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Abstract. Even though the number of longitudinal resting-state-fMRI
studies is increasing, accurately characterizing the changes in functional
connectivity across visits is a largely unexplored topic. To improve char-
acterization, we design a Riemannian framework that represents the
functional connectivity pattern of a subject at a visit as a point on a
Riemannian manifold. Geodesic regression across the ‘sample’ points of
a subject on that manifold then defines the longitudinal trajectory of
their connectivity pattern. To identify group differences specific to re-
gions of interest (ROI), we map the resulting trajectories of all subjects
to a common tangent space via the Lie group action. We account for the
uncertainty in choosing the common tangent space by proposing a test
procedure based on the theory of latent p-values. Unlike existing meth-
ods, our proposed approach identifies sex differences across 246 subjects,
each of them being characterized by three rs-fMRI scans.

1 Introduction

Longitudinal resting-state(rs)-fMRI studies, in which participants are scanned at
multiple visits, have been increasingly used for investigating functional connec-
tivity changes and development in human brains [1,2]. However, current methods
for rs-fMRI group analysis are mostly designed for cross-sectional studies [3,4].
In this paper, we propose a framework for performing group analysis on longi-
tudinal rs-fMRI data.

Cross-sectional studies often encode the functional connectivity of a subject
as an n X n covariance matrix C' of BOLD (blood-oxygen-level dependent) time
courses associated with n ROIs. To identify differences in functional connectivity
between two groups, a univariate group test is typically applied to each connec-
tion (each element in the upper triangle of C). One problem in this practice is
that the univariate tests neglect the strong statistical dependence among matrix
elements: a covariance matrix C' is confined by the positive-definite constraint
C =CT, xCxT > 0 for all non-zero x € R". One way to alleviate this problem
is to leverage the fact that covariance matrices form a Riemannian manifold [5].
Previous rs-fMRI connectivity studies have reported improved detection sen-
sitivity by performing group analysis directly on that manifold [4]. Based on



this observation, we design a Riemannian framework to analyze the change in
connectivity patterns captured by longitudinal studies.

In a longitudinal study, each subject is characterized by a series of covariance
matrices representing connectivity patterns at multiple visits. Motivated by pre-
vious works [6], our longitudinal framework is composed of two parts: (a) fitting
a longitudinal trajectory on the covariance matrices of each subject via geodesic
regression on the manifold [7] (Section 2); and (b) comparing subject-specific
trajectories across groups (Section 3). The challenge in (b) is that trajectories of
different subjects are not directly comparable as they are essentially tangent vec-
tors defined in different tangent spaces. Several methods have been explored to
handle this problem, either by directly performing group analysis on the ‘tangent
bundle space’ [6] or by designing mixed-effect models for manifolds [8]. These
methods, however, consider the object of interest (in our case a covariance ma-
trix) as a single manifold-valued variable, such that group difference can only
be identified with respect to the entire matrix (the whole brain connectivity)
instead of each matrix element (connectivity between two ROISs). In order to
enable ROI-specific analysis, we map all tangent vectors to a common tangent
space of a template point on the manifold. This enables univariate testing to
each matrix element across all mapped tangent vectors.

In addition, we define the mapping function based on the Lie group action
and briefly discuss its favorable properties to the popular parallel transport
mechanism [9,10]. We define the common tangent space via the the identity
matrix [9] and the Fréchet mean [4], and we argue that the latter is preferred
in the context of connectivity analysis. Finally, our group analysis accounts for
the uncertainty in estimating the template via a robust test procedure based
on the theory of latent p-values. We finally validate our proposed Riemannian
framework using both synthetic and real rs-fMRI datasets.

2 Computing Subject-Specific Trajectory

Recall that the space of n X n covariance matrices forms a Riemannian manifold
M [5]. Let A be a point on M, TaM the tangent space at A, and X € TaM a
tangent vector. There is a unique geodesic curve 7 (a locally length-minimizing
curve on the manifold) with 4(0) = A and v(0)’ = X . The analytical equation
of a geodesic is defined by the exponential map,

v(t) = Expa(tX) := AZexpm(A~ 7 (tX)A"7)A?, (1)

where expm is the matrix exponential operator. In other words, the exponential
map Fzpa(X) at an initial point A projects a tangent vector X to a point
on the manifold at (1) along the geodesic v defined by (A, X). The inverse
mapping of Expa(X) is called the log map. It projects a point B € M back to
a tangent vector at A via Loga(B) := A%logm(A_%BA_%)A%.

Now let us consider M covariance matrices of a subject {C', ..., C™} mea-
sured at M visits. Let {t!,...,#"} be the time associated with those visits. With-
out loss of generality, we translate {t'} such that t! = 0. We then use geodesic



Fig.1. (a) A Riemannian framework for longitudinal connectivity analysis: the gth
subject’s trajectory (red dashed curve) is fitted via geodesic regression on subject-
specific covariance matrices (triangles on the left). All resulting subject-specific tangent
vectors are mapped via function ¢ to the tangent space of C to perform group analysis.
(b) Top: 3 covariance matrices {C*, C?, C?} of a subject with ¢ = 0,1, 2. Bottom: The
optimal geodesic (A, X ) derived from geodesic regression.

regression [7] to characterize the change of {C"} over time (the relationship be-
tween t' and C"). Specifically, to find a geodesic curve (A, X) that optimally
fits the data (Fig. 1), we minimize the following objective function:

M
A v : 7 7\ 2
(A, X) = arg min §:1 d(Expa(t'X),C")7, (2)

)

where d(A, B) measures the geodesic distance between A, B € M via the Rie-
mannian metric d(A, B) := ||Loga(B)||a := \/tr(logm(AféBAfé)).

In particular, the initial point A characterizes the connectivity pattern at
baseline. The tangent vector X characterizes the longitudinal trajectory of that
subject’s connectivity. Note that the tangent space 1’4 M is the vector space of

n x n symmetric matrices. Therefore, unlike A, the matrix elements in the upper
triangle of X are mutually independent for univariate tests.

3 Group Analysis for Trajectories

Now let {(A;, X ;)| =1,..., N} represent the geodesics of N different subjects.
While cross-sectional analysis is interested in analyzing baseline matrices {A;}
[4], here we aim to identify group differences in { X}, i.e., the difference across
subjects in their longitudinal changes. As mentioned, these tangent vectors are
defined in different tangent spaces (e.g. the red and green vector in Fig. la),
therefore not directly comparable. To handle this problem, we map all tangent
vectors { X ;|7 = 1, ..., N} to a common tangent space T¢ M. This step essentially
requires the definition of (a) a mapping function ¢4, ,&(X;) = X, and (b) a
template point C. Finally, we estimate the p-values of univariate testing for all
n(n + 1)/2 matrix elements across {X,|j = 1,..., N}.



Choosing the Mapping Function ¢. A popular choice of ¢ is the parallel
transport [9,10], which transports tangent vectors on a manifold such that they
stay parallel with respect to the affine connection. Despite its appealing geomet-
rical meaning, the major drawback of parallel transport is its path-dependency:
transporting a tangent vector along two different curves with the same start
and end point generally results in two different ‘copies’ of the vector. This phe-
nomenon can lead to ambiguity in choosing the template for group analysis.
To show this effect, let ¢y . 5(X) denote the parallel transport of X € TaM
along the geodesic from A to B. Let X1 € Tq, M and X € Th, M be two
subject-specific tangent vectors. We further assume that they are equivalent

when transported to C, i.e., X| = illaé(Xl) = szaé(XQ) = X,. Now if

we perturb C by ¢ via C* = Expa(e) and transport X, X5 to C”, in general,

Xy =l (a0 (X)) £ o, (X)) = X5 (3)

as ¢@P is path-dependent. Contradictory to our previous assumption that the two
subject-specific tangents are equivalent, Eq. 3 reveals that they are different at
C". In other words, (in)equality relationships among {X j} are variant to the
template selection, which can lead to serious ambiguity in the comparison of
subject-specific trajectories.

To resolve this problem, we exploit the fact that M is equipped with an affine-
invariant Riemannian metric [5]. To be specific, let GL,, denote the Lie group
of all n x n invertible matrices. This group acts on M via a smooth mapping
function ¢ : GL, x M = M, ¥g(A) = GAG?T = B, where G € GL, and
A, B € M. This group action can be naturally extended to tangent vectors via
its derivative map dipg(X) := GXGT =Y, where X € TgoM and Y € Tg M.
In other words, dy¥g achieves the mapping of tangent vectors across different
tangent spaces based on the aforementioned smooth group action. With this
construction, we propose the following mapping function

1

¢ p(X) = dpa(X), G=B A" (4)

Since the group action ¢ is transitive [5], so is ¢, i.e., ¢ (0%, 5(X)) =
% o(X). This property avoids the path-dependent assumption as required in
parallel transport, so that (in)equality relationships among {X j} are invariant
to the choice of the template.

Choosing the Template C. In the context of connectivity analysis, we
argue that the Fréchet mean [4] is a more appropriate template compared to
the identity matrix I [9]. Recall that X (u,v), the (u,v)! element in a subject-
specific tangent vector X, encodes the longitudinal information about connec-
tivity between the u'" and v ROL. Since ¢% _ ~ (or ~) is a general linear

D
_ A—-C
transformation, X (u,v) is a linear combination of X (u,v) and other matrix el-
ements. Consequently, X (u,v) no longer precisely relates the two ROIs. This
reveals one critical trade-off: only X models true subject-specific ROI informa-

tion, whereas only X is geometrically comparable with other tangent vectors.

_ _1
To alleviate this issue, we realize that when C' is close to A, C'? A7 is close to



Algorithm 1 Latent p-value map

1: Resample {A;|j = 1,..., N} 500 times to compute the empirical bootstrap distri-
bution of the Fréchet mean {C', ..., C,soo}'

2: For each bootstrapped (_Z’i, map {X;|j = 1,..,N} to it to achieve {X;L] =
1,...,N}. Apply univariate tests to each matrix element to get a p-value map P°.

3: The final latent p-value map P = ﬁ 25001 Pt

1=

an identity transformation (X (u,v) ~ X (u,v)). This motivates us to choose C
as the Fréchet mean, because it is the ‘closest’ matrix to all {A;} so that true
ROI information can be optimally preserved for all subjects.

A Robust Test Procedure. In the end, a univariate test is applied to each
connection (upper triangular matrix element) across {X,}. However, with dif-
ferent choices of C, both the null distribution and observed values of { X ;(u,v)}
vary accordingly to the associated ¢f'4_> o Therefore, the uncertainty in estimat-
ing the Fréchet mean can lead to unstable p-values. To solve this problem, we
resort to the theory of latent p-values [11]. Recall that the p-value is defined
as p = pr(Xy > X|Hy), i.e., the probability of obtaining a result larger (right-
tailed) than the observed X under the null hypothesis (. Recently, statisticians
also interpret p-values as random variables [11]. Specifically, the latent p-value
considers both the strength of the evidence against the null hypothesis, and
the uncertainty in the evidence and null distribution. Here we regard both Xj
and X as unobservable latent variables. As described in [11], the latent p-value
can be approximated by generating Monte-Carlo realizations of Xy. We then
let Xy and X be dependent on a latent template C, and we marginalize C' by
p = Japr(X(C) > X_(C’)|C’,’Ho)pr(é). Finally, we can approximate this in-
tegration by sampling C' via bootstrapping. Intuitively, instead of regarding X
and X, as deterministic variables, we perform multiple test procedures based on

templates sampled from pr(C') (Algorithm 1).

4 Experiments

Synthetic Data. In this experiment, we simulated covariance matrices for 2
groups of subjects. Each group has N = 20 subjects, and each subject has
M = 3 covariance matrices. We added longitudinal changes to the 3 matrices of
each subject in Group B. We validated our framework based on the accuracy in
identifying those effects between the two groups.

We started from simulating BOLD time series using SimTB [12]. We random-
ized simulation parameters for each subject and derived covariance matrices from
simulated BOLD signals. To be specific, we defined n = 10 ROIs and randomly
grouped them into 3 independent networks (Fig. 1b). Only ROIs of the same
network activated simultaneously, thus having non-zero covariances. The activa-
tion amplitude of each ROI was sampled from the standard Gaussian N(0,1).
The unique activation (functional noise) probability of each ROI was u = 0.35.
We added Riccan noise (imaging noise) with a Contrast-to-Noise Ratio (CNR)
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Fig. 2. (a)(b)(c) Group differences (yellow) identified by the three methods. (d)(e)
Histogram of identified elements counted using the 500 p-value maps.

of 1.5. The above simulation parameters were then shared across subjects. To
synthesize subject variability, we perturbed the activation amplitudes of each
subject with A/(0,0.05). Then, for each subject in Group A, BOLD time courses
at 3 time points (¢t = 0,1, 2) were generated using those simulation parameters.
The only difference in simulating Group B subjects was that the activation am-
plitudes of the 3"¢ network successively changed at {t!,#2 3}, with a changing
rate sampled from N(0,0.25). Consequently, only the covariances within that
network could change longitudinally. Fig. 1b shows one example, where the 9
elements within the red square (the 3"¢ network) are true positives to be iden-
tified by group analysis. Unlike the simulation in [4], our strategy relies only on
the basic fMRI signal generation mechanism, so that the simulated matrices do
not bias any particular covariance modeling technique.

Figs. 2a,b,c show the identified group differences (yellow) derived from three
longitudinal analysis methods: (a) our proposed Riemannian framework with the
mapping function ¢9 (Eq. 4); (b) Riemannian framework with parallel transport
¢P (defined in [13]); and (¢) linear regression on each element across subject-
specific covariance matrices {C"} (Euclidean). The final univariate test was the
two-sample t-test. The latent p-value map (Section 3.3) was used in Method a
and b, whereas Method c only required a deterministic p-value map as it directly
compared the trajectories (linear slopes) of different subjects. Significant matrix
elements were identified at p < 0.05 after correcting for multiple comparison via
the Bonferroni procedure. Due to the influence of ROI unique activation and the
Riccan noise, none of the three methods identified all true positives. However,
only Method a yielded no false positive. To show the non-deterministic nature
of the univariate tests in Method a and b, we identified group differences using
each of the 500 p-value maps and counted the frequency of each element being
significant. The spread of the two resulting histograms (Figs. 2d,e) indicates the
latent p-value map is preferred over any particular deterministic p-value map.
Moreover, our proposed mapping function ¢9 (Fig. 2d) achieved more consistent
group test results compared to the parallel transport (Fig. 2e). Next, to show the
importance of using the Fréchet mean as the template, we sampled 1000 C via
Principal Geodesic Analysis, and generated a deterministic p-value map for each
sampled C. We sorted and binned the 1000 test results according to the distance
from the sampled C to the Fréchet mean. Fig. 3a indicates when C was near the
Fréchet mean, the test accuracy significantly increased. Finally, we tested the
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Fig. 3. (a) Number of true (false) positives averaged over templates sampled within a
certain distance range. (b) ROC of the three methods under three noise levels. (¢) The
application of our proposed framework to the NCANDA dataset revealed sex effects in
two connections. The p-values were corrected for multiple comparison.

three methods’ robustness against noise (v and CNR). Under each noise level,
we repeated the experiments (including re-grouping ROIs and re-randomizing
activation amplitudes) 10 times. Fig. 3b shows that the Riemannian framework
always outperformed the traditional Euclidean method, and our proposed map-
ping function ¢9 always achieved the best result.

The NCANDA Dataset. We applied our framework to rs-fMRI data of
246 normal adolescents (age 12-21; 117 boys and 129 girls) from the National
Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) [14].
Each participant in this dataset was scanned three times (baseline, 1-year follow-
up and 2-year follow-up). We adopted the same preprocessing procedure as de-
scribed in [14]. The brain was parcelated into 100 ROIs using [15]. The final
univariate test was a general linear model (GLM) accounting for sex, age, site
and race. Using Method a, we identified sex effects in two connections (Fig.
3c). Specifically, the connectivity between Frontal_Suf-L and Vermis_1 increases
faster in girls. The connectivity between Frontal_Inf-Oper_R and Cuneus_L in-
creases faster in boys. Method b and ¢ did not yield any significant finding.

5 Conclusion

Based on the Riemannian modeling of covariance matrices, we introduced a
framework for performing group analysis on longitudinal rs-fMRI. Importantly,
our proposed tangent vector mapping function and latent p-value strategy aim
to best compromise between the geometry of data and clinical interpretation.
Both synthetic and real-data experiments indicated the potential of our proposed



framework in longitudinal connectivity analysis. Nevertheless, a theoretical com-
bination of Riemannian geometry and consistent statistics still remains an open
topic. In addition, we need to further explore the challenging issue of character-
izing multi-level longitudinality, i.e., dynamics in the time courses of each single
visit vs. development across visits.
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