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OPTIMAL NEURAL NETWORK APPROXIMATION OF
WASSERSTEIN GRADIENT DIRECTION OF KL DIVERGENCE VIA
CONVEX OPTIMIZATION*

YIFEI WANG', PENG CHEN?!, MERT PILANCI', AND WUCHEN LI}

Abstract. The calculation of the direction of the Wasserstein gradient is vital for addressing
problems related to posterior sampling and scientific computing. To approximate the Wasserstein
gradient using finite samples, it is necessary to solve a variation problem. Owur study focuses on
the variation problem within the framework of two-layer networks with squared-ReLLU activations.
We present a semi-definite programming (SDP) relaxation as a solution, which can be viewed as
an approximation of the Wasserstein gradient for a broader range of functions, including two-layer
networks. By solving the convex SDP, we achieve the best approximation of the Wasserstein gra-
dient direction in this function class. We also provide conditions to ensure the relaxation is tight.
Additionally, we propose methods for practical implementation, such as subsampling and dimension
reduction. The effectiveness and efficiency of our proposed method are demonstrated through nu-
merical experiments, including Bayesian inference with PDE constraints and parameter estimation
in COVID-19 modeling.

Key words. Bayesian inference, Convex Optimization, Neural Network, Semi-positive Definite
Program.

MSC codes. 62F15, 41A30, 65K10

1. Introduction. Bayesian inference is a crucial method for determining model
parameters based on observational data. It is widely used in fields such as inverse
problems, scientific computing, information science, and machine learning [46]. The
core issue in Bayesian inference is obtaining samples from a posterior distribution,
which describes the distribution of parameters based on both data and prior informa-
tion.

The Wasserstein gradient flow, as first introduced in references such as [41, 2, 28],
has been proven to be an efficient method for obtaining samples from a posterior
distribution. This has led to growing interest in recent years. For example, the
Wasserstein gradient flow of the Kullback-Leibler (KL) divergence is related to over-
damped Langevin dynamics. Discretizing the overdamped Langevin dynamics results
in the classical Langevin Monte Carlo Markov Chain (MCMC) algorithm. Therefore,
the computation of the Wasserstein gradient flow offers a unique perspective on sam-
pling algorithms. Additionally, the direction of the Wasserstein gradient also offers
a deterministic method for updating a particle system as demonstrated in [10]. A
number of efficient sampling algorithms have been developed by utilizing approxima-
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2 Y. WANG, P. CHEN, M. PILANCI AND W. LI

tion or generalization of the Wasserstein gradient direction. Such examples include
the Wasserstein gradient descent (WGD) with kernel density estimation (KDE) [35],
Stein variational gradient descent (SVGD) [36], and neural variational gradient de-
scent [15].

Neural networks have demonstrated impressive abilities in learning complex func-
tions from data, as well as in Bayesian inverse problems [44, 40, 30, 32]. According to
the universal approximation theorem of neural networks [23, 38|, any complex func-
tion can be learned by a two-layer neural network with non-linear activations and a
sufficient number of neurons. Furthermore, functions represented by neural networks
provide a natural approximation to the Wasserstein gradient direction.

However, due to the nonlinear and nonconvex nature of neural networks, op-
timization algorithms such as stochastic gradient descent may not always find the
global optimal solutions for the training problem. Recently, based on a line of re-
search [42, 45, 4], the regularized training problem of two-layer neural networks with
ReLU /polynomial activation and a convex loss function can be formulated as a con-
vex program. By solving this convex program, it is possible to construct the entire
set of global optima for the nonconvex training problem [52]. Theoretical analysis
[51] has also shown that global optima of the training problem correspond to simpler
models with better generalization properties. Numerical experiments have also shown
that neural networks found by solving the convex program can achieve higher train
accuracy and test accuracy compared to neural networks trained by SGD with the
same number of parameters.

In this paper, we investigate a variational problem whose optimal solution corre-
sponds to the Wasserstein gradient direction. Our focus is on the family of two-layer
neural networks with squared ReLU activation. We formulate the regularized varia-
tional problem in terms of samples, and instead of directly training the neural network
to minimize the loss, we analyze the convex dual problem of the training problem and
study its semi-definite program (SDP) relaxation by analyzing the geometry of dual
constraints. The resulting SDP can be efficiently solved by convex optimization solvers
such as CVXPY [16]. We also analyze the choice of the regularization parameter and
present a practical implementation using subsampling and dimension reduction to im-
prove computational efficiency. Numerical experiments for PDE-constrained inference
problems and Covid-19 parameter estimation problems demonstrate the effectiveness
and efficiency of our method.

1.1. Related works. The time and spatial discretizations of Wasserstein gra-
dient flows are extensively studied in literature [27, 28, 9, 10, 6, 37, 22]. Recently,
neural networks have been applied in solving or approximating Wasserstein gradi-
ent flows [39, 34, 33, 1, 8, 24, 20]. For sampling algorithms, [15] learns the trans-
portation function by solving an unregularized variational problem in the family of
vector-output deep neural networks. Compared to these studies, we focus on a convex
SDP relaxation of the variational problem induced by the Wasserstein gradient direc-
tion. Meanwhile, [21] form the Wasserstein gradient direction as the minimizer of the
Bregman score and they apply deep neural networks to solve the induced variational
problem. In short, we study the same variational variational problem but we focus
on the two-layer neural networks, provide convex SDP relaxations and give sufficient
conditions when the relaxation is exact.

In comparison to previous works on the convex optimization formulations of neural
networks using SDP [4, 5], they focus on the polynomial activation and give the exact
convex optimization formulation (instead of convex relaxation). In comparison, we
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OPTIMAL NN APPROX OF WGD VIA CONVEX OPTIMIZATION 3

focus on the neural networks with the squared ReLLU activation, which has not been
considered before. Our method can also apply to the analysis of supervised learning
problems using neural networks with squared ReLU activation. Moreover, previous
works on the convex optimization formulation of neural networks mainly focus on the
supervised learning problem of two-layer neural networks using convex loss functions
(e.g., squared loss, logistic loss). Our work utilizes a similar convex analytic framework
to solve the variational problem of approximating the Wasserstein gradient direction,
which is different from supervised learning. The convex optimization approach is
based on the idea of infinite-width neural networks modeled as probability measures.
The dual problem itself is equivalent to the convex dual problem when the neural
network in the primal problem has infinitely many neurons. However, the convex
optimization approach tackles networks of arbitrary width that are able to learn useful
representations, while the infinite width is often limited to kernel methods.

2. Background. In this section, we briefly review the Wasserstein gradient de-
scent and present its variational formulation. In particular, we focus on the Wasser-
stein gradient descent direction of KL divergence functional. Later on, we design a
neural network convex optimization problem to approximate the Wasserstein gradient
in samples.

2.1. Wasserstein gradient descent. Consider an optimization problem in the
probability space:

(2.1) 31617f3 Dk (p||m) = /p(x)(logp(x) — log 7(x))dz,

Here the integral is taken over R? and the objective functional Dky (p||7) is the KL
divergence from p to w. The variable is the density function p in the space P = {p €
C>®(RY)| [ pdz =1, p > 0}. The function m € C°>(R?) is a known probability density
function of the posterior distribution. By solving the optimization problem (2.1) , we
can generate samples from the posterior distribution.

A known fact [47, Chapter 8.3.1] is that the Wasserstein gradient descent flow for
the optimization problem (2.1) satisfies

6pt
=V - (pt(Vlog p; — Vlog))

1)
Bepe =V - (ptvnmpm)

DAp ~ V- (pVlog),

where p.(z) = p(z,t), % is the L? first variation operator w.r.t. p;, V- F denotes the
divergence of a vector valued function F : R? — R? and A is the Laplace operator.
In step (a) we use the fact that p;Vlogp; = Vp;. This equation is also known as
the gradient drift Fokker-Planck equation. It corresponds to the following updates in

terms of samples :
(2.2) dz, = —(Vlog pi(xy) — Viogm(xy))dt.

Clearly, when p; = 7, the above dynamics reaches the equilibrium, which implies that
the samples z; are generated by the posterior distribution.

To solve the Wasserstein gradient flow (2.2), we consider a forward Eulerian dis-
cretization in time. In the I-th iteration, suppose that {«]'} are samples drawn from
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4 Y. WANG, P. CHEN, M. PILANCI AND W. LI

pi- The update rule of Wasserstein gradient descent (WGD) on the particle system
{z}} follows

(2.3) xl =a] — oV (a]),

where ®; : R? — R is a function which approximates log p; — logm and a; > 0 is the
step size.

2.2. Variational formulation of WGD. Given the particles {z,,}"_;, we de-
sign the following variational problem to choose a suitable function ® approximating
the function log p — log w. Consider

. 1
(2.4) T / |V&(z) — (Viog pla) — Vlog (x))|30(x)da.

The objective function evaluates the least-square discrepancy between V log p—V log 7
and V& weighted by the density p. The optimal solution follows & = logp — log,
up to a constant shift. Let # C C*(R?) be a finite-dimensional function space. The
following proposition gives a formulation of (2.4) in H.

PROPOSITION 2.1. Let H C CY(R?) be a function space. The variational problem
(2.4) in the domain H can be reformulated to

o1 2
int 5 [IVe@)Bods + [ Av(@)p(w)is
(2.5)
+ / (Vdogm(z), Ve(x)) p(x)dz.
Proof. We first note that
1
3 / |V® — Vlog p + Vlog |3 pdax
1
(2.6) =3 / |V®|2pdz + / (Vlogm — Vlog p, VO) pdx

1
+§/|\Vlogp—V10g7r||§pdx.

We notice that the term 3 [ ||V logp — Vlog 7||3pdz does not depend on ®. Utilizing
the integration by parts, we can compute that

/(Vlogp,V<I>>pdz—/<v;),V<I>> pdx

Therefore, the variational problem (2.4) is equivalent to

. 1
(2.8) q)elcr}%Rd) 3 / |V®|3pdz + / (Vlogm, V®) pdzx + / Adpdz.
By restricting the domain to H, we complete the proof. 0
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OPTIMAL NN APPROX OF WGD VIA CONVEX OPTIMIZATION 5

Remark 2.2. A similar variational problem has been studied in [15]. If we replace
V® for & € H by a vector field ¥ in a certain function family, then, the quantity
in (2.5) is the negative regularized Stein discrepancy defined in [15] between p and
7w based on W. This problem is also similar to the variational problem for the score
matching estimator in [25] by parameterizing ® in a given probabilistic model. In
comparison, our method can be viewed as a special case of score matching by using a
two-layer neural network.

Therefore, by replacing the density p by finite samples {x,})_, ~ p, the problem
(2.5) in terms of finite samples forms

N

S (et snn)
(2.9) nl_lN
TN > (Viegn(zn), VE(zn)) -

3. Optimal neural network approximation of Wasserstein gradient. In
this section, we focus on functional space H of functions represented by two-layer neu-
ral networks. We derive the primal and dual problems of the regularized Wasserstein
variational problems. By analyzing the dual constraints, a convex SDP relaxation of
the dual problem is obtained. We also present a practical implementation estimation
of Vlog p — Vlogn and discuss the choice of the regularization parameter.

Let v be an activation function. Consider the case where H is a class of two-layer
neural network with the activation function ¢ (z):

(3.1) H={Pg € C'(RY)|Pg(z) = a" (W)},
where @ = (W, ) is the parameter in the neural network with W € R4*™ and o € R™.

Remark 3.1. We can extend this model to handle by adding an entry of 1 in
L1y-r-3Tn, -

For two-layer neural networks, we can compute the gradient and Laplacian of ® € ‘H
as follows:

(3.2) Vog(x Zazwﬂﬁ wlz) =W W) oa),
(3.3) Adg(x Zal l|w;]|3e" (wlz).

Here o represents the element-wise multiplication. By adding a regularization term
to the variational problem (2.9), we obtain

n}gln Nz::l Zalwﬂ/} w Zn)
N m
Z <Z Oézwﬂ/} w; zn) VIOgW(fn)>

n= =1

N m 5
>3 aullwlBu (wl ) + S R(O),

n=11:=1

2

2

(3.4)

Z\H

Z\H
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6 Y. WANG, P. CHEN, M. PILANCI AND W. LI

where 3 > 0 is the regularization parameter. We focus on the squared ReLLU activation
Y(z) = (2)4 = (max{z, 0})>. Note that a non-vanishing second derivative is required
for the Laplacian term in (3.3), which makes the ReLU activation inadequate. For
this activation function, we consider the regularization function R(0) = >_7"  (||lw; |3+
o).

Remark 3.2. We note that V®g(z) and Ad®g(z) are all piece-wise degree-3 poly-
nomials of the parameters 8. Hence, we consider a specific cubic regularization term
above, analogous to [4]. By choosing this regularization term, we can derive a simpli-
fied dual problem.

By utilizing the arithmetic and geometric mean (AM-GM) inequality, we can
rescale the first and second-layer parameters and formulate the regularized variational
problem (3.4) as follows.

PROPOSITION 3.3 (Primal problem). The regularized variational problem (3.4)
can be reformulated to

N 2

w5

n=1

i aiwi) (wy )

N m
(3.5) Z aillwi| 30" (T )
' n=11:=1
N m )
Z <Z aiwiw'(w?xn), V log ﬂ(mn)> + Bllells,
n=1 =1
<1,7

s.t. ||will2 < 1,4 € [m],

where 3 =3-27%/3Np and we denote [m] = {1,...,m}.

Proof. Suppose that w; = 5;111)2- and &; = B2, where 3; > 0 is a scale parameter
for i € [m]. Let 8’ = {(w;, &;)}™,. We note that

(36) dlwzwl(w?$n> Biow ﬂﬁ (6 w; xn) = ;W qu (waEn)
and
(3.7) G|l |50 (@] 2p) = aillwil 50" (@] 25) = ai|Jwil 58" (w] ).

This implies that ®g(z) = Pg/(x) and V - Pg(x) = V - g/ (). For the regularization
term R(0), we note that

el + il =Bl + B

(33) =Bloaf® + 567 Nl + 567 o
=3 273wy [3] s

1/9 sz\lz

iy’
does not change [|w|3]c[, we can simply let [|w;||2 = 1. Thus, the regularization term

The optimal scaling parameter is given by a; = 2~ . As the scaling operation

gR(B) becomes % > llws][1. This completes the proof. d

In short, the optimal value of (3.4) and (3.5) are the same. We can obtain the
optimal solution of (3.5) by rescaling the optimal solution of (3.4) and vice versa.
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For simplicity, we write Y € RY*4 whose n-row is Vlogn(x,) for n € [N]. We
introduce the slack variable z, = Y1, a;w;y’ (zXw;) for n € [N] and denote Z =

[z1 ... ZN}T € RV*4. Then, we can simplify the problem (3.5) to

mln *”Z”F + Zzazllwznﬂpﬁ(w Tn)

n=11i=1

+u(Y"Z) + Blal;,

st zp, = Zaiwid)’(xZwi),n € [N],
i=1
lwill2 < 1,4 € [m].

To derive the convex relaxation of the neural network training problem, the dual
problem plays an important role. By applying the Lagrangian duality, we can derive
the dual problem of (3.9) as follows.

PROPOSITION 3.4 (Dual problem). The dual problem of the regularized varia-
tional problem (3.9) is

1
— 5+ Y%,
(3.10)

<5,

s.t.  max
wi[|w][2<1

ZH 139" (zXw) — X wy! (zfw)

which provides a lower-bound on (3.9). .

Proof. Consider the Lagrangian function

N m
L(Z,W,a, A) HZHF Y aillwil3 (wlz,) + (YT Z) + Bllal

n=1i=1

Zm: aw;y (z w1)>

(3.11) 1

m N
—Bl\a||1+zazz (llwsl|30" (wi n) = A widh’ (a7,w;))

=1 n=1

+ §||Z||2F +tr((Y + AT 2).

For fixed W, the constraints on Z and « are linear and the strong duality holds. Thus,
we can exchange the order of ming , and max,. Thus, we can compute that
(3.12)
min  max L(Z, W, a, A)
WEW,Z,a A
= min maxminL(Z,VV,a,A)
wew A

m

1
- " T, 1T, Lizn2 T
rnelrvlvmaxm1nﬁ||a||1+ E a; E ([[wi 39" (w] z) — AL wi! (@ w;)) + 2HZ||F+tr((Y+A) Z)

i=1 n=1
SB)

N

) "
= mi —A+YE+>1 130" (w] @n) = AL w; :
Wy g g I YR+ 2 (f“. 2 o ) = X ()

This manuscript is for review purposes only.
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8 Y. WANG, P. CHEN, M. PILANCI AND W. LI

By exchanging the order of min and max, we can derive the dual problem:
(3.13)

1 2\
m/z\mxv{/nel{/lv—2|/\+Y|F+Z]I< max

wit|lw; [[2<1

N
3 lwill5e" (w] @) — AEwig! (a7 w;)
n=1

<)

i=1
1 N _

=max——||[A+Y|% st. max w3 (wl x,) — Mw (2T w;)| < B,i € [m]

A 2 wiz[lwil[2<1 | £—]

1 N B

A VIR s e (S w0 ) - A @Fu)| < i € )

wifwll2<1 | =]
This completes the proof. ]

_ We note that the dual problem can be infeasible if the regularization parameter
[ is below a certain threshold. In other words, if the regularization term is missing
or the regularization parameter is not large enough, the optimal value of the dual
problem is —oo and the primal problem is not lower bounded.

3.1. Analysis of dual constraints and the relaxed dual problem. Now,
we analyze the constraint in the dual problem. We note that it is closely related
to the regularization parameter, which we will discuss later. For simplicity, we take
1" (0) = 0 as the subgradient of ¢'(z) at z = 0, i.e., taking the left derivative of ¥’ (z)
at 2 =0. Let X = [z1,...,zn5]T € RV*? Denote the set of all possible hyper-plane
arrangements corresponding to the rows of X as

(3.14) S = {diag(I(Xw > 0))|w € R%, w # 0}.

Here I(s) = 1 if the statement s is correct and I(s) = 0 otherwise. Let p = |S| be
the cardinality of S, and write S = {D1,...,D,}. According to [12], we have the

upper bound p < 2r (M) , where » = rank(X). Based on the analysis of the

r

dual constraints, we can derive a convex SDP as a relaxed dual problem.

ProposITION 3.5 (Relaxed dual problem). The relazed dual problem is the fol-
lowing SDP:

1 2
A,{r(j,gl,%,ﬂ}_z;:l 9 A+ Y7,
. 5 N ‘ ‘ }
st Aj(A)+B; + 2 :rg’i)Hv(Lj) + Beqriehq = 0
(3.15) e

N
- Aj(A) - Bj + Z ng’ﬂHw(zj) + ﬂ€d+16£+1 =0
n=0

r@H) > 0,707 > 0,5 € [p],

where we denote [p] = {1,...,p}. For j € [p], we denote A;(A) = —ATD; X—XTD;A,
B; = 2tr(Dy) 14, A;(A) = [AJ‘SA) 8] B, = [%’ 8} HY = ﬁ;‘ _OJ and HY) =
0 (1 —2(Dj)nn)n
(1= 2(Dy)n)aT 0
(eat+1)i =0 fori € [d] and (eq41)a+1 = 1.
The optimal value of (3.15) gives a lower bound on the dual problem (3.10), and
hence on the primal problem (3.9).

,n € [N] The vector eq1 € R satisfies that

This manuscript is for review purposes only.
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Proof. Based on the hyper-plane arrangements D, ..., D, the dual constraint is
equivalent to that for all j € [p],

(3.16) |2tr(D;) w3 — 20" ATD; Xw| < B

holds for all w € RY satisfying ||[w|l2 < 1,(2D; — I)Xw > 0. This is equivalent to say
that for all j € [p]

(3.17) 3 >min2tr( Dlwl3 — 2w ATD; Xw,
t. [wll2 <1,2(D; — ) Xw >0,

-8 <maX2tr( Nlwl3 — 2wt ATD; Xw,
st [Jwlls <1,2(D; — ) Xw > 0.

From a convex optimization perspective, the natural idea to interpret the con-
straint (3.17) is to transform the minimization problem into a maximization problem.
We can rewrite the minimization problem in (3.17) as a trust region problem with
inequality constraints:

in w! (B; + A4;(A)) w,
(3.18) Juin, w (Bj + A4;(A)w
s.t. JJwllz < 1,(2D; — X w > 0.

As the problem (3.18) is a convex problem, by taking the dual of (3.18) w.r.t. w,
we can transform (3.18) into a maximization problem. However, as (3.18) is a trust
region problem with inequality constraints, the dual problem of (3.18) can be very
complicated. According to [26], the optimal value of the problem (3.18) is bounded
by the optimal value of the following SDP

Zglgldr}rl tr((A;(A) + Bj)Z),

(3.19) st. tr(HYZ) <0,n=0,...,N,
Zay1,a+1=1,2 = 0.

from below.
LEMMA 3.6. The dual problem of SDP (3.19) takes the form

N
(3.20) max —v, s.t. S = A;(A) + B; + Z raHY) + Yeqti€h, 1,7 > 0,8 =0,

n=0
To
in variablesr = | 1 | € RV* and v € R.
N
Proof. Consider the Lagrangian
(3.21) L(Z,r,~) = tr((4;(A) Zrn tr(HY) Z) + ~y(tr(Zeaprel 1) — 1),

where 7 € RY ! and v € R. By minimizing L(Z,r,7) w.r.t. Z € ST, we derive the
dual problem (3.20). d

This manuscript is for review purposes only.
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10 Y. WANG, P. CHEN, M. PILANCI AND W. LI

The constraints on A in the dual problem (3.10) include that the optimal value
of (3.19) is bounded from below by —f. According to Lemma 3.6, this constraint is
equivalent to that there exist » € RV*! and ~ such that

N
(322) =y >-B,5=A4;(A)+ By + Y raHY +yeapefi,r > 0,8 =0,

n=0

As ed+1e§+1 is positive semi-definite, the above condition on A is also equivalent to
that there exist r € R¥*! such that

N
(3.23) A;(A) + B+ Y roHY) + Bearrely, = 0,7 > 0.
n=0

Therefore, the following convex set of A
(3.24) {A LA (A) + By + S r O HYD  fegirely, = 0, 107 > o}
n=0

is a subset of the set of A satisfying the dual constraints

(3.25) wT (B + Aj(A)w > B}.

{A : min
lw]l2<1,(2D;—Iw>0
On the other hand, the constraint on A

(3.26) w? (Bj + Aj(A)w <

max
lwll2<1,(2D;—1w>0
is equivalent to

3.27 i —wT (B; + A:(A))w > —8.
(3.27) Jwlla<1.(2Dy—Iyws0 (Bj + 4;(A)w 2 =f

By applying the previous analysis on the above trust region problem, the following
convex set of A

N
(3.28) {A c=A;(A) = B+ Y _r§PHD + Bearefy, = 0, 1) > 0}
n=0
is a subset of the set of A satisfying the dual constraints

(3.29) w? (Bj + Aj(A)w < B} .

: max
[Jw]2<1,(2D; —I)w>0

Therefore, replacing the dual constraint by
~ ~ N . . ~
A;(AN) + B+ Y rP TV HY) + Beagael, = 0,5 € [p,
n=0

N
—A;(N) = B+ > rPVHD + Beayrely = 0,5 € [p,

n=0

rU=) > O,T(j’+) >0,j€ [p],

(3.30)

we obtain the relaxed dual problem. As its feasible domain is a subset of the feasible
domain of the dual problem, the optimal value of the relaxed dual problem gives a
lower bound for the optimal value of the dual problem. 0
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Now we consider the case when the relaxation is inexact, i.e., the relaxed dual
problem has a smaller optimal value compared to the dual problem. In this case, the
relaxed bi-dual problem provides insights on approximating the primal problem via
convex optimization, which is derived as follows. As an equivalent formulation of the
convex dual problem (3.15), it can be viewed as a convex relaxation of the primal
problem (3.9).

ProOPOSITION 3.7 (Relaxed bi-dual problem). The dual of the relaxzed dual prob-
lem (3.15) is as follows

1 1
min 1 Z+Y]|% = Z||Y)|?
o R IV = IV

p
+ Ztr(éj(s(jvﬂ — 86)
Jj=1
~ p ) .
(3.31) +BY ((Sw,ﬂ 4 S(]”))edﬂedﬁl) ’
Jj=1
P

s.t. Z = ZA;?(S(JV*) _ S(J‘Hr)),
j=1
tr(S(j’_)Hflj)) < 07tr(5(j7+)HT(Lj)) <0,
n=0,...,N,j € [p]

Here A} is the adjoint operator of the linear operator A;.

Proof. Consider the Lagrangian function
(3.32)
L(Ax,S)

1 P , - X ,
SEETLSRITES 91t CE] CYERE D oSS PE )
n=0

j=1

D N 2
=) tr (S<J’»+> (—Aj(A) — B+ r9HHY + gedﬂeg;l)) :
j=1

n=0
where we write
r= (T<17—>, ) ) ,r<p,+>> e (RN

3.33
( ) S :(S(L*)’_._’S(p,*)’S(L#»),.“’S(p;‘r)) c (Si+1)2p

Here we write ST = {S € S¥1|S = 0}. By maximizing w.r.t. A and r, we derive
the bi-dual problem (3.31). ad

As (3.15) is a convex problem and the Slater’s condition is satisfied, the optimal values
of (3.15) and (3.31) are same. The bi-dual problem (3.31) is closely related to the
primal problem (3.9). Indeed, any feasible solutions of the primal problem (3.5) can
be mapped to feasible solutions of (3.31). We note that the mapping from the primal
solution to the bi-dual solution cannot go both ways unless these two problems are
equivalent.
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THEOREM 3.8. Suppose that (Z,W,«) is feasible to the primal problem (3.9).
Then, there exist matrices {SU), S(j”)}ﬁ?:l constructed from (W, a) such that

(Z,{8W1), S(j’*)}g.’:l) is feasible to the relaxed bi-dual problem (3.31). Moreover,
the objective value of the relaxed bi-dual problem (3.31) at (Z, {S(j’+),5(j’_)}§:1) is
the same as objective value of the primal problem (3.9) at (Z, W, a).

Proof. Suppose that (Z, W, a) is a feasible solution to (3.5). Let Dj,,...,D;, be
the enumeration of {diag(I(Xw; > 0))|i € [m]}. For i € [k], we let

T
(Ji ) — E : wywy - wy (Gi—) —
(334) SV = Oll|:wlT 1:|;Sj =Y,
l:a; >0,diag(I(Xw; >0))=D;,
and
T
(Ji+) — (Giv—) — _ 2 : wwy W
(3.35) Sy =0,5Y = o) { wlT 1}

l:a; <0,diag(I(Xw; >0))=D;,

For j ¢ {j1,...,jr}, we simply set SO =0,80:7) = 0. As ||w;|lz < 1 and Dj, =
I(Xw; > 0), we can verify that tr(S(j’_)Hr(Lj)) < O,tr(S(j*”Hr(f)) < 0 are satisfied for
7 =17J1,---yJm and n =10,1,..., N. This is because for n = 0, as Héj") = [{)d _01],

it follows that

tr(SU P HE) = > ou([lwn]]* 1) <0,
(3.36) | ) l:ey >0,diag(I(Xw; >0))=D;,
tr(S(”’_)Héjl)) - _ Z a(Jlwg]®* = 1) <o0.
l:a; <0,diag(I(Xw; >0))=D;,
Forn=1,..., N, we have
tr(SUoH HIY) = 3 20,(1 — 2(D;, ) m )Ty <0,
l:a;>0,diag(I(Xw; >0))=D;,
(3.37) _ ) e
tr(§U T H) = — > ou(1 = 2(Dj,)wn)a by < 0.

L:ay <0,diag(I(Xw;>0))=Dj,

Based on the above transformation, we can rewrite the bidual problem in the
form of the primal problem (3.9). For S € S%*!, we note that
tr(SA4;(A))
=—tr(ATD; X + XTD;A)S1.4,1.4)
=—2tr(ATD; X S1.4.1.4),

where S1.4,1:4 denotes the d x d block of S' consisting the first d rows and columns.
This implies that A} (S) = —2D; X S1.4,1:a- Hence, we have

flji(S(j“J“) — S(ji7_)) =— Z 2aleinlwlT
l:diag(I(Xw;>0)

=— Z 20 (Xwy) s wi .
l:diag(I(X w; >0)

This manuscript is for review purposes only.
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Therefore, we have

p m
D A8 = UMY =2 "0 (Xw;) yw
j=1 i=1
As n-th row of Z satisfies that z, =2> 1" a;w;(xTw;) 4, this implies that

m P

j=

—

316 Hence (Z,{(SU7), (S(j’_)}gzl) is feasible to the relaxed bi-dual problem (3.31).
We can also compute that

i S 56y =2

I(aryw; > 0) [lwi|3,

NE
qu

and , .
Ztr ((S(j’+) + S(j’f))ed_Heg_,_l) = Z o]
j=1 i=1

347 Thus, the primal problem (3.9) with (Z, W, «) and the relaxed bi-dual problem (3.31)
348 with (Z,{(SU7), (S(j’_)}§:1) have the same objective value. O

319 Let J(Z,{SW), S(j’_)}g-):l) denote the objective value of the relaxed bi-dual prob-
0 lem (3.31) at a feasible solution (Z, {S(j’*‘),S(j’_)}?:l). Let (Z*,W*,a*) denote a
1 globally optimal solution of the primal problem (3.9). By Theorem 3.8, there exist
> matrices {0, 5G| such that (2, {SUF), S@-=)}F_) is a feasible solution of
53 the relaxed bi-dual problem (3.31) and J(Z*, {SU:), SU’_)}§:1) is the same as the
354 objective value of (3.9) at its global minimum (Z*, W* «*). On the other hand, let
55 (27, {5’(3"*),5’(7"*)}?:1) denote an optimal solution of the relaxed bi-dual problem
356 (3.31). From the optimality of (Z*,{SU:T), g(j’_)}§:1)7 we have

357 JZ* {860,802y ) < 527 (SO0, 804,

358  Note that at (Z*, W*, a*) we obtain the optimal approximation of Vlog p—V log 7 at
359 @1,...,2y in the family of two-layer squared-ReLU networks (3.1). Smaller or equal
360 objective value of the relaxed bi-dual problem (3.31) can be achieved at the pair
361 (Z,{SUD), SGNE_ ) than at (Z2*,{S0), S@)}E_ ). Therefore, we can view Z*

362 gives an optimal approximation of Vlogp — Vlogn evaluated on z1,...,zy in a
363 broader function family including the two-layer squared ReLU neural networks.
364 From the derivation of the relaxed bi-dual problem, we have the relation Z* =

365 —A* =Y, where (A*, {r&*) r3:7)) is optimal to the relaxed dual problem (3.15) and
366 (Z*,{SUH), S(j’_)}ﬁzl) is optimal to the relaxed bi-dual problem (3.31). Therefore,
367 by solving A* from the relaxed dual problem (3.15), we can use —A* — Y as the

368 approximation of Vlogp — Vlogm evaluated on x1,...,xyN.
369 Remark 3.9. We note that solving the proposed convex optimization problem
370 3.15 renders the approximation of the Wasserstein gradient direction. Compared to

371 the two-layer ReLLU networks, it induces a broader class of functions represented by
372 {SUH) 8 (7’*)}§:1. This contains more variables than the neural network function.

This manuscript is for review purposes only.
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3.2. Choice of the regularization parameter. As the constraints in the re-
laxed dual problem (3.15) depend on the regularization parameter $, it is possible
that for small 3, the relaxed dual problem (3.15) is infeasible. Consider the following
SDP

N
min f3, s.t. A;(A) + B; + Z r@ O HY) + Bed+16dT+1 = 0,
n=0

(3.38) . . A .
—A;(A) - B+ Z rOHHI) + Bearien,, = 0,
n=0

r=) > O,T(j’+) >0,7 € [pl.

Here the variables are B,A and {r(j’Jr),r(j”)}?:l. Let 31 be the optimal value of

the above problem. Then, only for 3 > B, there exists A € RVN*4 satisfying the
constraints in (3.15). In other words, the relaxed dual problem (3.15) is feasible. We
also note that Bl only depends on the samples X and it does not depend on the value
of Vlogm evaluated on x1,...,xn. On the other hand, consider the following SDP

N
min 3, s.t. A;(Y)+ B; + Zrﬁlj’f)Hr(Lj) + Beayrelyy = 0,
n=0

(3.39)

N
—A;(Y)-B; + Z rUHDHO) 4 Bearien,, = 0,

n=0

r07) > 0,70 > 0,5 € [p],

where the variables are B and {r(j""),r(j’_)}?:l. Let Bg be the optimal value of the

above problem. For /5’ > Bg, as Y is feasible for the constraints in (3.15), the optimal
value of the relaxed dual problem (3.15) is 0. In short, only when 3 € [f1, B2], the
variational problem (3.15) is non-trivial. To ensure that solving the relaxed dual
problem (3.15) gives a good approximation of the Wasserstein gradient direction, we
shall avoid choosing f either too small or too large.

3.3. Practical implementation. Although the number p of all possible hyper-
plane arrangements is upper bounded by 2r((N — 1)e/r)” with r = rank(X), it is
computationally costly to enumerate all possible p matrices D1,..., D, to represent
the constraints in the relaxed dual problem (3.5). In practice, we first randomly
sample M i.i.d. random vectors ug,...,up ~ N(0,1;) and generate a subset S =
{diag(I(Xu; > 0)|5 € [M]}. of S. Then, we optimize the randomly sub-sampled
version of the relaxed dual problem based on the subset S and obtain the solution
A. Here —A — Y is used as the direction to update the particle system X. If the
regularization parameter is too large, then we will have —A —Y = 0, which makes the
particle system unchanged. Therefore, to ensure that £ is not too large, we decay
by a factor 1 € (0,1). This also appears in [19]. On the other hand, if 3 is too small
resulting the relaxed dual problem (3.5) infeasible, we increase B by multiplying v5 L
where v2 € (0,1). The overall algorithm is summarized in Algorithm 3.1.

Applying the standard interior point method [7] leads to the computational time

(3.40) O((max{N, d*}p)%).

For high-dimensional problems, i.e., d is large, the computational cost of solving (3.15)
can be large. In this case, we apply the dimension-reduction techniques [55, 11, 48] to

This manuscript is for review purposes only.



409
110
111
112

413

414
115
116

417

418

419

420
121

423
424
425
426
427
128
429
430

431
432
433
134
435
436
437
438
139
140

OPTIMAL NN APPROX OF WGD VIA CONVEX OPTIMIZATION 15

Algorithm 3.1 Convex neural Wasserstein descent

Require: initial positions {z%}2_,, step size «, initial regularization parameter Bo,
71,72 € (0,1).
1: while not converge do
2. Form X; and Y] based on {z'}_, and {Vlogm(z]")}2_;.
3. Solve A; from the relaxed dual problem (3.15) with B =4
4:  if the relaxed dual problem with 8 = 3 is infeasible then
5 Set X411 = X, for n € [N] and set f;41 = 72_151.
6: else ~ ~
7 Update X;11 = X; + ay(A; + V) for n € [N] and set 541 = 1106
8 end if
9: end while

reduce the parameter dimension d to a data-informed intrinsic dimension d, which is
often very low, i.e., d < d, thus significantly reducing the computational time (3.40).

4. Numerical experiments. In this section, we present numerical results to
compare WGD approximated by neural networks (WGD-NN) and WGD approx-
imated using convex optimization formulation of neural networks (WGD-cvxNN).
The performance of compared methods is assessed by the sample goodness-of-fit of
the posterior. For WGD-NN, in each iteration, it updates the particle system using
(2.3) with a function ® represented by a two-layer squared ReLU neural network.
The parameters of the neural network are obtained by directly solving the nonconvex
optimization problem (3.4). For high-dimensional problems, we apply the dimension
reduction technique and compare the projected versions (pWGD-NN and pWGD-
cvxNN).

We note that although the cost for solving the relaxed dual problem (3.15) using
standard convex optimization solvers in WGD-cvxNN can be higher compared to that
by a direct neural network training in WGD-NN; this cost difference is negligible in
the entire optimization dominated by the likelihood evaluation when the model (e.g.,
PDE) is expensive to solve. In such cases, WGD-cvxNN and WGD-NN have similar
computational complexity but WGD-cvxNN achieves better performance. We use
the standard convex optimization solver CVXPY [16] with MOSEK][3] inner solver.
Applying randomized SDP solvers [54], randomized second-order methods [43, 31] or
advanced SDP solvers [56, 53, 49] for the large-scale problem can improve the com-
putation time. Moreover, the induced SDPs have specific structures of many similar
constraints. Solving the SDP (3.15) can be accelerated by designing a specialized
convex optimization solver, which is left for future work.

4.1. A two-dimensional example. We test and compare the performance of
WGD-cvxNN and WGD-NN on a bimodal two-dimensional double-banana posterior
distribution introduced in [14]. We first generate 300 posterior samples by a Stein
variational Newton (SVN) method [14] as the reference, as shown in Figure 1. We
evaluate the performance of WGD-NN and WGD-cvxNN by calculating the maximum
mean discrepancy (MMD) between their samples in each iteration and the reference
samples. In the comparison, we use N = 50 samples and run for 100 iterations with
step sizes oy = 1073, For WGD-cvxNN, we set 3 = 1, 71 = 0.95 and v5 = 0.95'°. For
WGD-NN, we use m = 200 neurons and optimize the regularized training problem
(3.4) using all samples with the Adam optimizer [29] with learning rate 10~3 for 200
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sub-iterations. We also set the regularization parameter § = 1 and decrease it by a
factor of 0.95 in each iteration. We find that this setup of parameters is more suitable.

WGD-cvxNN 5 WGD-NN SVN

N w

2\ %\ -’{. /4 % Wi /

A\ J 1
0

-1 o -1

(=T

/(

Y. /
i f
13 il

 + \
o

(=T

-1 0 1 2 -1 0 1 2 -1 0o 1 2

Fig. 1: Two-dimensional example. Posterior density and sample distributions by
WGD-cvxNN and WGD-NN at the final step of 100 iterations, compared to the
reference SVN samples (right).

The posterior density and the sample distributions by WGD-cvxNN and WGD-
NN at the final step of 100 iterations are shown in Figure 1. It can be observed that
WGD-cvxNN provides more representative samples than WGD-NN for the posterior
density. In Figure 2, we plot the MMD of the samples by WGD-cvxNN and WGD-NN
compared to the reference SVN samples at each iteration. We observe that the samples
by WGD-cvxNN achieve much smaller MMD than those of WGD-NN compared to
the reference SVN samples, which is consistent with the results shown in Figure 1.

4.2. PDE-constrained linear Bayesian inference. In this experiment, we
consider a linear Bayesian inference problem constrained by a partial differential
equation (PDE) model for contaminant diffusion in environmental engineering in the

domain D = (0, 1),
—kAu+rvu=§ in D,

where £ is a contaminant source field parameter in domain D, u is the contaminant
concentration which we can observe at some locations, x and v are diffusion and
reaction coefficients. For simplicity, we set k,v =1, u(0) = u(1) = 0, and consider 15
pointwise observations of u with 1% noise, equidistantly distributed in D. We consider
a Gaussian prior distribution & ~ AN(0,C) with covariance given by a differential
operator C' = (—0A + vI)~® with 0,7, > 0 representing the correlation length
and variance, which is commonly used in geoscience. We set § = 0.1,y = 1,a = 1.
In this linear setting, the posterior is Gaussian with the mean and covariance given
analytically, which are used as a reference to assess the sample goodness. We solve
this forward model by a finite element method with piece-wise linear elements on a
uniform mesh of size 2¥, k > 1. We project this high-dimensional parameter to the
data-informed low dimensions as in [48] to alleviate the curse of dimensionality when
applying WGD-cvxNN and WGD-NN, which we call pWGD-cvxNN and pWGD-NN,
respectively. For k = 4 we have 17 dimensions for the discrete parameter and 4
dimensions after projection.

We run pWGD-cvxNN and pWGD-NN using 16 samples for 200 iterations with
a; = 1073, B =5, v1 = 0.95, and v, = 0.95'° for both methods. We use m = 200
neurons for pWGD-NN and train it by the Adam optimizer for 200 sub-iterations as
in the first example. From Figure 3, we observe that pWGD-cvxNN achieves better
root mean squared error (RMSE) than pWGD-NN for both the sample mean and the
sample variance compared to the reference.
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Fig. 2: Two-dimensional example. Maximum mean discrepancy (MMD) of WGD-
cvxNN and WGD-NN samples compared to the reference SVN samples.
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Fig. 3: PDE-constrained linear Bayesian inference. Ten trials and the RMSE of the
sample mean (top) and sample variance (bottom) by pWGD-NN and pWGD-cvxNN
at different iterations.

4.3. PDE-constrained nonlinear Bayesian inference. In this experiment,
we consider a nonlinear Bayesian inference problem constrained by the following par-
tial differential equation (PDE) [11] with application to subsurface (Darcy) flow in a
physical domain D = (0, 1)2,

(41) v+efVu=0 i-n D,
V-v=h inD,
where u is pressure, v is velocity, h is force, e® is a random (permeability) field
equipped with a Gaussian prior £ ~ N (&, C') with covariance operator C' = (—0A +
~I)~ where we set § = 0.1,7v = 1, = 2 and § = 0. This problem is widely
used in many areas, for instance, in estimating permeability in groundwater flow,
thermal conductivity in material science, or electrical impedance in medical imaging,
We impose Dirichlet boundary conditions v = 1 on the top boundary and v = 0 on
the bottom boundary, and homogeneous Neumann boundary conditions on the left
and right boundaries for u. We use a finite element method with piecewise linear
elements for the discretization of the problem, resulting in 81 dimensions for the
discrete parameter. The data is generated as pointwise observation of the pressure
field at 49 points equidistantly distributed in (0,1)2, corrupted with additive 5%
Gaussian noise. We use a DILI-MCMC algorithm [13] with 10000 effective samples
to compute the sample mean and sample variance, which are used as the reference
values to assess the goodness of the samples.
We run pWGD-cvxNN and pWGD-NN with 64 samples for ten trials with step
size a; = 1073, where we set 8 = 10, v; = 0.95, and v» = 0.95' for both methods.
The RMSE of the sample mean and sample variance are shown in Figure 4 for the
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Fig. 4: PDE-constrained non-linear Bayesian inference. Ten trials and the RMSE
of the sample mean (top) and sample variance (bottom) by pWGD-NN and pWGD-
cvxNN at different iterations.

two methods at each of the iterations. We can observe that pWGD-cvxNN achieves
smaller errors for both the sample mean and the sample variance compared to pWGD-
NN at each iteration. Moreover, pWGD-cvxNN provides a much smaller variation of
the sample mean and sample variance for the ten trials compared to pWGD-NN.
Furthermore, by an effective reduction of the parameter dimension from 81 to data-
informed 20 in our pWGD-cvxNN, as used and analyzed in [55, 11, 48], the time for
solving the SDP is significantly reduced from about 800 seconds to about 0.7 seconds
in average, making our pWGD-cvxNN computationally efficient.

4.4. Bayesian inference for COVID-19. In this experiment, we use Bayesian
inference to learn the dynamics of the transmission and severity of COVID-19 from
the recorded data for New York state. We use the model, parameter, and data as
in [11]. More specifically, we use a compartmental model for the modeling of the
transmission and outcome of COVID-19. We take the number of hospitalized cases as
the observation data to infer a social distancing parameter, a time-dependent stochas-
tic process that is equipped with a Tanh—Gaussian prior to model the transmission
reduction effect of social distancing, which becomes 96 dimensions after discretization.

We use the projected Stein variational gradient descent (pSVGD) method [11]
as the reference to evaluate the goodness of samples. We run pWGD-cvxNN and
pWGD-NN using 64 samples for 100 iterations with step size a; = 1073, where we set
B =10, y1 = 0.95, and 73 = 0.95'° for both methods as in the last example. From
Figure 5 we can observe that pWGD-cvxNN produces more consistent results than
pWGD-NN compared to the reference pSVGD results, for both the sample mean and
90% credible interval, both in the inference of the social distancing parameter and in
the prediction of the hospitalized cases.

5. Conclusion. In the context of Bayesian inference, we approximate the Wass-
erstein gradient direction by the gradient of functions in the family of two-layer neural
networks. We propose a convex SDP relaxation of the dual of the variational primal
problem, which can be solved efficiently using convex optimization methods instead
of directly training the neural network as a nonconvex optimization problem. In
particular, we established that the gradient obtained by the new formulation and
convex optimization is at least as good as the one approximated by functions in
the family of two-layer neural networks, which is demonstrated by various numerical
experiments. By stacking the two-layer neural networks in each step together, our
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NN vs pSVGD social distancing NN vs pSVGD # hospitalized
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Fig. 5: Bayesian inference for COVID-19. Comparison of pWGD-cvxNN and pWGD-
NN to the reference by pSVGD for Bayesian inference of the social distancing param-
eter (left) from the data of the hospitalized cases (right) with sample mean and 90%
credible interval.

proposed method formulates a deep neural network to learn the transportation map
from the prior to the posterior. In future studies, specialized optimization solvers
for the structured SDPs, including the relaxed dual problem, can lead to significant
accelerations of our proposed method. We also expect to apply deep neural networks
for the approximation of Wasserstein gradient flows based on recent works on convex
optimization formulations of deep neural networks [50, 17, 18]. Detailed study of the
conditions where the SDP relaxation is tight is of great interest as it provides more
insight from the convex optimization perspective to understand how neural networks
fit the data and which kind of datasets is easier to learn. We also expect to bound
the number of hyperplane arrangements needed for an approximate solution and give
a useful guarantee that bounds the distance between solutions to perturbations of the
convex problem in future research.
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