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Fast List-Mode Reconstruction for Time-of-Flight
PET Using Graphics Hardware

Guillem Pratx, Suleman Surti, and Craig Levin

Abstract—Positron emission tomography (PET) measurements
with time-of-flight (TOF) information are often very sparse. As a
result, direct reconstruction from raw list-mode data is an attrac-
tive strategy for dealing with the large dimension spanned by the
measurements. However, even though sparse datasets are more ef-
ficiently processed in list mode than as sinograms, list-mode recon-
struction remains computationally demanding and computer clus-
ters are typically required for reconstructing clinical PET scans
with TOF information. In this work, we demonstrate that off-the-
shelf graphics processing units can be used as an alternative ap-
proach to accelerate line projections with TOF kernels.

Index Terms—Graphics processing units, high performance
computing, positron emission tomography, reconstruction algo-
rithms, time-of-flight.

I. INTRODUCTION

W ITH higher timing precision, positron emission to-
mography (PET) systems can now measure the

time-of-flight (TOF) difference between two coincident annihi-
lation photons. TOF provides a means to constrain the estimated
location of the positron annihilation along the line-of-response
(LOR). Included in the image reconstruction, the TOF infor-
mation can improve image quality and quantitative accuracy,
thereby improving lesion detectability [1], [2]. Alternatively,
the boost in signal-to-noise ratio (SNR) may be used to lower
radioactive dose or scan duration. In a non-TOF PET system,
the image reconstruction process assumes a uniform probability
for the location of the positron annihilation along the LOR.
When TOF information is available, a Gaussian distribution is
used instead. The full width at half-maximum (FWHM) of
the Gaussian is determined by the system time resolution
(FWHM) according to , where is the speed of
light [3]. Because the time resolution of PET systems is fairly
uniform over all the LORs, the TOF kernel that corresponds to
the average time resolution is chosen for all the LORs in the
system.

Manuscript received April 20, 2010; revised August 07, 2010; accepted
September 20, 2010. Date of publication November 15, 2010; date of current
version February 09, 2011. This work was supported in part by the National
Institutes of Health (NIH) under Grants R01-CA119056, R01-CA120474,
R01-CA119056-S1 (ARRA) and R01-CA113941, and by a fellowship from
the Stanford Bio-X program.

G. Pratx is with the Department of Radiation Oncology, Stanford University
School of Medicine, Stanford, CA 94305 USA.

S. Surti is with the Department of Radiology, University of Pennsylvania,
Philadelphia, PA 19104 USA.

C. Levin is with the Departments of Radiology, Physics, and Electrical Engi-
neering, Molecular Imaging Program, Stanford University, Stanford, CA 94305
USA (e-mail: cslevin@stanford.edu).

Digital Object Identifier 10.1109/TNS.2010.2081376

The LORs of 3-D TOF PET systems are characterized by
four spatial dimensions and the additional TOF dimension. As
a result, image reconstruction is more complex when TOF in-
formation is incorporated. Owing to the higher data dimension-
ality, the measurements are very sparse. The dimensionality of
the data can be reduced by using rebinning and/or transverse
mashing methods that account for the TOF information [4]–[6].
ML reconstruction can also be performed in list mode [7]–[10],
which is an efficient format to store unprocessed PET data with
TOF information.

Several studies have shown that the best image quality is ob-
tained when the images are directly reconstructed from the un-
processed data, in list-mode or LOR format. For instance, for
non-TOF data, 3-D reconstruction provides a better noise—con-
trast trade-off than various Fourier rebinning (FORE) methods,
which rebin the 3-D sinogram into a stack of 2-D sinograms
[11]. For TOF data, list-mode reconstruction produces more uni-
form spatial resolution and a better contrast—noise trade-off
than the single-slice rebinning (SSRB) technique [6]. Discrete
data rebinning techniques are also outperformed by fully 3-D
reconstruction [5].

For TOF data, reconstructing the data in list-mode format is
more efficient than in sinogram format, but list-mode recon-
struction still requires substantial amounts of computation be-
cause each event is processed individually many times. Until
now, computer clusters have been the platform of choice for re-
constructing clinical TOF PET data [12], [13].

In this work, we demonstrate that list-mode reconstruction
of TOF PET data can be performed efficiently on a graphics
processing unit (GPU). A previously-developed framework for
performing individual line projections using the GPU [14] was
adapted to account for TOF information. A comprehensive com-
parison of the image quality and accuracy between GPU- and
CPU-based image reconstruction was presented in a previous
study [14].

Primarily designed to deliver high-definition graphics for
video games in real-time, GPUs are now increasingly being
used as cost-effective high-performance co-processors for
scientific computing [15]. Characterized by massively parallel
processing, fast clock-rate, high-bandwidth memory access,
and hardwired mathematical functions, GPUs are extremely
well suited for accelerating medical image reconstruction.

II. METHODS

A. System Description

The Gemini TF (Philips Healthcare, Highland Heights, OH)
was the first commercial PET system capable of exploiting TOF
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information [16]. The system comprises 28 detector modules ar-
ranged in a 90 cm-diameter ring, each module consisting of a
23 44 array of mm LYSO crystals. The useful
transverse and axial FOVs are 57.6 and 18.0 cm, respectively.
The timing resolution of this scanner is currently 585 ps FWHM
and degrades gradually as a function of count-rate [16]. The data
used in this work, acquired immediately after the first installa-
tion of the scanner, had a timing resolution of 785 ps FWHM
because the timing calibration was not fully optimized and data
was acquired at high count-rate.

B. GPU Implementation

In list-mode [7]–[9], the vector of measurements for every
LOR is not readily available (although, in principle, a very
sparse vector could be obtained by parsing the list-mode data).
Therefore, the standard OSEM update strategy [17] is not
applicable. Instead, each event is processed (i.e., forward and
back- projected) individually. The OSEM subsets are formed
according to the arrival time of the events. The resulting
list-mode OSEM algorithm can be formulated as follows

(1)

where is the image vector, is the coefficient of the system
matrix for LOR , voxel and TOF and are the de-
tector efficiency and photon attenuation factors, is the random
estimate for LOR is the scatter estimate for LOR and
TOF bin denotes the subset, and and are, respec-
tively, the LOR index and TOF value for the list-mode event.
Although an index might be repeated in list-mode if multiple
events are measured on the same LOR, list-mode processing is
efficient for sparse datasets because empty LOR bins are neither
stored nor processed.

List-mode OSEM with TOF information was accelerated by
performing the line projection operations on the GPU using a
technique previously developed for non-TOF list-mode recon-
struction [14]. The technique was adapted to include the TOF
kernel in the line projection, which only involved minor changes
to the GPU code, which was designed to be flexible and pro-
grammable.

Briefly, the line projection technique described in [14] re-
lies on the massively-parallel architecture and high memory
throughput of the GPU for greatly accelerating line projection
operations. In this approach, implemented with OpenGL/CG,
all the voxels comprised within the tube-of-response (TOR, de-
fined as a cylindrical volume centered on the LOR) participate
in the projection and are processed in parallel by the GPU. The
size of the TOR radius can be arbitrary large; however, the per-
formance is highly dependent upon the total number of voxels
processed. Line back-projection is achieved by exploiting the
GPU’s ability to raster many polygons concurrently. For each
image slice, many small polygons, representing fragments of
LORs, are painted inside a frame buffer while shading programs
(also called shaders) color the voxels according to a predefined

Fig. 1. (a) Parametrization of the TOF and projection kernels. (b) Depiction of
the cylindrical phantom used for producing PET data with TOF information.

projection kernel. Line forward projection, the transpose oper-
ation, relies on fast 1-D texture mapping for accessing voxel
values along the LOR with high data throughput. These voxel
values are subsequently weighed by the projection kernel and
summed through two levels of data reduction. Because both
the volume images and the list-mode data are stored in video
memory, the reconstruction is performed entirely on the GPU.

In order to incorporate TOF information into list-mode re-
construction, two changes must be made to the line projections.
Firstly, voxels that are within the TOR but more than three
standard deviations away from the measured TOF value are no
longer processed because they only contribute negligibly to the
measured TOF bin. Secondly, both within back- and forward
projection operations, the voxels are weighed by an additional
TOF kernel, which varies as a function of the TOF difference
along the LOR.

The TOF kernel was modeled as a Gaussian with standard
deviation , truncated at . Therefore, the endpoints of all
LORs were reassigned to the truncation points, ,
where and are the TOF kernel center and the LOR di-
rection, respectively (Fig. 1(a)). Because this transformation is
performed by the CPU, the measured TOF value does not need
to be transferred and stored on the GPU, hence the same GPU
data structures can handle both TOF and non-TOF data.

Within both back- and forward projection operations, the
TOF kernel parameters were computed in the vertex shaders.
The TOF kernel center and width were recovered by
respectively computing the center and the distance between the
two endpoints. Hence, the only data required on the GPU for
processing TOF data are the coordinates of the transformed
LOR endpoints.

The projection and TOF kernels, denoted and , re-
spectively, were combined in a single 2-D Gaussian kernel pa-
rametrized both by the TOF difference and the distance from the
voxel center to the LOR

(2)

where the distances and are the distances between
and , and and , respectively (these points are indi-
cated on Fig. 1(a)).

The distances and are calculated on the GPU for
every LOR and every voxel in the truncated TOR, by first
calculating the orthogonal projection of the voxel center

onto LOR , and then the Euclidean distances between
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and , and and , respectively. Voxels outside the TOF
kernel are not processed because the TOR is truncated. Last, the
system matrix coefficients are computed by evaluating the
Gaussian kernel according to (2). On the GPU, these calcula-
tions are performed in the fragment shaders, as part of the kernel
evaluation described in [14]. In sum, incorporating TOF infor-
mation into GPU-based list-mode reconstruction only requires
additional pre-processing on the CPU, and reprogramming the
kernel evaluation on the GPU to account for the TOF kernel.

In this study, corrections for random and scatter coincidences
were performed within iterative list-mode reconstruction, as in-
dicated by (1). The random and scatter estimates were calculated
on the CPU, summed together, and loaded into GPU memory
together with the list-mode coordinates. The correction value is
added to the output of the GPU forward projection.

C. Phantom Experiment

PET measurements were performed at the University of
Pennsylvania using a 35 cm diameter cylindrical phantom [2]
(Fig. 1(b)). Six 10 mm-diameter spheres were placed in the
phantom in a single axial plane, 4.2 cm away from the central
plane. Within the plane, the spheres were arranged on a 8
cm-radius circle. The spheres and the cylinder were filled with
a solution of F. The activity was six times more concentrated
in the spheres than in the cylinder. The total activity was 6.4
mCi, corresponding to a background activity concentration of
0.16 Ci/cc. The total scan time was 5 min.

The images were reconstructed using list-mode 3D-OSEM,
with and without TOF information, on a CPU and on a GPU
platform. Fifteen iterations and twenty subsets were used for
each iteration. The CPU-based reconstruction, performed at
the University of Pennsylvania using a research package [10],
modeled the tracer spatial distribution as a sparse collection
of Kaiser-Bessel blobs [18] and the projections as ideal line
integrals. The GPU-based reconstruction represented the tracer
distribution using cubic voxels, and performed line projections
using a wide, radially symmetric Gaussian kernel. Although
the GPU and CPU approaches use different kernels (namely,
Gaussian and Kaiser-Bessel functions), they are similar in
implementation: both require that voxels away from the LOR
axis participate in the projection, and both use a 1-D kernel
parameterized by the distance between the LOR axis and the
center of the basis function (Fig. 1(a)).

On the GPU, voxel sizes of 2, 4 and 8 mm were investigated.
Consistent with the spatial and timing resolution of the system,
the projection and TOF components of the projection kernel
were set as Gaussian functions with FWHMs of 4 and 117 mm,
respectively. A post-reconstruction Gaussian filter was also ap-
plied. The width of the filter was chosen to obtain image quality
comparable with the CPU implementation. A FWHM of 2.1 mm
was found to yield the closest results. On the CPU, the blobs
were arranged in a 8 mm body-centered cubic (BCC) grid. In
theory, 8 mm blob spacing is comparable to 4 mm voxels [18].

Both reconstructions used the same normalization and trans-
mission scans. A transmission scan of the phantom was acquired
on the Gemini TF system using X-ray CT and rescaled to ob-
tain a map of the photon attenuation coefficients at 511 keV. An
estimate of the random coincidences was also produced by mea-

suring delayed coincidence events within the emission scan. The
estimate was smoothed using Casey’s method [19] to improve
the SNR. A tissue scatter estimate which includes TOF informa-
tion was generated using an extension of the single-scatter sim-
ulation method [20], [21]. The ratio of the normalization over
the transmission scan were incorporated in the sensitivity map
within the 3D-OSEM algorithm as a multiplicative factor. The
randoms and scatter estimates were corrected for normalization
and attenuation, and were then used as additive terms in the for-
ward projection.

Image quality was assessed as consistent with the National
Electrical Manufacturers Association (NEMA) NU2-2001 pro-
cedures [22]. The contrast recovery (CR) was assessed in
the reconstructed images, following

where is the input activity concentration ratio (here,
), is the average sphere signal computed by averaging the

voxel intensity in spherical regions-of-interest (ROIs) for the six
spheres, and is the background signal evaluated similarly for
six ROIs in a background slice that mirrors the sphere plane.
The noise was approximated by the spatial variability (RMS)
within the background ROIs, according to

(3)

The CR and noise for the six ROIs were later averaged.
The reconstruction time was measured for two GPUs: the

GeForce 9800GT and the more recent GeForce 285GTX.
For smaller voxels, more voxels were included in the pro-
jection of each LOR: the 2 mm-voxel projections used 7 7
voxels around the LOR, which implies that the tails of the
4 mm-FWHM Gaussian kernel were truncated at four times
the standard deviation, a value large enough to provide good
accuracy in the kernel. In comparison, for 8 mm-voxels, 3 3
voxels are sufficient to cover seven times the standard deviation
of the projection kernel.

III. RESULTS

A. Contrast vs. Noise

Fig. 2 shows 2 mm-thick image slices taken from the volume
reconstructed with and without TOF information, on the GPU
(voxel representation) and the CPU platform (blobs representa-
tion). All the images are shown using 2 2 2 mm voxels, for
15 iterations of list-mode 3D-OSEM with 20 subsets.

The image sampling rate impacts the reconstructed image
quality, as well as the processing time. Fig. 3 shows the same
TOF dataset reconstructed on the GPU with three different
square voxel sizes: 2, 4 and 8 mm. While the 2 and 4 mm voxels
result in similar image quality, 8 mm voxels do not provide suf-
ficient sampling and result in a visible loss of sphere resolution.
For the 2 and 4 mm voxels, the CR and noise at 15 iterations
are as follows: the CR is 23.8% and 23.7%, respectively, and
the noise 18.9% and 18.5% RMS, respectively.
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Fig. 2. Phantom images reconstructed with GPU-based and CPU-based imple-
mentations, with and without TOF information. The reconstructed images are
displayed using 2� 2� 2 mm voxels.

Fig. 3. Phantom images reconstructed using TOF information on the GPU with
varying voxel size.

Fig. 4. CR vs. noise trade-off curve for TOF and non-TOF reconstructions per-
formed on GPU and CPU platforms.

Fig. 4 displays the trade-off between the contrast and the
noise at different iterations for the GPU and CPU implemen-
tations, with and without TOF information. The use of TOF in-
formation within the reconstruction (black curves) results in an
increase of the CR compared to non-TOF reconstruction (gray
curves), while the noise level remains comparable. Unlike non-
TOF, the TOF reconstructions presented some disagreement be-
tween CPU and GPU implementations. Differences like these
are expected because the reconstruction parameters, kernel and
image representations were not matched, as discussed in the
next section. However, the contrast vs. noise trade-off curves

TABLE I
PROCESSING TIME AS A FUNCTION OF IMAGE SIZE FOR GPU-BASED

LIST-MODE RECONSTRUCTION

show that the improvement achieved by using TOF information
is consistent across GPU and CPU platforms.

B. Processing Time

The processing times are summarized in Table I for two GPUs
and various image sizes. The values are quoted for one pass
through one million prompt events, not including the calcula-
tion of the sensitivity map, disk I/O, and scatter and randoms
estimation. Reconstruction was faster when TOF data was used,
for smaller images, and for the more recent GPU with more pro-
cessing cores.

IV. DISCUSSION

The accuracy of our GPU framework was validated for
non-TOF list-mode reconstruction in a previous study, showing
no degradation in image quality and quantitative accuracy [14].
Here, we further demonstrate that the same GPU framework
can be utilized for reconstructing TOF PET data using the
list-mode format. We compared these results against the UPenn
list-mode reconstruction code, a widely-published package [1],
[2], [10]. However, because the GPU implementation is not a
port of UPenn reconstruction code, discrepancies exist between
both reconstructions.

One of the main differences is that images were represented
by blob basis functions on the CPU and cubic voxels on the
GPU. Furthermore, to make processing practical, the TOF
reconstruction used coarse TOF bins for the single scatter sim-
ulation estimate on the GPU, while the full TOF resolution was
used on the CPU. In addition, subsets were organized chrono-
logically within the GPU implementation but geometrically
within the CPU implementation. More subtle differences might
also exist that only a thorough examination of both source
codes could reveal.

To perform ROI analysis, the 4 and 8 mm voxel images were
upsampled two and four times, using a trilinear and cubic spline
interpolation, respectively. It can be observed that the GPU re-
construction had significantly lower noise when 8 mm voxels
were used (Fig. 4). Different image sampling should only be
compared with great caution because larger voxels have lower
noise as they include more counts, and contrast can be reduced
by partial volume effect. As a result, the only significant and
meaningful comparison is between TOF and non-TOF for the
same reconstruction platform and the same voxel size. Such
comparison shows that improvements in image quality between
TOF and non-TOF images were consistent for both platforms
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and all voxel sizes (Fig. 4). While the accuracy of the GPU
line projector has been demonstrated in previous work [14],
these new results show that the GPU implementation can handle
TOF data for various voxel sizes, and that TOF improves image
quality consistently with the results obtained using the UPenn
reconstruction package.

Little difference can be observed between the 2 and 4
mm-voxel reconstruction (Fig. 3), and, because the 2 mm-voxel
reconstruction is more than twice slower than the 4 mm-voxel
reconstruction (Table I), the larger voxel size should be pre-
ferred.

The current list-mode reconstruction package was imple-
mented on the GPU using OpenGL and Cg, an API mainly
designed for performing graphics rendering. The GPU can
now be accessed using compute-specific software interfaces,
the most popular of them being the compute-unified device
architecture (CUDA). CUDA solves some of the problems
associated with using OpenGL for general-purpose computing,
such as the complexity of code development and the lack of
access to all the capabilities of the GPU. Furthermore, with the
exception of rasterization, all the steps involved in GPU line
projection can be implemented using CUDA. We are currently
investigating ways of circumventing CUDA’s lack of access to
the GPU rasterizer by implementing the rasterization process
on the GPU in software.

V. CONCLUSION

We have demonstrated the feasibility of using graphics hard-
ware for performing list-mode reconstruction from raw PET
data with TOF information. For 4 4 4 mm voxels, the GPU
reconstruction can process a million prompts in 1.2 s using a
single GPU. Further acceleration can be achieved by combining
the power of multiple GPUs. Future work will study how to fur-
ther accelerate list-mode TOF reconstruction by exploiting op-
timizations specific to TOF projections as well as advances in
GPU hardware and high performance computing platforms.
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