
Econ 235, Spring 2013

• What determines leverage?
• What is deleveraging and why does it happen?
• How are leverage and asset prices jointly determined?
• From a modeling perspective: disagreement.

1 A two-period example

• Everyone has a apples and one tree at $t = 0$
• People disagree about π
• "Agree to disagree"
• For GE theory, probabilities are preferences
 – Heterogeneity in risk aversion also gives different risk-neutral probabilities
• Everyone is risk neutral and no discounting
• Apples can be stored so w.l.o.g people consume at $t = 1$

1.1 Simple case with no borrowing
• The only market is for trading apples for trees at $t = 0$
• No shortselling
• Type π’s problem is

$$\max_x \pi c_H + (1 - \pi) c_L$$
$$s.t\ c_H = (a + p + x) - px$$
$$c_L = (a + p + dx) - px$$
$$px \leq a + p$$
$$x \geq 0$$

• Linear program. You buy if

$$\pi (1 - p) + (1 - \pi) (d - p) > 0$$
$$p < \pi + (1 - \pi) d$$

i.e. if you think the tree is underpriced
• The threshold type π^* is indifferent

$$\pi^* (p) = \frac{p - d}{1 - d}$$

• According to this type, the price is right
• Demand:

$$[1 - F (\pi^* (p))] \frac{a + p}{p}$$

is decreasing in price because
marginal type stops demanding
- each buyer can afford fewer units

- Equilibrium:

\[
[1 - F(\pi^*(p))] \frac{a + p}{p} = 1
\]

- \(p\) is increasing in \(a\)
- A FOSD increase in \(F\) increases \(p\)
- For \(F\) uniform, \(a = 1, d = 0.2\)

\[p = 0.68\]
\[\pi^* = 0.6\]

1.2 Complete markets benchmark

- With pure complete markets, type \(\pi\) solves

\[
\max_{x_H,x_L} \pi c_H + (1 - \pi) c_L \\
\text{s.t. } p_H c_H + p_L c_L \leq a + p_H + d p_L \\
\quad c_L \geq 0 \\
\quad c_H \geq 0
\]

- Consume in state \(H\) iff

\[\pi > p_H\]

and in state \(L\) if

\[(1 - \pi) > p_L\]

- But due to arbitrage with storage,

\[p_H + p_L = 1 \tag{1}\]

so only one of those conditions holds

- The marginal type is

\[\pi^*(p_H) = p_H \tag{2}\]

- Demand for \(H\) apples:

\[
\frac{a + p_H + d p_L}{p_H} (1 - F(\pi^*))
\]
• Supply of H apples:

$$1 + a$$

• H-market clearing:

$$\frac{a + p_H + dp_L}{p_H} (1 - F(\pi^*)) = 1 + a$$

$$\frac{a + p_H + d - dp_H}{p_H} (1 - F(\pi^*)) = 1 + a$$

$$\frac{a + d}{p_H} (1 - F(\pi^*)) + (1 - d) (1 - F(\pi^*)) = 1 + a$$

$$a + d = \frac{1 + a}{1 - F(\pi^*)} - (1 - d)$$

$$p_H = \frac{a + d}{1 + a - (1 - d)}$$

• We have three equations in three unknowns

• We can also price the trees. Notice that the same marginal type is pricing both the trees and the arrow securities

$$p = p_H + dp_L$$

$$= \pi^* + (1 - \pi^*) d$$

• For F uniform, $a = 1$, $d = 0.2$

$$\pi^* = 0.44$$

$$p_H = 0.44$$

$$p_L = 0.56$$

$$p = 0.55$$

1.3 Riskless collateralized borrowing only

• Because we only allow riskless borrowing, the interest rate will be zero

• Borrowing is limited by the amount of collateral
• Type \(\pi' \)'s problem is

\[
\max_{x,b} \quad \pi c_H + (1 - \pi) c_L
\]

s.t

\[
\begin{align*}
 c_H &= (a + p + x) - px \\
 c_L &= (a + p + dx) - px \\
 px &\leq a + p + b \\
 b &\leq dx \\
 x &\geq 0
\end{align*}
\]

• \(b \) does not appear in the expressions for \(c_H \) and \(c_L \) because whatever you borrow, you pay back

• We don’t have the K&M issue that part of the marginal product of the asset cannot be pledged

• Note that the assumptions of

 − risk neutrality
 − only riskless borrowing
 − no shortselling

lead to:

− High-\(\pi \) types only consume in state \(H \) (because the hit borrowing constraints)

− Low-\(\pi \) types consume equal amounts in both states. They would like to shortsell the asset in order to shift consumption from the \(H \) state (which they think is unlikely) to the \(L \) state (which they think is likely), but we don’t let them.

• The threshold type is still defined by

\[
\pi^*(p) = \frac{p - d}{1 - d}
\]

• Each agent with \(\pi > \pi^* \) will buy the following amount of trees:

\[
\begin{align*}
 x &= \frac{a + p + dx}{p} \\
 &= \frac{a + p}{p - d}
\end{align*}
\]
which is the sort of expression from K&M. Total demand of trees will be

\[[1 - F(\pi^*(p))] \frac{a + p}{p - d} \]

so in equilibrium:

\[[1 - F(\pi^*(p))] \frac{a + p}{p - d} = 1 \] \hspace{1cm} (4)

- Prices are higher because of leverage
- For \(F \) uniform, \(a = 1, d = 0.2 \)

\[p = 0.75 \]
\[\pi^* = 0.69 \]

- The marginal type still thinks the price is right, but now a more optimistic person is the marginal buyer

1.4 Risky collateralized borrowing?

- Suppose you allowed contracts of the type:
 - You give me \(\frac{1}{1+r} \) apples today
 - I post one tree as collateral
 - I promise you \(j \) apples “unconditionally”
 - If the tree pays \(y > j \), I pay you back \(j \)
 - If the tree pays \(y < j \), I pay you back \(y \)

- Risky, nonrecourse, collateralized debt

- \(j = d \) is the riskless debt contract

- GE formulation:
 - Each contract \(j \) is a different commodity
 - There is an interest rate \(r \) for each contract \(j \), i.e. you can buy the contract \(j \) for \(\frac{1}{1+r(j)} \)
 - Agents take the prices as given and, subject to the amount of collateral they have, trade as much as they want in each contract
 - Markets clear
• Result: only riskless contracts are traded!

• Program:

$$\text{max}_{x,b(c)} \pi c_H + (1 - \pi) c_L$$

$$\text{s.t} \quad c_H = (a + p + x) - px + \sum_j b(j) [q(j) - \min \{j, 1\}]$$

$$c_L = (a + p + dx) - px + \sum_j b(j) [q(j) - \min \{j, d\}]$$

$$\sum_j \max \{b(j), 0\} \leq x$$

$$px \leq a + p + \sum_j b(j) q(j)$$

$$x \geq 0$$

where $b(j)$ denotes the number of j-contracts that the trader sells. So a negative number for $b(j)$ means the trader is buying these contracts.

• The first constraint is a collateral constraint

• The second constraint is a borrowing constraint

• Conjecture equilibrium:

- There is a cutoff type π^* that prices every claim
- Therefore

$$p = \pi^* + (1 - \pi^*) d$$

$$q(j) = \pi^* \min \{j, 1\} + (1 - \pi^*) \min \{j, d\}$$

• Replace conjecture in budget constraint:

$$c_H = a + x + [\pi^* + (1 - \pi^*) d] (1 - x) + (\pi^* - 1) \sum_j b(j) [\min \{j, 1\} - \min \{j, d\}]$$

$$c_L = a + dx + [\pi^* + (1 - \pi^*) d] (1 - x) + \pi^* \sum_j b(j) [\min \{j, 1\} - \min \{j, d\}]$$

$$\Rightarrow \pi^* c_H + (1 - \pi^*) c_L = a + \pi^* + (1 - \pi^*) d$$

• NPV of consumption = NPV of endowment
• Types above π^* want

\[
\begin{align*}
 c_L &= 0 \\
 c_H &= \frac{a + \pi^* + (1 - \pi^*) \, d}{\pi^*}
\end{align*}
\]

• This is achievable by choosing:

\[
\begin{align*}
 x &= b(d) = \frac{a + p}{p - d} \\
 b(j) &= 0 \quad \forall j \neq d
\end{align*}
\]

• For these types, solution is not unique, they would be indifferent to borrow with $j > d$ (risky debt) to buy more of the asset

• Types below would like to consume as much as possible in state L

• Since there is no shortselling, they cannot engineer $c_L > c_H$ (there are no contracts for doing this), so they look for $c_L = c_H$

• This is achievable only if you choose

\[
\begin{align*}
 x &= 0 \\
 b(d) &\geq 0 \quad \text{only if } j \leq d
\end{align*}
\]

(i.e. don’t hold the asset or make risky loans)

• Making a risky loan

 - Increases c_H by $(1 - \pi^*) \,(j - d)$
 - Decreases c_L by $\pi^*(j - d)$

 - Net effect on utility:

\[
\left[\pi \,(1 - \pi^*) - (1 - \pi) \, \pi^* \right] (j - d) = (\pi - \pi^*) \,(j - d) < 0
\]

• This confirms equilibrium:

 - Type π^* prices every contract
 - Types above π^* hold the asset, consume only in high state, borrow up to the limit with riskless debt
 - Types above π^* lend with riskless debt
– No other contract gets traded

• This result is NOT general

• In particular, it does not generalize beyond the binary case

• [Simsek, 2012] looks at the case where payoffs are not binary.

1.5 Complete markets but collateral constraints

• We showed that if
 – Payoffs are binary
 – We only allow (risky or riskless) debt contracts

 then agents will trade the riskless contracts only

• But this is NOT equal to the complete markets allocation

• What if we did “complete markets subject to collateral constraints”?
 – Would it look like pure complete markets?
 – Would it look like the riskless debt allocation?

• Answer: it would be like pure complete markets
 – Optimists would buy all the trees and all the \(t = 0 \) apples
 – They pay for these by selling \(L \)-contingent apples
 – They set aside both the trees and the apples as collateral for the \(L \)-contingent claims (assume apples can be used as collateral)
 – Pessimists spend all their wealth on \(L \)-contingent claims
 – (or trees and apples can be held by anyone as long as they are stripped into different state-contingent claims)
 – If apples cannot be pledged as collateral, then that would make a difference (see problem set)

• Conclusion: the limited set of contracts we allow makes a difference!

• Intrepretation:
 – Shortselling?
 – Writing CDS?
2 A three-period example

- People still disagree about π
- At an intermediate date, we learn whether we are in state H or L
- People don’t update their opinion about π given where they are in the tree: they have no uncertainty about the true value of π.
- Payoffs can be interpreted as debt-like
 - A lot of things must go wrong for you not to be paid
- Bad news increases uncertainty and disagreement over eventual payoffs
 - This is very special to this example
 - But perhaps realistic
- Assume still that the only contracts are riskless, one-period collateralized debt
- Let p_0 be the price of the tree at $t = 0$ and p_1 be the price at $t = 1$ in state L (in state H the price is 1)

\footnote{For the zero-measure of people who think $\pi = 1$, observing state L can be a real problem. Bayes’ rule tells them to divide by zero and their head explodes.}
Type π solves

$$\max_{x_0, b_0, x_1, b_1} \pi c_H + (1 - \pi) \pi c_{LH} + (1 - \pi)^2 c_{LL}$$

subject to

- $c_H = a + p_0 + x_0 - p_0 x_0$
- $c_{LH} = a + p_0 + x_1 - p_0 x_0 - p_1 (x_1 - x_0)$
- $c_{LL} = a + p_0 + dx_1 - p_0 x_0 - p_1 (x_1 - x_0)$
- $p_0 x_0 \leq a + p_0 + b_0$
- $b_0 \leq p_1 x_0$
- $p_1 x_1 \leq a + p_0 + (p_1 - p_0) x_0 + b_1$
- $b_1 \leq dx_1$

Equilibrium has the following structure

- Super-optimists buy the tree at $t = 0$ with maximum leverage. The cutoff is denoted by π^{**}
- In state L, their collateral is just enough to pay their debt, so they go bankrupt
- The tree is bought by semi-optimists $\pi \in [\pi^* \pi^{**}]$ in state L
- They also get maximum leverage
- The maximum leverage at $t = 0$ is $\frac{p_0}{p_0 - p_1}$
- The maximum leverage at $t = 1$ is $\frac{p_1}{p_1 - d}$. This involves deleveraging whenever $\frac{p_1}{p_0} > \frac{d}{p_1}$, i.e. when a little bit of bad news is not too bad but further bad news would be a big problem. Whether this happens depends on parameters.
- As with K&M, we define leverage as $(\text{fraction downpayment})^{-1}$.

Equilibrium conditions

The payoffs of each possible strategy are as follows:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>c_H</th>
<th>c_{LH}</th>
<th>c_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy 0</td>
<td>$\frac{a+p_0}{p_0-p_1}$</td>
<td>$a + p_0 + \frac{a+p_0}{p_0-p_1} (1 - p_0) = (a + p_0) \frac{1-p_1}{p_0-p_1}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buy 1</td>
<td>$\frac{a+p_0}{p_1-d}$</td>
<td>$a + p_0 + \frac{a+p_0}{p_1-d} (1 - p_1) = (a + p_0) \frac{1-d}{p_1-d}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Don’t</td>
<td>0</td>
<td>$a + p_0$</td>
<td>$a + p_0$</td>
<td>$a + p_0$</td>
</tr>
</tbody>
</table>

1. Indifference for type π^{**}

$$\pi^{**} \frac{1-p_1}{p_0-p_1} = \pi^{**} + (1-\pi^{**}) \pi^{**} \frac{1-d}{p_1-d}$$
2. Indifference for type π^*

$$1 = \pi^* + (1 - \pi^*) \pi^* \frac{1 - d}{p_1 - d}$$

$$p_1 = \pi^* + (1 - \pi^*) d$$

3. Market clearing at $t = 0$

$$(1 - F(\pi^{**})) \frac{a + p_0}{p_0 - p_1} = 1$$

4. Market clearing at $t = 1$

$$[F(\pi^{**}) - F(\pi^*)] \frac{a + p_0}{p_1 - d} = 1$$

- Properties:
 - $p_1 < p_0$
 - $p_0 < [1 - (1 - \pi^{**})^2] + d (1 - \pi^{**})^2 = \mathbb{E}[y|\pi^{**}]$
 - Price is below the expected dividend according to the marginal buyer
 - There is an arbitrage opportunity, but it might widen!
 - This effect is present also in Shleifer and Vishny [1997]
 - The decrease in price includes three effects:
 - The expected dividend decreases (according to everyone)
 - The optimists go bankrupt, which means someone more pessimistic else is pricing the asset
 - Leverage decreases (if whenever $\frac{p_1}{p_0} > \frac{d}{p_1}$)
 - For F uniform, $a = 1$, $d = 0.2$

 $$p_0 = 0.947$$
 $$\pi^{**} = 0.871$$
 $$\mathbb{E}[y|\pi^{**}] = 0.986$$
 $$p_1 = 0.693$$
 $$\pi^* = 0.616$$

- Would people want to use long-term debt?
No: you can only borrow \(d = 0.2 \) long-term but \(p_1 = 0.693 \) short term with one unit of collateral.

Theory of maturity mismatch!

References

