1, . . . , Dp to represent392

the constraints in the relaxed dual problem (3.5). In practice, we first randomly393

sample M i.i.d. random vectors u1, . . . , uM ∼ N (0, Id) and generate a subset Ŝ =394

{diag(I(Xuj ≥ 0)|j ∈ [M ]}. of S. Then, we optimize the randomly sub-sampled395

version of the relaxed dual problem based on the subset Ŝ and obtain the solution396

Λ. Here −Λ − Y is used as the direction to update the particle system X. If the397

regularization parameter is too large, then we will have −Λ−Y = 0, which makes the398

particle system unchanged. Therefore, to ensure that β̃ is not too large, we decay β̃399

by a factor γ1 ∈ (0, 1). This also appears in [19]. On the other hand, if β̃ is too small400

resulting the relaxed dual problem (3.5) infeasible, we increase β̃ by multiplying γ−1
2 ,401

where γ2 ∈ (0, 1). The overall algorithm is summarized in Algorithm 3.1.402

Applying the standard interior point method [7] leads to the computational time403

(3.40) O((max{N, d2}p̂)6).404

For high-dimensional problems, i.e., d is large, the computational cost of solving (3.15)405

can be large. In this case, we apply the dimension-reduction techniques [55, 11, 48] to406
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Algorithm 3.1 Convex neural Wasserstein descent

Require: initial positions {xn0}Nn=1, step size αl, initial regularization parameter β̃0,
γ1, γ2 ∈ (0, 1).

1: while not converge do
2: Form Xl and Yl based on {xnl }Nn=1 and {∇ log π(xnl )}Nn=1.

3: Solve Λl from the relaxed dual problem (3.15) with β̃ = β̃l.
4: if the relaxed dual problem with β̃ = β̃l is infeasible then
5: Set Xl+1 = Xl for n ∈ [N ] and set β̃l+1 = γ−1

2 β̃l.
6: else
7: Update Xl+1 = Xl + αl(Λl + Yl) for n ∈ [N ] and set β̃l+1 = γ1β̃l.
8: end if
9: end while

reduce the parameter dimension d to a data-informed intrinsic dimension d̂, which is407

often very low, i.e., d̂� d, thus significantly reducing the computational time (3.40).408

4. Numerical experiments. In this section, we present numerical results to409

compare WGD approximated by neural networks (WGD-NN) and WGD approx-410

imated using convex optimization formulation of neural networks (WGD-cvxNN).411

The performance of compared methods is assessed by the sample goodness-of-fit of412

the posterior. For WGD-NN, in each iteration, it updates the particle system using413

(2.3) with a function Φ represented by a two-layer squared ReLU neural network.414

The parameters of the neural network are obtained by directly solving the nonconvex415

optimization problem (3.4). For high-dimensional problems, we apply the dimension416

reduction technique and compare the projected versions (pWGD-NN and pWGD-417

cvxNN).418

We note that although the cost for solving the relaxed dual problem (3.15) using419

standard convex optimization solvers in WGD-cvxNN can be higher compared to that420

by a direct neural network training in WGD-NN, this cost difference is negligible in421

the entire optimization dominated by the likelihood evaluation when the model (e.g.,422

PDE) is expensive to solve. In such cases, WGD-cvxNN and WGD-NN have similar423

computational complexity but WGD-cvxNN achieves better performance. We use424

the standard convex optimization solver CVXPY [16] with MOSEK[3] inner solver.425

Applying randomized SDP solvers [54], randomized second-order methods [43, 31] or426

advanced SDP solvers [56, 53, 49] for the large-scale problem can improve the com-427

putation time. Moreover, the induced SDPs have specific structures of many similar428

constraints. Solving the SDP (3.15) can be accelerated by designing a specialized429

convex optimization solver, which is left for future work.430

4.1. A two-dimensional example. We test and compare the performance of431

WGD-cvxNN and WGD-NN on a bimodal two-dimensional double-banana posterior432

distribution introduced in [14]. We first generate 300 posterior samples by a Stein433

variational Newton (SVN) method [14] as the reference, as shown in Figure 1. We434

evaluate the performance of WGD-NN and WGD-cvxNN by calculating the maximum435

mean discrepancy (MMD) between their samples in each iteration and the reference436

samples. In the comparison, we use N = 50 samples and run for 100 iterations with437

step sizes αl = 10−3. For WGD-cvxNN, we set β = 1, γ1 = 0.95 and γ2 = 0.9510. For438

WGD-NN, we use m = 200 neurons and optimize the regularized training problem439

(3.4) using all samples with the Adam optimizer [29] with learning rate 10−3 for 200440
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sub-iterations. We also set the regularization parameter β = 1 and decrease it by a441

factor of 0.95 in each iteration. We find that this setup of parameters is more suitable.442

Fig. 1: Two-dimensional example. Posterior density and sample distributions by
WGD-cvxNN and WGD-NN at the final step of 100 iterations, compared to the
reference SVN samples (right).

The posterior density and the sample distributions by WGD-cvxNN and WGD-443

NN at the final step of 100 iterations are shown in Figure 1. It can be observed that444

WGD-cvxNN provides more representative samples than WGD-NN for the posterior445

density. In Figure 2, we plot the MMD of the samples by WGD-cvxNN and WGD-NN446

compared to the reference SVN samples at each iteration. We observe that the samples447

by WGD-cvxNN achieve much smaller MMD than those of WGD-NN compared to448

the reference SVN samples, which is consistent with the results shown in Figure 1.449

4.2. PDE-constrained linear Bayesian inference. In this experiment, we
consider a linear Bayesian inference problem constrained by a partial differential
equation (PDE) model for contaminant diffusion in environmental engineering in the
domain D = (0, 1),

−κ∆u+ νu = ξ in D,

where ξ is a contaminant source field parameter in domain D, u is the contaminant450

concentration which we can observe at some locations, κ and ν are diffusion and451

reaction coefficients. For simplicity, we set κ, ν = 1, u(0) = u(1) = 0, and consider 15452

pointwise observations of u with 1% noise, equidistantly distributed in D. We consider453

a Gaussian prior distribution ξ ∼ N (0, C) with covariance given by a differential454

operator C = (−δ∆ + γI)−α with δ, γ, α > 0 representing the correlation length455

and variance, which is commonly used in geoscience. We set δ = 0.1, γ = 1, α = 1.456

In this linear setting, the posterior is Gaussian with the mean and covariance given457

analytically, which are used as a reference to assess the sample goodness. We solve458

this forward model by a finite element method with piece-wise linear elements on a459

uniform mesh of size 2k, k ≥ 1. We project this high-dimensional parameter to the460

data-informed low dimensions as in [48] to alleviate the curse of dimensionality when461

applying WGD-cvxNN and WGD-NN, which we call pWGD-cvxNN and pWGD-NN,462

respectively. For k = 4 we have 17 dimensions for the discrete parameter and 4463

dimensions after projection.464

We run pWGD-cvxNN and pWGD-NN using 16 samples for 200 iterations with465

αl = 10−3, β = 5, γ1 = 0.95, and γ2 = 0.9510 for both methods. We use m = 200466

neurons for pWGD-NN and train it by the Adam optimizer for 200 sub-iterations as467

in the first example. From Figure 3, we observe that pWGD-cvxNN achieves better468

root mean squared error (RMSE) than pWGD-NN for both the sample mean and the469

sample variance compared to the reference.470
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Fig. 2: Two-dimensional example. Maximum mean discrepancy (MMD) of WGD-
cvxNN and WGD-NN samples compared to the reference SVN samples.
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Fig. 3: PDE-constrained linear Bayesian inference. Ten trials and the RMSE of the
sample mean (top) and sample variance (bottom) by pWGD-NN and pWGD-cvxNN
at different iterations.

4.3. PDE-constrained nonlinear Bayesian inference. In this experiment,471

we consider a nonlinear Bayesian inference problem constrained by the following par-472

tial differential equation (PDE) [11] with application to subsurface (Darcy) flow in a473

physical domain D = (0, 1)2,474

v + eξ∇u = 0 in D,

∇ · v = h in D,
(4.1)475

where u is pressure, v is velocity, h is force, eξ is a random (permeability) field476

equipped with a Gaussian prior ξ ∼ N (ξ0, C) with covariance operator C = (−δ∆ +477

γI)−α where we set δ = 0.1, γ = 1, α = 2 and ξ0 = 0. This problem is widely478

used in many areas, for instance, in estimating permeability in groundwater flow,479

thermal conductivity in material science, or electrical impedance in medical imaging,480

We impose Dirichlet boundary conditions u = 1 on the top boundary and u = 0 on481

the bottom boundary, and homogeneous Neumann boundary conditions on the left482

and right boundaries for u. We use a finite element method with piecewise linear483

elements for the discretization of the problem, resulting in 81 dimensions for the484

discrete parameter. The data is generated as pointwise observation of the pressure485

field at 49 points equidistantly distributed in (0, 1)2, corrupted with additive 5%486

Gaussian noise. We use a DILI-MCMC algorithm [13] with 10000 effective samples487

to compute the sample mean and sample variance, which are used as the reference488

values to assess the goodness of the samples.489

We run pWGD-cvxNN and pWGD-NN with 64 samples for ten trials with step490

size αl = 10−3, where we set β = 10, γ1 = 0.95, and γ2 = 0.9510 for both methods.491

The RMSE of the sample mean and sample variance are shown in Figure 4 for the492
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Fig. 4: PDE-constrained non-linear Bayesian inference. Ten trials and the RMSE
of the sample mean (top) and sample variance (bottom) by pWGD-NN and pWGD-
cvxNN at different iterations.

two methods at each of the iterations. We can observe that pWGD-cvxNN achieves493

smaller errors for both the sample mean and the sample variance compared to pWGD-494

NN at each iteration. Moreover, pWGD-cvxNN provides a much smaller variation of495

the sample mean and sample variance for the ten trials compared to pWGD-NN.496

Furthermore, by an effective reduction of the parameter dimension from 81 to data-497

informed 20 in our pWGD-cvxNN, as used and analyzed in [55, 11, 48], the time for498

solving the SDP is significantly reduced from about 800 seconds to about 0.7 seconds499

in average, making our pWGD-cvxNN computationally efficient.500

4.4. Bayesian inference for COVID-19. In this experiment, we use Bayesian501

inference to learn the dynamics of the transmission and severity of COVID-19 from502

the recorded data for New York state. We use the model, parameter, and data as503

in [11]. More specifically, we use a compartmental model for the modeling of the504

transmission and outcome of COVID-19. We take the number of hospitalized cases as505

the observation data to infer a social distancing parameter, a time-dependent stochas-506

tic process that is equipped with a Tanh–Gaussian prior to model the transmission507

reduction effect of social distancing, which becomes 96 dimensions after discretization.508

We use the projected Stein variational gradient descent (pSVGD) method [11]509

as the reference to evaluate the goodness of samples. We run pWGD-cvxNN and510

pWGD-NN using 64 samples for 100 iterations with step size αl = 10−3, where we set511

β = 10, γ1 = 0.95, and γ2 = 0.9510 for both methods as in the last example. From512

Figure 5 we can observe that pWGD-cvxNN produces more consistent results than513

pWGD-NN compared to the reference pSVGD results, for both the sample mean and514

90% credible interval, both in the inference of the social distancing parameter and in515

the prediction of the hospitalized cases.516

5. Conclusion. In the context of Bayesian inference, we approximate the Wass-517

erstein gradient direction by the gradient of functions in the family of two-layer neural518

networks. We propose a convex SDP relaxation of the dual of the variational primal519

problem, which can be solved efficiently using convex optimization methods instead520

of directly training the neural network as a nonconvex optimization problem. In521

particular, we established that the gradient obtained by the new formulation and522

convex optimization is at least as good as the one approximated by functions in523

the family of two-layer neural networks, which is demonstrated by various numerical524

experiments. By stacking the two-layer neural networks in each step together, our525
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Fig. 5: Bayesian inference for COVID-19. Comparison of pWGD-cvxNN and pWGD-
NN to the reference by pSVGD for Bayesian inference of the social distancing param-
eter (left) from the data of the hospitalized cases (right) with sample mean and 90%
credible interval.

proposed method formulates a deep neural network to learn the transportation map526

from the prior to the posterior. In future studies, specialized optimization solvers527

for the structured SDPs, including the relaxed dual problem, can lead to significant528

accelerations of our proposed method. We also expect to apply deep neural networks529

for the approximation of Wasserstein gradient flows based on recent works on convex530

optimization formulations of deep neural networks [50, 17, 18]. Detailed study of the531

conditions where the SDP relaxation is tight is of great interest as it provides more532

insight from the convex optimization perspective to understand how neural networks533

fit the data and which kind of datasets is easier to learn. We also expect to bound534

the number of hyperplane arrangements needed for an approximate solution and give535

a useful guarantee that bounds the distance between solutions to perturbations of the536

convex problem in future research.537
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transport for density estimation and bayesian inference, arXiv preprint arXiv:1905.10687,604
(2019).605

[31] J. Lacotte, Y. Wang, and M. Pilanci, Adaptive newton sketch: Linear-time optimization606
with quadratic convergence and effective hessian dimensionality, in International Confer-607
ence on Machine Learning, PMLR, 2021, pp. 5926–5936.608

[32] S. Lan, S. Li, and B. Shahbaba, Scaling up bayesian uncertainty quantification for inverse609
problems using deep neural networks, arXiv preprint arXiv:2101.03906, (2021).610

[33] A. T. Lin, S. W. Fung, W. Li, L. Nurbekyan, and S. J. Osher, Alternating the popula-611
tion and control neural networks to solve high-dimensional stochastic mean-field games,612
Proceedings of the National Academy of Sciences, 118 (2021).613
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