Stochastic Problems

• References: SLP chapters 9, 10, 11; L&S chapters 2 and 6

1 Examples

1.1 Neoclassical Growth Model with Stochastic Technology

• Production function

\[y = Af(k) \]

where \(A \) is random

• Let \(A(s^t) \) be productivity in history \(s^t \)

 – We could have \(A \) be a function of \(s_t \) only, i.e. \(A(s_t) \) but allocations will still be functions of histories

• Sequence problem

\[
V^*(k_0, A_0) = \max_{c(s^t), k(s^t)} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \Pr(s^t) u(c(s^t)) \\
\text{s.t.} \\
k(s^{t+1}) = A(s^t) f(k(s^t)) + (1 - \delta) k(s^t) - c(s^t) \\
k(s^t) \geq 0 \\
c(s^t) \geq 0 \\
k_0, A_0 \text{ given}
\]

1.2 A Model of Job Search

• Each period a worker begins by receiving a wage offer \(w \in [0, \bar{w}] \)

• If he accepts the offer, he gets paid \(w \) for that period

• If he rejects the offer he gets unemployment benefits \(b \) instead
• (The worker cannot borrow or save, so he consumes either w or b respectively)

• If the worker wasn’t working the previous period, then w is drawn iid from a distribution G

 \[- G \text{ could have mass at } w = 0, \text{ which can be interpreted as not finding a job} \]

• If the worker was working the previous period, then

 \[- \text{ with iid probability } (1 - \lambda) \text{ he gets the same wage offer as the previous period (interpretation: he keeps his job)} \]

 \[- \text{ with iid probability } \lambda \text{ he draws a new } w \text{ from } G \text{ (interpretation: he goes back to the unemployment pool)} \]

• The exogenous state variables are given by:

 \[- w: \text{ the wage realization in case the worker draws from } G \]

 \[- \theta \in \{0, 1\}: \text{ an indicator of whether the worker keeps his previous job in case he had one} \]

• Endogenous state variables:

 \[- J \in \{0, 1\}: \text{ whether the worker was employed yesterday} \]

 \[- z \in [0, \bar{w}]: \text{ wage that you enter the period with (only relevant if } J = 1) \]

• Decision: does the worker accept the current offer? $a \in \{0, 1\}$

• Graph:
• Sequence problem:

\[
V^* (w, \theta, J, z) = \max_{a(s^t), J(s^t), c(s^t), z(s^t)} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \Pr (s^t) u (c(s^t))
\]

s.t.

\[
c (s^t) = \begin{cases}
 z (s^t) & \text{if } J (s^t) = 1, \theta (s^t) = 1, a (s^t) = 1 \\
 w (s^t) & \text{if } J (s^t) = 0 \text{ or } \theta (s^t) = 0 \text{ and } a (s^t) = 1 \\
 b & \text{if } a (s^t) = 0
\end{cases}
\]

\[
J (s^{t+1}) = a (s^t) \\
z (s^{t+1}) = c (s^t) \\
w_0, y_0, J_0, z_0 \text{ given}
\]
1.3 Consumption-Savings Under Uncertainty

• Household gets income $y(s^t)$ in history s^t
 – Again, we could simplify this to $y(s_t)$
• Can borrow (up to a limit) and save at the risk-free interest rate R
• Does not have access to insurance (i.e. there are no Arrow-Debreu securities he can buy)
• Sequence problem

$$V^*(A_0, y_0) = \max_{A(s^t), c(s^t)} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \Pr(s^t) u(c(s^t))$$

s.t.

$$A(s^{t+1}) = RA(s^t) + y(s^t) - c(s^t)$$

$$A(s^{t+1}) \geq -B$$

A_0 and y_0 given

2 Markov Processes

• Stochastic process: sequence of random vectors $x_t \in X$
 – Example:

$$x_t = \{A_t, k_t\}$$

(capital and productivity)
 – (s could be composed of exogenous variables, endogenous variables or a combination thereof)
• Markov property:

$$\Pr(x_{t+1}|x_t, x_{t-1}, \ldots, x_{t-k}) = \Pr(x_{t+1}|x_t)$$

for all k
• The state today is a sufficient statistic for forecasting the state tomorrow
 – This is not so restrictive as it seems
• To avoid going too much into measure theory, we are going to focus mostly on cases where X is a finite set
 – In those cases, a Markov process can also be called a Markov chain
 – We’ll briefly mention how some of the results generalize to a continuous state space
2.1 Markov chains

- Discrete state space

- \(x \in \{x_1, \ldots, x_N\} \)

- The evolution of \(x \) is governed by a matrix \(P \) sometimes called transition matrix, Markov matrix or stochastic matrix

Definition 1. A stochastic matrix is an \(N \times N \) matrix \(P \) such that:

\[
\sum_{j=1}^{N} P_{ij} = 1 \quad \forall i
\]

- \(P_{i,j} = \) Probability that tomorrow you’ll be in state \(j \) given that today you are in state \(i \)

- Suppose we represent the probability distribution over states in period \(t \) by \(\pi_t \) where \(\pi_t \) is a row vector such that

\[
\sum_{i=1}^{N} \pi_{ti} = 1
\]

then \(\pi P \) represents the probability distribution over states in period \(t + 1 \)

- Example 1:

\[
\pi = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}
\]

(i.e. there are three possible states and we start at \(x = x_2 \) for sure)

\[
P = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ 0.3 & 0.2 & 0.5 \\ p_{31} & p_{32} & p_{33} \end{pmatrix}
\]

so

\[
\pi P = \begin{pmatrix} 0.3 & 0.2 & 0.5 \end{pmatrix}
\]

so the second row of \(P \) tells us the probability distributions over states tomorrow given the state today

- Example 2:

\[
\pi = \begin{pmatrix} 0.5 & 0.5 & 0 \end{pmatrix}
\]

\[
P = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.2 & 0.5 \\ p_{31} & p_{32} & p_{33} \end{pmatrix}
\]
\[
\pi P = \begin{pmatrix}
0.4 & 0.3 & 0.3
\end{pmatrix}
\]
so if in period \(t\) there’s a fifty-fifty chance of being in states \(x_1\) or \(x_2\), then \(\pi P\) gives us the probabilities of being in the three states in period \(t+1\)

- Notation note:
 - Sometimes people use the opposite row/column convention for transition matrices:
 - \(P_{i,j}\) = Probability that tomorrow you’ll be in state \(i\) given that today you are in state \(j\)
 - For this you should write \(\pi\) as a column vector and \(\pi' = P\pi\)
 - Of course, this is all equivalent

2.2 The Markov Assumption

- Suppose I have the following process:
 - \(x \in X = \{\text{Rain, Sun}\}\)
 - \(\Pr \{x_{t+1} = \text{Rain} | x_t, x_{t-1}\}\)
 \[
 \begin{cases}
 0.1 & \text{if } x_t = x_{t-1} = \text{Rain} \\
 0.6 & \text{if } x_t = \text{Rain} \text{ and } x_{t-1} = \text{Sun} \\
 0.3 & \text{if } x_t = \text{Sun}
 \end{cases}
 \]
 - This seems not to satisfy the Markov assumption because the weather today is not a sufficient statistic to forecast the weather tomorrow
 - But a simple transformation restores that Markov property:
 - \(X = \{\text{NewRain, OldRain, Sun}\}\)
 - Transition Matrix
 \[
P = \begin{pmatrix}
0 & 0.6 & 0.4 \\
0 & 0.1 & 0.9 \\
0.3 & 0 & 0.7
\end{pmatrix}
\]
- Many history-dependent processes can be rewritten this way as Markov Processes
- For now, we’ll use the Markov assumption to have a justification for saying
 \[
 \Pr(x'|x)
 \]
 and knowing that we can ignore the history of \(x\)
- Later we’ll ask questions about Markov processes themselves:
What do they look like in the long run?
Under what conditions do they converge?
(What do we mean by converge?)

3 Recursive Setup

• Often, there is more than one way to set things up

• Typical sequence:
 – Stuff happens
 – Make decisions
 – Stuff happens
 – Make decisions
 – ...

• Do I compute the value function at the time I’m about to make a decision or when something is about to happen?

• What do I define as the state variable?

• The results on the equivalence of the sequence problem and the functional equation extend to the stochastic case, s.t. some technical caveats
 – See SLP Theorems 9.2 and 9.4

3.1 Neoclassical Growth Model with Stochastic Technology

• State variables:
 – capital stock (endogenous)
 – productivity (exogenous)

• Bellman equation:

\[
V(k, A) = \max_{c,k'} u(c) + \beta \mathbb{E}(V(k', A') | A)
\]

\text{s.t.}

\[
k' = Af(k) + (1 - \delta)k - c
\]
\[
k' \geq 0
\]
\[
c \geq 0
\]
or simply

\[V(k, A) = \max_{k' \in [0, Af(k) + (1 - \delta)k]} u(Af(k) + (1 - \delta)k - k') + \beta \mathbb{E}(V(k', A') | A) \]

where

\[\mathbb{E}(V(k', A') | A) = \sum_{A'} \text{Pr}(A'|A) V(k', A') \]

for a discrete space for \(A \)

- FOC for \(c \):
 \[u'(c) - \lambda = 0 \]

- FOC for \(k' \):
 \[\beta \sum_{A'} \text{Pr}(A'|A) V_K(k', A') - \lambda = 0 \]

- Envelope condition:
 \[V_K(k, A) = \lambda [Af'(k) + (1 - \delta)] \]

 and therefore
 \[V_K(k', A') = \lambda' [A'f'(k') + (1 - \delta)] \]

- Putting these together
 \[u'(c(k, A)) = \beta \sum_{A'} \text{Pr}(A'|A) u'(c(k', A')) [A'f'(k') + (1 - \delta)] \]

which is the Euler equation that we encountered at the beginning of the class:

\[u'(c_t) = \beta \mathbb{E}[Ru'(c_{t+1})] \]

where

\[R = A'f'(k') + (1 - \delta) \]

is the stochastic return of a unit of capital

- The solution defines a system of stochastic difference equations in \(k, c \) and \(A \):

\[u'(c_t) = \beta \mathbb{E}[(A_{t+1}f'(k_{t+1}) + (1 - \delta))u'(c_{t+1})] \]

\[k_{t+1} = A_t f(k_t) + (1 - \delta) - c_t \]

\[A_{t+1} \sim \text{exogenous Markov process} \]

- This is a Markov process for the vector \(k, c, A \)
Unfortunately, unless we restrict k and c to grids, this Markov process lives in a continuous state space even if A lives in a discrete state space.

Questions:

- How does this system behave over time?
- Does it tend to a steady state? In what sense?
- Are there values that it will never reach / reach repeatedly?

3.2 Job search model

- A not-so-useful way to do it:

- State variables:
 - Exogenous: w: Wage drawn from G this period
 - Exogenous: θ: whether the worker keeps his job this period (if he had it)
 - Exogenous: J: the worker’s incoming job status
 - Exogenous: z: The worker’s incoming wage (if employed)

- Bellman equation:

$$
V(w, \theta, J, z) = \max_{a, J', z', c} u(c) + \beta \mathbb{E}[V(w', \theta', J, z)]
$$

s.t.

$$
c = \begin{cases}
 z & \text{if } J = 1, \theta = 1, a = 1 \\
 w & \text{if } J = 0 \text{ or } \theta = 0 \text{ and } a = 1 \\
 b & \text{if } a = 0
\end{cases}
$$

$$
J' = a \\
z' = c
$$

where

$$
w \sim G
$$

$$
\Pr(\theta = 1) = \lambda
$$

- Alternatively, notice that at the point the worker gets a wage offer, that’s the only thing that matters to him.

- Things that don’t matter:
– Whether the wage was offered by his old job or a new one
– Whether he is drawing from G because he got fired or because he was unemployed

• Define x as today’s job offer

$$V(x) = \max_a u(xa + b(1-a)) + \beta \mathbb{E}(V(x')|x,a)$$

where

$$x'|x,a = \begin{cases} x & \text{with probability } 1 - \lambda \text{ if } a = 1 \\ \sim G & \text{with probability } \lambda \text{ if } a = 1 \\ \sim G & \text{if } a = 0 \end{cases}$$

• Note: if we didn’t assume that new wage offers were iid, then x would not be a sufficient state variable

• Alternatively, compute the value function for a worker who has a job (but might get fired or quit) and a worker who doesn’t have a job separately

– Let z be the incoming wage for a worker who has a job
– V^J is the value of entering with a job that pays z
– V^U is the value of entering the period unemployed

$$V^J(z) = \lambda V^U + (1 - \lambda) \max_a \left[a \left(z + \beta V^J(z) \right) + (1 - a) \left(b + \beta V^U \right) \right]$$

$$V^U = \max_{a(w)} \mathbb{E} \left[a(w) \left(w + \beta V^J(w) \right) + (1 - a(w)) \left(b + \beta V^U \right) \right]$$

$$= \max_{a(w)} \int \left[a(w) \left(w + \beta V^J(w) \right) + (1 - a(w)) \left(b + \beta V^U \right) \right] dG(w)$$

• Let’s work with this last formulation

• Unemployed workers have a reservation wage \bar{w} which satisfies

$$\bar{w} + \beta V^J(\bar{w}) = b + \beta V^U$$

• Workers never quit

– If they chose to take the job when unemployed, this means that the wage z they currently have satisfied $z \geq \bar{w}$, which is the same condition for not quitting

– Hence

$$V^J(z) = \lambda V^U + (1 - \lambda) \left(z + \beta V^J(z) \right)$$ \hspace{1cm} (1)
• Simplify V^U to

$$V^U = \int \left[\max \left\{ w + \beta V^J(w), b + \beta V^U \right\} \right] dG(w)$$ \hspace{1cm} (2)

• Special case $\lambda = 0$ (you won’t get fired)

• Simplifies to

$$V^J(z) = z + \beta V^J(z)$$

$$V^J(z) = \frac{z}{1 - \beta}$$

• Replace in (2):

$$V^U = \int \left[\max \left\{ \frac{w}{1 - \beta}, b + \beta V^U \right\} \right] dG(w)$$

$$= G(\bar{w}) \left[b + \beta V^U \right] + \int_{\bar{w}}^{\infty} \frac{w}{1 - \beta} dG(w)$$

$$= \frac{1}{1 - \beta} \left[G(\bar{w}) b + \int_{\bar{w}}^{\infty} \frac{w}{1 - \beta} dG(w) \right]$$

with

$$\frac{\bar{w}}{1 - \beta} = b + \beta V^U$$

Exercise 1.

1. Show that the reservation wage increases if G becomes more dispersed in a SODS sense

2. Show that \bar{w} is decreasing in λ

3.3 Consumption-Savings

• State variables:

 - A: Level of assets
 - y: today’s income

$$V(A, y) = \max_{c,A'} u(c) + \beta \sum_{y'} \Pr(y'|y) V(A', y')$$ \hspace{1cm} (3)

s.t. \hspace{1cm} $A' \leq y - c + RA$

\hspace{1cm} $A' \geq -b$
• Alternatively, let \(x \equiv RA + y \) (“cash on hand”):

\[
V(x, y) = \max_{c, x'(y')} u(c) + \beta \sum_{y'} \Pr(y'|y)V(x'(y'), y')
\]

s.t. \(x'(y') \leq R |x - c| + y' \)

\(c \leq x + b \)

• This relabeling is especially useful if \(y \) is iid: reduce problem to a single state variable

 – because with \(x, y \) as the state variables, \(y \) only matters through \(\Pr(y'|y) \)

• FOC:

\[
u'(c) - \sum_{y'} \lambda(y') R - \mu = 0
\]

\[
\beta \Pr(y'|y) \frac{\partial V(x'(y'), y')}{\partial x} - \lambda(y') = 0
\]

\[
\Rightarrow u'(c) \geq \beta R \sum_{y'} \Pr(y'|y) \frac{\partial V(x'(y'), y')}{\partial x}
\]

with equality if \(c < x + b \)

• Envelope condition

\[
\frac{\partial V(x, y)}{\partial x} = u'(c(x, y))
\]

• Euler equation:

\[
u'(c) \geq \beta R \sum_{s'} \Pr(s'|s)\ u'(c(x'(y'), y'))
\]

with equality if \(c < x + b \)

4 Convergence of Markov Processes

• Starting from \(\pi_0 \) (which could be degenerate), a Markov chain will evolve according to

\[
\pi_t = \pi_0 P^t
\]

• \(\pi \) belongs to the set

\[
\Delta^N = \left\{ \pi \in \mathbb{R}_{+}^n : \sum_{i=1}^{N} \pi_i = 1 \right\}
\]
• Define the following norm in Δ^N:

$$\|\pi\| = \sum_{i=1}^{N} |\pi_i|$$

• We say a Markov chain converges to π^* if

$$\lim_{T \to \infty} \|\pi_t - \pi^*\| = 0$$

• In this case we call π^* an invariant distribution and the support of π^* an ergodic set

• Define the operator $T : \Delta^N \to \Delta^N$ as

$$T(\pi) = \pi P$$

Proposition 1. (SLP Lemma 11.3) Let $\epsilon_j = \min_i P_{ij}$ and $\epsilon = \sum_{j=1}^{N} \epsilon_j$. If $\epsilon > 0$ then T is a contraction modulus $1 - \epsilon$.

• Example:

$$P = \begin{pmatrix} 0.2 & 0.5 & 0.3 \\ 0 & 0.3 & 0.7 \\ 0.7 & 0.1 & 0.2 \end{pmatrix}$$

Here

$$\epsilon_j = \begin{pmatrix} 0 & 0.1 & 0.2 \end{pmatrix}$$

$$\epsilon = 0.3$$

• Interpretation: there is one value of x that you reach with positive probability from any other state

Proof. The distance between $T(\pi)$ and $T(\rho)$ is:

$$\rho(T(\pi), T(\mu)) = \|T(\pi) - T(\mu)\|$$

$$= \|(\pi - \mu)P\|$$

$$= \sum_j \left| \sum_i (\pi_i - \mu_i)P_{ij} \right|$$
• Example:

\[
\begin{align*}
\pi &= \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \\
\mu &= \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \\
\pi - \mu &= \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \\
\sum_i (\pi_i - \mu_i) P_{ij} &= \begin{pmatrix} 0.2 & 0.5 & 0.3 & 0.7 \end{pmatrix} \\
\sum_j \left| \sum_i (\pi_i - \mu_i) P_{ij} \right| &= 0.2 + 0.2 + 0.4 = 0.8 \leq (1 - 0.3) \times 2
\end{align*}
\]

(continue proof)

\[
= \sum_j \left| \sum_i (\pi_i - \mu_i) (P_{ij} - \epsilon_j) + \sum_i (\pi_i - \mu_i) \epsilon_j \right| \\
\leq \sum_j \left| \sum_i (\pi_i - \mu_i) (P_{ij} - \epsilon_j) \right| + \sum_j \left| \sum_i (\pi_i - \mu_i) \epsilon_j \right| \\
= \sum_j \left| \sum_i (\pi_i - \mu_i) (P_{ij} - \epsilon_j) \right| \\
\leq \sum_i |\pi_i - \mu_i| \sum_j (P_{ij} - \epsilon_j) \\
= \rho (\pi, \mu) (1 - \epsilon)
\]

• Proposition 1 immediately implies:

- There is a unique fixed point, i.e. unique solution to

\[
\pi = T (\pi)
\]

(denote it \(\pi^* \))

- Starting from any \(\pi_0 \),

\[
\lim_{T \to \infty} T (\pi) = \pi^*
\]
• You can find π^* by solving

$$\pi = \pi P$$

$$\pi (I - P) = 0$$

i.e. π^* is the eigenvector corresponding to the eigenvalue 1 of matrix P, scaled so that $\sum_{i=1}^{N} \pi_i = 1$.

• Generalizations:

- If the condition $\epsilon > 0$ holds for the matrix P^n, then T^n is a contraction mapping, so the limiting condition holds too
- (Interpretation: there is a state that you reach with positive probability in n steps starting from anywhere)
- For states spaces that are not finite, “condition M” is

Definition 2. A Markov process satisfies Condition M if there exist $\epsilon > 0$ and $n \geq 1$ such that for any set $A \subseteq X$, either:

1. $\Pr(x_{t+n} \in A|x_t) \geq \epsilon$ for all $x_t \in X$
 or
2. $\Pr(x_{t+n} \in A^C|x_t) \geq \epsilon$ for all $x_t \in X$

• Example: suppose there is a recurrent element $x_R \in X$ such that

$$\Pr(x_{t+n} = x_R|x_t) \geq \epsilon \ \forall x_t$$

Then condition M is satisfied because for any A, either

- $x_R \in A$ or
- $x_R \in A^C$

Proposition 2. *(SLP Lemma 11.11).* If a Markov process satisfies condition M, then T^n is a contraction of modulus ϵ