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1 MOTION IN ONE DIMENSION

Part I

Newtonian Kinematics
This unit covers unit 1 of the AP Physics C: Mechanics curriculum, as well as a brief
introduction to section 2.2.

1 Motion in One Dimension

One dimensional motion only considers movement in the 𝑥 or 𝑦 axis, with vectors in ℝ1.

1.1 Average Particle Motion

We start with elementary definitions of displacement, velocity, and acceleration.

Definition 1.1. Position is the location of a particle with respect to a chosen reference
point. Distance is the length of a path followed by a particle, and displacement is an
objects change in position. The displacement of a particle with initial position 𝐱𝑖 and
final position 𝐱𝑓 is

Δ𝐱 = 𝐱𝑓 − 𝐱𝑖

Note that displacement is a vector quantity, whereas distance is a scalar quantity. We
can also use this to determine the rate of change, or velocity, of a particle as defined be-
low.

Definition 1.2 (Velocity). Average velocity, �̄�, is given by

�̄� =
Δ𝑥
Δ𝑡

= 𝐯𝑎𝑣 ,

the secant line on a position graph.

Contrast this with average speed, defined as the total distance over time. Also note that
velocity is a vector, notated with boldface or an arrow (𝐯 or 𝑣), whereas speed is a scalar,
without an arrow (𝑣).

Example 1.1. Given that the object in the image is moving in a straight line, find the
displacement, average velocity, and average speed of the object between A and F.

Solution. We know that

Δ𝐱 = 𝐱𝑓 − 𝐱𝑖 = −53 − 30 = −83 m .
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1 MOTION IN ONE DIMENSION

Figure 1.1: Example 2.1

Next, we can calculate that

𝐯𝑎𝑣 =
Δ𝐱
Δ𝑡

= −
83
5

= −1.7 m/s .

Finally,

𝑣𝑎𝑣 =
Σ𝑥
Σ𝑡

=
22 + 105

50
= 2.5 m/s .

Note that average velocity and speed are different. !

1.2 Instantaneous Particle Motion

As the time interval becomes smaller, average velocity becomes instantaneous, which is
the slope of the tangent. Thus,

Definition 1.3 (Instantaneous Velocity). The instantaneous velocity 𝐯 is

𝐯 = lim
Δ𝑡→0

Δ𝑥
Δ𝑡

=
d𝑥
d𝑡

Example 1.2. A particle moves along the 𝑥 axis according to the expression 𝑥 = 𝑡2.
Determine the expression of its instantaneous velocity at any time, and its instanta-
neous speed at 2s.

Solution. We can say that

𝑣(𝑡) =
d𝑥
d𝑡

= 2𝑡 ,

using the power rule. Evaluating this,

d𝑥
d𝑡

|||𝑡=2 = 4 m/s.
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1 MOTION IN ONE DIMENSION

!

Example 1.3. An object moves according to 𝑥(𝑡) = 2𝑡3 − 𝑡2 − 4. Find the times when
it has a velocity of zero.

Solution. We can find the velocity function as

𝑣(𝑡) =
d
d𝑡
𝑥(𝑡) = 6𝑡2 − 2𝑡 .

We set this to zero and get

6𝑡2 − 2𝑡 = 0
2𝑡(3𝑡 − 1) = 0

𝑡 = 0,
1
3

which is the answer. !

Definition 1.4 (Acceleration).The average acceleration is the change in velocity over
time, given by

�̄� =
Δ𝐯
Δ𝑡

.

This is also the secant line of the velocity vs. time graph. As intervals get smaller, we
find that the instantaneous velocity is

𝑎 = lim
Δ𝑡→0

Δ𝐯
Δ𝑡

=
d𝑣
d𝑡

.

We can also deduce that
𝑎 =

d
d𝑡 (

d𝑥
d𝑡 )

=
d2𝑥
d𝑡2

.
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1 MOTION IN ONE DIMENSION

Example 1.4. An object moves along the x axis according to

𝑥(𝑡) = 3.0𝑡2 − 2.0𝑡 + 3.0

Determine

1. The average speed between 2.0 and 3.0s

2. The instantaneous speed at 2.0 and 3.0s

3. The average acceleration between 2.0 and 3.0s

4. The instantaneous acceleration at 2.0 and 3.0s

Solution. (a) 𝑥(2) = 11, 𝑥(3) = 24.

�̄� =
Δ𝑥
Δ𝑡

=
13
1

= 13 m/s.

(b) 𝑣(𝑡) = d𝑥
d𝑡 = 6𝑡 − 2

𝑣(𝑡)|||𝑡=2,3 = 10, 16 m/s.

(c) 𝑣(2) = 10, 𝑣(3) = 16
�̄� =

Δ𝑣
Δ𝑡

=
6
1
= 6 m/s2.

(d) 𝑎 = d𝑣
d𝑡 = d2𝑥

d𝑡2 = 6𝑚/𝑠2 !

The slope of the position vs. time gives the velocity, and the slope of velocity gives the
acceleration.

1.3 One Dimensional Motion with Constant Acceleration

The slope of tangent to displacement gives velocity and slope of velocity gives acceleration.

Equation 1.1
The change in velocity is given by

Δ𝐯 = 𝑎𝑡 .

This is the area under the velocity curve.
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1 MOTION IN ONE DIMENSION

Figure 1.2: Various distance, velocity, and acceleration vs. time curves

Equation 1.2
The change in displacement is given by

Δ𝑥 = 𝑥 − 𝑥𝑜 = 𝑣𝑜𝑡 +
1
2
𝑎𝑡2

This is the area under velocity. We can also derive these using the definitions. Since

𝑎 =
Δ𝑣
Δ𝑡

,

we have
𝑣 = 𝑣𝑜 + 𝑎𝑡

and
𝑣𝑎𝑣𝑔 =

𝑣𝑜 + 𝑣𝑓
2

,

when acceleration is constant. We also have
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1 MOTION IN ONE DIMENSION

Equation 1.3
The change in displacement is given by

𝑥 − 𝑥𝑜 =
1
2
(𝑣𝑜 + 𝑣)𝑡 .

Thus, we can derive that
Δ𝑥 = 𝑥 − 𝑥𝑜 = 𝑣𝑜𝑡 +

1
2
𝑎𝑡2.

Equation 1.4 (Timeless Equation)
For constant 𝑎,

𝑣2 = 𝑣2
0 + 2𝑎(𝑥 − 𝑥𝑜)

Proof. From equation 2.3, we know

𝑥 − 𝑥𝑜 =
1
2
(𝑣𝑜 + 𝑣)𝑡 .

We can substitute 𝑡 with 𝑣−𝑣𝑜
𝑎 , giving us

𝑥 − 𝑥𝑜 =
1
2
(𝑣𝑜 + 𝑣)(

𝑣 − 𝑣𝑜
𝑎 )

2𝑎(𝑥 − 𝑥𝑜) = (𝑣𝑜 + 𝑣)(𝑣 − 𝑣𝑜)
2𝑎(𝑥 − 𝑥𝑜) = 𝑣2 − 𝑣2

𝑜

𝑣2 = 𝑣2
𝑜 + 2𝑎(𝑥 − 𝑥𝑜),

and we’re done. !

Example 1.5. A car traveling at a constant speed of 45 m/s passes a trooper hidden
behind a billboard. One second after the speeding car passes the billboard, the trooper
sets out from the billboard to catch it, accelerating at a constant rate of 3.0 m/s2. How
long does it tak her to overtake the car?

Solution. 𝑣𝐶 = 45.0 m/s, 𝑎𝑡 = 3.0 m/s2, 𝑡𝑡𝑟𝑜𝑜𝑝𝑒𝑟 = 𝑡 = ?, 𝑡𝑐𝑎𝑟 = 𝑡 + 1. We know that

Δ𝑥𝑡 = Δ𝑥𝑐 ,

so we can use
𝑣𝑜𝑡 +

1
2
𝑎𝑡2 = 𝑣𝑐(𝑡 + 1).

Therefore,
𝑡2 − 30𝑡 − 30 = 0,

so 𝑡 = 31𝑠 . !
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1 MOTION IN ONE DIMENSION

Example 1.6. A jet lands on an aircraft carrier at 140 mph. (a)What is its acceleration
if it stops in 2.0 seconds? (b) If the plane touches down at 𝑥𝑖 = 0, what is its final
position?

Solution. 𝑣𝑜 = 63 m/s, 𝑡 = 2.0 s, 𝑣 = 0, 𝑎 = ?, 𝑥𝑜 = 0, 𝑥 = ?. (a) We have

𝑎 =
𝑣 − 𝑣𝑜

𝑡
= −

63
2

= −31.5m/s2 .

(b) We can say

𝑥 − 𝑥𝑖 =
1
2
(𝑣𝑜 + 𝑣)𝑡

𝑥 =
1
2
(63 + 0)2

𝑥 = 63𝑚 ,

and we’re done. !

1.4 Free Fall

Neglecting air resistance, all objects dropped near the surface have the same constant
acceleration.

Definition 1.5 (Free Fall). A freely falling object is one that is moving freely under
the influence of gravity alone, regardless of its initial motion.

Example 1.7. A ball is tossed straight up at 25 m/s. Estimate its velocity at 1s inter-
vals.

Time (s) Velocity (m/s)
0 25
1 15
2 5
3 -5
4 -15
5 -25

We can apply the same formulas to free fall, setting 𝑎 = −𝑔 = −9.80 m/s2.
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1 MOTION IN ONE DIMENSION

Equation 1.5 (Free Fall Equations)
For an object in free fall,

𝑣𝑦 = 𝑣𝑜𝑦 − 𝑔𝑡

𝑦 − 𝑦𝑜 = 𝑣𝑜𝑦 𝑡 −
1
2
𝑔𝑡2

𝑣2
𝑦 = 𝑣2

𝑜𝑦 − 2𝑔(𝑦 − 𝑦𝑜)

In addition, we can determine the vertex points of free fall as follows.

Equation 1.6 (Key Points)
Where 𝑡1 is the vertex point, and 𝑡2 is the endpoint of free fall,

𝑡1 =
𝑣𝑜𝑦
𝑔

𝑡2 = 2𝑡1 =
2𝑣𝑜𝑦
𝑔

ℎ =
𝑣2
𝑜𝑦

2𝑔

1.5 Kinematics Equations from Calculus

We know that the derivative is the instantaneous rate of change. We say that the integral
is the antiderivative, or the area under the curve. For some curve 𝑣(𝑡),

Δ𝑥 = lim
𝑛→∞

𝑛
∑
𝑖=1

𝑣𝑖Δ𝑡 = ∫
𝑡

𝑡𝑖
𝑣(𝑡)𝑑𝑡

Equation 1.7
If 𝑣 is constant, we have

𝑥 − 𝑥𝑜 = 𝑣𝑡

Proof. We know that

𝑣 =
d𝑥
d𝑡

,
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2 VECTORS

so we can say

𝑑𝑥 = 𝑣𝑑𝑡

∫
𝑥

𝑥𝑜
𝑑𝑥 = ∫

𝑡

0
𝑣𝑑𝑡

𝑥 − 𝑥𝑜 = 𝑣𝑡 ,

and we’re done. !

We can also rederive the formula for acceleration. If 𝑎 is constant,

𝑎 =
d𝑣
d𝑡

𝑑𝑣 = 𝑎𝑑𝑡

∫
𝑣

𝑣𝑜
𝑑𝑣 = ∫

𝑡

0
𝑎𝑑𝑡

𝑣 − 𝑣𝑜 = 𝑎𝑡

2 Vectors

Vectors are very useful for describing phenomenon in physics. Typically, we work with
vectors in ℝ and ℝ2, occasionally in ℝ3, and rarely in higher dimensions.

Definition 2.1. A vector is a quantity with both magnitude and direction.

2.1 Basic Vector Operations

Adding vectors 𝐴 and 𝐵 can be done by the tip-to-tail method.

Theorem 2.1 (Commutativity)
Vector sums are commutative. In other words,

𝐀 + 𝐁 = 𝐁 + 𝐀.

Definition 2.2 (Negative).The negative of a vector 𝐀 is a vector which when added
to 𝐀 gives 0.

When two vectors are subtracted from one another, we draw −𝐁, and add it to 𝐀.
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2 VECTORS

Theorem 2.2
When 𝐀 is multiplied by scalar 𝑚, the vector 𝑚𝐴 has the same direction as 𝐴 and
magnitude 𝑚𝐴.

Definition 2.3. A vector 𝐀 can be expressed as a sum of 𝐴𝑥 and 𝐴𝑦 , where

𝐴𝑥 = 𝐴 cos 𝜃

and
𝐴𝑦 = 𝐴 sin 𝜃 .

In Q1, both components are positive. In Q2, the x is negative, and y is positive. In Q3, both
are negative, and in Q4, x is positive, and y is negative.

2.2 Unit Vectors

We can use unit vectors to express direction and magnitude without specifying the angle
of some vector.

Definition 2.4. A unit vector has magnitude exactly one, and specify a given direc-
tion in space. �̂� is the 𝑥 unit vector, �̂� is the y unit vector, and �̂� is the z unit vector.

Equation 2.3
Since we have

𝐴𝑥 × �̂� = 𝐀𝑥 �̂�,

𝐴𝑦 × �̂� = 𝐀𝑦 �̂�,

𝐴𝑧 × �̂� = 𝐀𝑧 �̂�,

we can write
𝐀 = 𝐴𝑥 �̂� + 𝐴𝑦 �̂� + 𝐴𝑧 �̂�.
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Equation 2.4 (Resultant Sum)
The components of the resultant vector 𝐑 of 𝐀 + 𝐁 are

𝑅𝑥 = 𝐴𝑥 + 𝐵𝑥

𝑅𝑦 = 𝐴𝑦 + 𝐵𝑦

𝑅𝑧 = 𝐴𝑧 + 𝐵𝑧 .

Since we know
𝑅 =

√
𝑅2
𝑥 + 𝑅2

𝑦 ,

and
tan 𝜃𝑅 =

𝑅𝑦
𝑅𝑥

we have

Equation 2.5
The magnitude of 𝐑 in ℝ2 is

|𝑅| =
√
(𝐴𝑥 + 𝐵𝑥 )2 + (𝐴𝑦 + 𝐵𝑦 )2,

and the direction 𝜃 of 𝐑 is given by

tan 𝜃 =
𝐴𝑦 + 𝐵𝑦
𝐴𝑥 + 𝐵𝑥

.

Example 2.1. Find the magnitude and direction of 10�̂� − 6�̂�.

Solution. We have that
|𝑣| =

√
𝑟2𝑥 + 𝑟2𝑦 = 11.67 ,

and
tan 𝜃 =

𝑟𝑦
𝑟𝑥
,

so 𝜃 = 329◦ . !

2.3 Vector Multiplication

There are two types of vector multiplication - the dot product and cross product. The dot
product gives a scalar, whereas the cross product gives a vector.
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2 VECTORS

Definition 2.5 (Dot Product).The dot product of 𝐀 and 𝐁, 𝐀 ⋅ 𝐁 is a measure of the
extent to which the two vectors are in the same direction. This is given by

𝐀 ⋅ 𝐁 = |𝐴||𝐵| cos 𝜃 .

This is equivalent to
𝐀 ⋅ 𝐁 = (𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 ).

Example 2.2. Find the angle between

𝐀 = −7�̂� + 4�̂�

and
𝐁 = −2�̂� + 9�̂�.

Solution. We know that 𝐀 ⋅ 𝐁 = 𝐴𝐵 cos 𝜃 . We then have that

𝐀 ⋅ 𝐁 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 = 50,

and
𝐴 =

√
𝐴2
𝑥 + 𝐴2

𝑦 = 8.06,

𝐵 =
√
𝐵2𝑥 + 𝐵2𝑦 = 9.22,

since 𝐀 and 𝐁 are in ℝ2.Then,

50 = (8.06)(9.22) cos 𝜃 ,

so 𝜃 = 47.7◦ . !

Definition 2.6 (Cross Product).The cross product of vectors 𝐀 and 𝐁 is

𝐀 × 𝐁 = 𝐂 = 𝐴𝐵 sin 𝜃 ,

where 𝐂 is the normal vector to 𝐀 and 𝐁.

We can use the right hand rule to determine the direction of 𝐂. This also indicates that 𝐂
must be in ℝ3.The commutative law does not hold with cross products.

Example 2.3. Vector𝐀 is in ℝ2, along 𝑥 −𝑦 , and has a magnitude of 18 units, pointing
in a direction 250◦ from the x axis. Vector 𝐁 has magnitude 12, and points along 𝑧.
What is 𝐀 × 𝐁?
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3 TWO DIMENSIONAL KINEMATICS

Solution. We can write 𝐀 and 𝐁 as

𝐀 = 𝐴𝑥 �̂� + 𝐴𝑦 �̂�

and
𝐁 = 𝐵𝑧 �̂�,

respectively. Then,

𝐂 = 𝐀 × 𝐁

= (𝐴𝑥 �̂� + 𝐴𝑦 �̂�) × (𝐵𝑧 �̂�)

= 𝐴𝑥𝐵𝑧(�̂� × �̂�) + 𝐴𝑦𝐵𝑧(�̂� × �̂�)

= 𝐴𝑥𝐵𝑧(−�̂�) + 𝐴𝑦𝐵𝑧(�̂�)

= −202.9�̂� + 73.9�̂�,

and we’re done. !

3 Two Dimensional Kinematics

Currently, we’ve been describing motion with one-dimensional objects (that is, vectors in
ℝ). However, most objects follow trajectories more accurately described in ℝ2.

3.1 Analyzing 2D Motion

To precisely describe motion in two dimensions, we use the position vector 𝑟 .

Equation 3.1
Given two position vectors 𝑟𝑡1 and 𝑟𝑡2 at times 𝑡1 and 𝑡2 on a motion graph, the dis-
placement, Δ𝑟 is given by

Δ𝑟 = 𝑟𝑡2 − 𝑟𝑡1

In addition, we know that 𝑣𝑎𝑣 = Δ𝑟
Δ𝑡 . This means that

Equation 3.2
For displacement Δ𝑟 and time Δ𝑡 ,

𝑣 =
d𝑟
d𝑡

=
d𝑥
d𝑡

�̂� +
d𝑦
d𝑡

�̂�.

In addition, we have

𝑎 =
d𝑣
d𝑡

=
d2𝑟
d𝑡2
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3 TWO DIMENSIONAL KINEMATICS

Example 3.1. An object is described by the position

𝑟(𝑡) = (3𝑡3 − 4𝑡)�̂� + (1 −
1
2
𝑡2)�̂�.

Find its velocity and position for arbitrary times.

Solution. From Equation 1.1, we know that velocity is the derivative of position with re-
spect to time. Therefore,

𝑣(𝑡) =
d𝑟
d𝑡

=
d𝑥
d𝑡

�̂� +
d𝑦
d𝑡

�̂�

= (9𝑡2 − 4)�̂� − (𝑡)�̂� .

We also have that acceleration is the derivative of velocity, so

𝑎(𝑡) =
d𝑣
d𝑡

= 18𝑡 �̂� − 1�̂� ,

and we’re done. !

3.2 Analyzing Projectile Motion

In projectile motion, the velocity vector can be described as two independent component
vectors, 𝑣𝑥 and 𝑣𝑦 . The 𝑥 component has constant velocity, and the 𝑦 component has
constant acceleration (−𝑔).

Equation 3.3
With initial velocity 𝑣0 and initial angle 𝜃 ,

𝑣0𝑥 = 𝑣0 cos 𝜃

𝑣0𝑦 = 𝑣0 sin 𝜃 .

Horizontal and vertical motion are independent, so we can analyze them separately.
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Equation 3.4 (Horizontal Motion Equations)
Since the 𝑥 component has constant velocity,

𝑣𝑥 = 𝑣𝑜𝑥
Δ𝑥 = 𝑣𝑜𝑥 𝑡 .

Equation 3.5 (Vertical Motion Equations)
Since the 𝑦 component has constant acceleration,

𝑣𝑦 = 𝑣𝑜𝑦 − 𝑔𝑡

Δ𝑦 =
1
2
(𝑣𝑦 + 𝑣𝑜𝑦 )𝑡

Δ𝑦 = 𝑣𝑜𝑦 𝑡 −
1
2
𝑔𝑡2

𝑣2
𝑦 = 𝑣2

𝑜𝑦 − 2𝑔Δ𝑦

Remark. A positive velocity is upwards and towards the right.

Example 3.2. A ball rolls off a table 1.0 m high with a speed of 4 m/s. How far from
the base does it land?

Solution. We know Δ𝑦 = −1.0 m, 𝑣𝑜𝑥 = 4 m/s, and 𝑣𝑜𝑦 = 0. Thus,

Δ𝑦 = 𝑣𝑜𝑦 𝑡 −
1
2
𝑔𝑡2

−1 = −
1
2
(9.8)𝑡2

𝑡 = −0.45𝑠.

Then, we can say

Δ𝑥 = 𝑣𝑜𝑥 𝑡

= 1.8 m ,

and we’re done. !
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Theorem 3.6
The trajectory of a projectile is parabolic, given by

𝑦 = (
𝑣𝑜𝑦
𝑣𝑜𝑥 )

𝑥 +(−
𝑔

2𝑣𝑜𝑥)
𝑥2.

Proof. We can say that

𝑡 =
Δ𝑥
𝑣𝑜𝑥

,

from 2.2. We also know that
Δ𝑦 = 𝑣𝑜𝑦 𝑡 −

1
2
𝑔𝑡2,

from 2.3. Substituting 𝑡 with Δ𝑥
𝑣𝑜𝑥 , we get

Δ𝑦 = 𝑣𝑜𝑦 (
Δ𝑥
𝑣𝑜𝑥)

−
1
2
𝑔 (

Δ𝑥
𝑣𝑜𝑥)

2

,

so
𝑦 = (

𝑣𝑜𝑦
𝑣𝑜𝑥 )

𝑥2 − (
𝑔

2𝑣2
𝑜𝑥)

𝑥2,

which was to be proved. !

Equation 3.7
The maximum height and range of a projectile are

ℎ =
𝑣2
𝑜 sin2 𝜃
2𝑔

and
𝑅 =

𝑣2
𝑜 sin 2𝜃
𝑔

.

Proof. For the height, we know that 𝑣𝑦 = 0 at the maximum height. Thus,

𝑣𝑜 sin 𝜃 − 𝑔𝑡 = 0,

since 𝑣𝑜𝑦 = 𝑣𝑜 sin 𝜃 . Therefore,

𝑡ℎ =
𝑣𝑜 sin 𝜃

𝑔
.

We can then substitute into Δ𝑦 = 𝑣𝑜𝑦 𝑡 − 1
2𝑔𝑡

2, so it becomes

ℎ = (𝑣𝑜 sin 𝜃)
𝑣𝑜 sin 𝜃

𝑔
−
1
2
𝑔 (

𝑣𝑜 sin 𝜃
𝑔 )

2

.
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From basic algebra,

ℎ =
𝑣2
𝑜 sin2 𝜃
𝑔

−
𝑔
2 (

𝑣𝑜 sin 𝜃
𝑔 )

2

=
𝑣2
𝑜 sin2 𝜃
𝑔

−
𝑔
2
⋅
𝑣2
𝑜 sin2 𝜃
𝑔2

=
𝑣2
𝑜 sin2 𝜃
𝑔

−
𝑣2
𝑜 sin2 𝜃
2𝑔

=
2𝑣2

𝑜 sin2 𝜃 − 𝑣2
𝑜 sin2 𝜃

2𝑔

=
𝑣2
𝑜 sin2 𝜃
2𝑔

,

and we’re done. For the range, we know 𝑅 = 𝑣𝑜𝑥 𝑡 . Therefore,

𝑅 = 𝑣𝑜 cos 𝜃 ⋅ 2𝑡ℎ,

since the distance is reached after twice the time it takes to reach the maximum height.
From earlier, we have

𝑡ℎ =
𝑣𝑜 sin 𝜃

𝑔
,

so substituting,

𝑅 = 𝑣𝑜 cos 𝜃 ⋅
2𝑣𝑜 sin 𝜃

𝑔
.

We also know that 2 sin 𝜃 cos 𝜃 = sin 2𝜃 .Therefore,

𝑅 =
𝑣𝑜 sin 2𝜃

𝑔
,

which was to be proved. !

Example 3.3. An arrow is shot from a castle wall 10.0 m high. It leaves the bow with
speed 40.0 m/s directed 37◦ above the horizontal. Find the initial velocity components
and the maximum height of the arrow.

Solution. For part (a), we have

𝑣𝑜𝑥 = 𝑣𝑜 cos 𝜃 = 32𝑚/𝑠

𝑣𝑜𝑦 = 𝑣𝑜 sin 𝜃 = 24𝑚/𝑠.

For part (b), we can use 2.5, so

ℎ =
402 (sin (37))2

9.8 ⋅ 2
+ 10 = 39.56𝑚 ,

and we’re done. !
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4 Circular Motion

Motion isn’t just constrained rectilinearly–we can also describe the motion of a particle
in circular orbit.

4.1 Particle in Uniform Circular Motion

An object moving in a circular path is said to be in circular motion if it has constant speed.
However, the velocity changes in direction. Therefore, the object is accelerating.

Theorem 4.1
The direction of Δ𝑣 is towards the center of the circular path.

Since the magnitude of velocity is constant, the acceleration vector can only have a com-
ponent perpendicular to path.

Equation 4.2
The centripetal acceleration (center-seeking) 𝑎𝑐 is given by

𝑎𝑐 =
𝑣2

𝑟

Proof. From similar triangles, we know that

Δ𝐫
𝐫

=
Δ𝐯
𝐯
,

where 𝐫 is the position vector. Therefore,

Δ𝑣 =
𝑣Δ𝑟
𝑟

.

We also know that
𝐚 =

Δ𝐯
Δ𝑡

.

Substituting,

𝐚 =
𝐯Δ𝐫
𝐫
Δ𝑡

=
𝐯2

𝐫,

since 𝐫/𝑡 = �̄�, and �̄� is the same as 𝐯 (because velocity is constant). Thus, we are done. !
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Definition 4.1 (Period).The period, 𝑇 is the time required for one complete revolu-
tion. It is given by

𝑇 =
2𝜋𝑟
𝑣

.

This also lets us derive

Equation 4.3 (Tangential Velocity)
The tangential velocity is given by

𝐯 =
2𝜋𝑟
𝑇

.

This is easily derived from Definition 1.1.

Definition 4.2 (Angular Motion). Angular displacement, 𝜃 is parallel to displace-
ment, 𝑥 . Angular velocity, 𝜔, is parallel to velocity 𝐯, and angular acceleration, 𝛼 ,
is parallel to linear acceleration 𝐚.

Equation 4.4
The angular velocity, 𝜔 is given by angular displacement over time:

𝜔 =
𝜃
𝑡
.

For one revolution,
𝜔 =

2𝜋
𝑇
,

since 𝜃 = 2𝜋 in one revolution.

Equation 4.5
Tangential velocity, 𝐯 is given as

𝑣 = 𝑟𝜔,

or romega.

4.2 Tangential and Radial Acceleration

When speed and direction change, acceleration has a tangential and radial component
(such as in a roller coaster). We write 𝑎𝑟 for radial, which indicates that the object turns,
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and 𝑎𝑡 for tangential, which indicates that the object speeds up.

Equation 4.6
The components of 𝐚 are given by

𝑎𝑡 =
d𝑣
d𝑡

and
𝑎𝑟 =

𝑣2

𝑟

Remark. Centripetal acceleration is the same as radial acceleration, and we use 𝑎𝑐
when there is no tangential acceleration.

Since we have the perpendicular components, we can say

Equation 4.7
The magnitude of 𝐚 is

|𝐚| =
√
(𝑎𝑟 )2 + (𝑎𝑡 )2.

Proof. This is a result of the PythagoreanTheorem. !

Example 4.1.The diagram represents the total acceleration of a particle moving
clockwise in a circle of radius 2.50 m at a certain instant of time. At this instant,
find the radial acceleration, the speed of the particle, and the tangential acceleration.

Solution. 𝑎 = 15.0 m/s2 at 30.0◦, and r = 2.50 m. We know that

𝑎𝑟 = 𝑎 cos 30◦ = 13.0 m/s2 ,

from trig. Then, we have

𝑎𝑟 =
𝑣2

𝑟
(4.1)

𝑣 =
√
𝑎𝑟 ⋅ 𝑟 (4.2)

= 5.7 m/s . (4.3)

Finally,
𝑎𝑡 = 15 sin 30◦ = 7.5 m/s2 ,

and we’re done. !
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4.3 Relative Motion

Relative motion studies how different observers may interpret motion differently based
on their vantage point.

Example 4.2. Suppose a bus is moving to the right with a speed of 15 m/s, and a
passenger walks to the front of the bus with 2 m/s. What is the speed of the passenger
as observed from the side of the road?

Solution. 𝑣𝐵𝐺 = 15 m/s, right, and 𝑣𝑃𝐵 = 2 m/s, right. We want to find 𝑣𝑃𝐺 . We can use
vector addition, which says

𝑣𝑃𝐵 + 𝑣𝐵𝐺 = 𝑣𝑃𝐺 ,

from the tip to tail method. Thus,

𝑣𝑃𝐺 = 15 + 2 = 17 m/s ,

and we’re done. !

Example 4.3. A slower car with a speed of 12 m/s is traveling behind a faster bus
with a speed of 16 m/s. A passenger on the bus gets up and walks toward the front
of the bus with a speed of 2 m/s. What is the velocity of the passenger relative to the
car?

Solution. We have 𝑣𝐶𝐺 = 12 m/s, 𝑣𝐵𝐺 = 16 m/s, 𝑣𝑃𝐵 = 2 m/s. We want to find 𝑣𝑃𝐶 , so we
can use the tip to tail method:

𝑣𝑃𝐶 = 𝑣𝑃 + 𝑣 + 𝑣 𝐶 .

We then have that
𝑣𝑃𝐶 = 𝑣𝑃𝐵 + 𝑣𝐵𝐺 + 𝑣𝐺𝐶 .

Since 𝑣𝐺𝐶 = −𝑣𝐶𝐺 ,
𝑣𝑃𝐶 = 2 + 16 − 12,

so we have 𝑣𝑃𝐶 = +6 m/s . !

Example 4.4. A small aircraft is heading south with a speed of 57.8 m/s with respect
to still air. Suddenly, a wind blows the plane so it moves in a direction 45◦ west of
south with 90.0 m/s with respect to the ground. Determine the velocity of the wind
with respect to the ground.
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Solution. We know 𝑣𝑃𝐴 = 57.8 m/s, S, 𝑣𝑃𝐺 = 90.0 m/s, 45◦ W of S. We want to find 𝑣𝐴𝐺 , so
from the bookend method,

𝑣𝐴𝐺 = 𝑣𝐴 + 𝑣 𝐺

= 𝑣𝐴𝑃 + 𝑣𝑃𝐺 .

Since we have 𝑣𝐴𝑃 = −𝑣𝑃𝐴 = 57.8 m/s, N. Geometrically, we can’t use the pythagorean
theorem, so we can instead find the components and add. We need 𝑣𝑃𝐺𝑥 , 𝑣𝑃𝐺𝑦 , 𝑣𝐴𝑃𝑥 , and
𝑣𝐴𝑃𝑦 . We also know that 𝑣𝐴𝑃𝑥 = 0. We have

𝑣𝑃𝐺𝑥 = 90 cos 45,𝑊 ,

𝑣𝑃𝐺𝑦 = 90 sin 45, 𝑆,

𝑣𝐴𝑃𝑦 = 57.8,𝑁 .

Let South be positive, and north be negative. Then,

𝑣𝐴𝐺𝑥 = 63.6,𝑊

and
𝑣𝐴𝐵𝑦 = 5.8, 𝑆.

Thus,
𝑣𝐴𝐺 =

√
63.62 + 5.82 = 63.9 m/s.

We can then say that
𝜃 = tan−1 (

63.6
5.8 ) ≈ 85◦.

Therefore, 𝑣𝐴𝐹 = 63.9 m/s at 85◦ West of South. !
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Part II

Forces
This unit covers unit 2 of the AP Physics C: Mechanics curriculum.

5 Introduction to Forces

There are two types of forces: contact and non-contact. For example, contact forces include

1. Pushing and Pulling (𝐹 )

2. Tension (𝑇 )

3. Surface

(a) Normal (𝑛 or 𝐹𝑁 )
(b) Friction (𝑓𝑠 and 𝑓𝑘)

Non-contact forces include

1. Gravity (𝐹𝑔 = 𝑚𝑔)

2. Electric (𝐹𝑒)

3. Magnetic (𝐹𝑏)

Free body diagrams show the relative magnitude and direction fo all forces acting upon
an object in a given situation. When drawing free body diagrams,

1. Identify which forces are present

2. Determine the direction in which each force is acting

3. Draw a box to represent the object, and arrows to represent each force

4. Label each force arrow according to its type

Example 5.1. Two blocks, A and B, are pulled up on an inclined plane as shown in
the diagram. The blocks do not slip against each other. Draw a free body diagram for
each block.

Solution. The force of gravity pulls downwards, and there is a normal force between the
two blocks. In addition, there is a tension force on A, and friction between them (and
between B and the plane). Therefore, we have
and we’re done. !
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Figure 5.1: Example 3.1

5.1 Newton’s First Law

Newton’s first law gives us the concept of inertia, which is used to define mass.

Law 5.1 (First Law of Motion)
An object at rest will remain at rest, or if in uniform motion it will continue as such,
unless acted upon by a net (unbalanced) external force.

Definition 5.1 (Inertia).The inertia of an object is its tendency to resist any attempt
to change its velocity.

Internal forces cannot change an objects motion.

5.2 Mass

An object which uniformly moves and an object at rest both have the same inertia. This
is because of the definition of mass.

Definition 5.2 (Mass).Mass is a measure of resistance an object exhibits to changes
in its velocity. The more massive an object is, the more inertia it has. Mass is a scalar,
measured by the SI unit of kilograms (kg).

Mass differs from weight in that it is independent of the objects surroundings and of the
method used to measure it.
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5.3 Newton’s Second Law

Newton’s second law answers the question of a nonzero resultant/net force acting on an
object.

Law 5.2 (Second Law of Motion)
The magnitude of the acceleration of an object is inversely proportional to its mass.
That is,

𝑎 =
Σ𝐹
𝑚

.

Force is measured in Newtons (N), where 1 newton is the force that produces an acceler-
ation of 1 m/s2 when acting on a 1 kg mass.

Equation 5.3
A newton is defined as

1𝑁 = 1𝑘𝑔 ⋅ 𝑚/𝑠2

Example 5.2. A hockey puck with a mass of 0.30 kg slides on the horizontal friction-
less surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting
the forces on the puck shown below.

1. Determine both the magnitude and direction of the puck’s acceleration

2. Suppose a third hockey stick strikes the puck simultaneously with the other
two. The puck shows no acceleration. What must be the components of the
third force?

Solution. The diagram shows We can say that

Σ𝐹𝑥 = 𝐹1𝑥 + 𝐹2𝑥 = 5 cos 20 + 8 cos 60 = 8.967𝑁

and
Σ𝐹𝑦 = 𝐹1𝑦 + 𝐹2𝑦 = 5 sin 20 + 8 sin 60 = 5.217𝑁 .

Then, since
Σ𝐹 =

√
𝐹 2𝑥 + 𝐹 2𝑦 ,

we have Σ𝐹 = 10.142𝑁 , so then

𝑎 =
Σ𝐹
𝑚

= 34 m/s2.
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Figure 5.2: Example 3.2

Using trig, we have
𝜃 = tan−1 (

5.217
8.697)

= 31◦.

For part b, we now have
𝐹3 = −Σ𝐹𝑥 �̂� − Σ𝐹𝑦 �̂�,

so 𝐹3 = −8.7�̂� − 5.2�̂�𝑁 . !

5.4 Gravitational Force and Weight

A mass in free fall experiences the force of gravity. From Newton’s Second Law, we can
derive

Equation 5.4
The force of gravity on an object is

𝐹𝑔 = 𝑚𝑔,

where 𝑚 is its mass and 𝑔 is the acceleration due to gravity.

Therefore, mass is universal, but weight (𝐹𝑔) depends on the gravity of your location.

5.5 Newton’sThird Law

Newton’s third law gives us the capability to formally describe interactions between ob-
jects or particles in a system.
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Law 5.5 (Third Law of Motion)
If two objects interact, the force 𝐹12 exerted by object 1 on object 2 is equal in magni-
tude to the force exerted by object 2 on object 1, 𝐹21. This means that

𝐹12 = −𝐹21

and that forces always come in pairs.

Question.What are the action-reaction force pairs while a ball free falls towards the
Earth?

Solution. We know that the Earth pulls the ball with the force of gravity, 𝐹𝑒𝑏 , or 𝐹𝑔 . Then,
there must be a force of the ball pulling on the Earth, 𝐹𝑏𝑒 . Each force is equal in magnitude,
so

𝐹𝑏𝑒 = −𝐹𝑒𝑏 .

However, just because they are equal in magnitude, the mass of the Earth is much larger
- therefore, it has a much lower acceleration. !

Question.What are the action-reaction force pairs of a book lying on a tabl?

Solution. At first glance, we may think that there are only two forces. However, there are
4 - the force of the earth on the book and its opposite, and the force of the book on the
table and its opposite (or the normal). The normal force is not part of the same action
reaction pair as the weight. !

Remark. Action and reaction forces act on different objects, and thus do not cancel
each other.

6 Applications of Newtons Laws

In this section, we apply Newton’s laws to problems, especially those in situations with
constant acceleration (i.e. zero force).

Example 6.1. A 200kg beam is connected by a cable too a 300 kg beam below it. The
two are raised with an acceleration of 0.5m/s2 by another cable attached to the 200kg
beam. Ignoring the cable masses, find the tension in each cable.

29 AP Physics C: Mechanics



6 APPLICATIONS OF NEWTONS LAWS

Solution. We can combine the bars as a system. The forces on the system are tension
upwards and gravity downwards. Then,

Σ𝐹𝑦 = 𝑇1 − 𝑔(𝑚1 +𝑚2)
= (𝑚1 +𝑚2)𝑎

𝑇1 − (𝑚1 +𝑚2)𝑔 = 𝑎(𝑚1 +𝑚2)
𝑇1 = (𝑚1 +𝑚2)(𝑔 + 𝑎)

= 5750𝑁 ,

and we’re done. To find the tension between the beams, we have to treat the beams sepa-
rately. Beam one has 𝑇1 up, and 𝑇2 and 𝐹𝑔 down, while beam two has 𝑇2 up and 𝐹𝑔 down.
We have

Σ𝐹𝑦 = 𝑇2 − 𝑚2𝑔
Σ𝐹𝑦 = 𝑚2𝑎

𝑇2 − 𝑚2𝑔 = 𝑚2𝑎
𝑇2 = 𝑚2(𝑔 + 𝑎)

𝑇2 = 3090𝑁 ,

so we’re done. !

Example 6.2. A traffic light weighing 122 N hangs from a cable tied to two other
cables. The upper cables are not as strong as the vertical cable, and will break if their
tension exceeds 100 N. Will the cables break?

Solution. The light has 𝑇3 and 𝐹𝑔 acting on it. Since it’s in equilibrium,

Σ𝐹𝑦 = 0
Σ𝐹𝑦 = 𝑇3 − 𝐹𝑔
𝑇3 = 𝐹𝑔 = 122𝑁 .

Then, since 𝑇1𝑥 = 𝑇1 cos 37, and 𝑇2𝑥 = 𝑇2 cos 53,

Σ𝐹𝑥 = 0
Σ𝐹𝑥 = 𝑇2𝑥 − 𝑇1𝑥
𝑇1𝑥 = 𝑇2𝑥

𝑇2 cos 53 = 𝑇1 cos 37.
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For the horizontal, since 𝑇1𝑦 = 𝑇1 sin 37 and 𝑇2𝑦 = 𝑇2 sin 53,

Σ𝐹𝑦 = 0
Σ𝐹𝑦 = 𝑇1𝑦 + 𝑇2𝑦 − 𝑇3

𝑇1𝑦 + 𝑇2𝑦 = 𝑇3
𝑇1 sin 37 + 𝑇2 sin 53 = 122𝑁 .

Substituting from our horizontal equations,

𝑇1 = 𝑇2
cos 53
cos 37

,

and therefore,

𝑇2
cos 53
cos 37

sin 37 + 𝑇2 sin 53 = 122𝑁

𝑇2 = 97.4𝑁
𝑇1 = 73.4𝑁 ,

so neither will break. !

Example 6.3. Two blocks of masses 𝑚1 and 𝑚2 with 𝑚1 > 𝑚2 are placed in contact
with one another on a frictionless surface. A constant for F is applied to𝑚1 as shown.
Find the magnitude of the acceleration and the contact force.

Solution. For the acceleration, we know Σ𝐹𝑥 = 𝑎Σ𝑚, so

Σ𝐹𝑥 = (𝑚1 +𝑚2)𝑎,

and 𝑎 = �̂�
𝑚1+𝑚2

. Then, for the contact force, we analyze the forces as separate systems.

Σ𝐹𝑥2 = 𝐹21
Σ𝐹𝑥2 = 𝑚2𝑎
𝐹21 = 𝑚2𝑎

𝐹21 = 𝐹
𝑚2

𝑚1 +𝑚2
,

and we’re done. !

Example 6.4. An Atwood machine is an arrangement where two objects of unequal
mass are hung over a frictionless pulley. Determine the magnitude of the acceleration
of the two objects and the tension in the light cord.
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Solution. We have

Σ𝐹1𝑦 = 𝑇 − 𝑚1𝑔
𝑇 = 𝑚1𝑎 +𝑚1𝑔

Σ𝐹2𝑦 = 𝑇 − 𝑚2𝑔
𝑇 = 𝑚2𝑔 − 𝑚2𝑎

𝑚1𝑎 +𝑚1𝑔 = 𝑚2𝑔 − 𝑚2𝑎

𝑎 =
(𝑚2 − 𝑚1)𝑎
𝑚1 +𝑚2

.

Then, solving for 𝑇 ,

𝑇 = 𝑚1𝑔 (
𝑚2 − 𝑚1

𝑚1 +𝑚2)
+𝑚1𝑔

𝑇 =
2𝑚1𝑚2𝑔
𝑚1 +𝑚2

,

and we’re done. !

Example 6.5. A ball of mass 𝑚1 and a block of mass 𝑚2 are attached by a light cord
that passes over a pulley. The block lies on an incline of angle 𝜃 . Find the magnitude
of the acceleration of both objects, and the tension in the cord.

Solution. We can rotate the coordinate system, so that the y-axis is oriented perpendicular
to the ramp. We have

Σ𝐹𝑦1 = 𝑇 − 𝑚1𝑔
𝑇 = 𝑚1𝑎 +𝑚𝑔

Σ𝐹𝑥2 = 𝑚2𝑔 sin 𝜃 − 𝑇
𝑇 = 𝑚2𝑔 sin 𝜃 − 𝑚2𝑎,

𝑚1𝑎 +𝑚1𝑔 = 𝑚2𝑔 sin 𝜃 − 𝑚2𝑎

𝑎 =
𝑚2𝑔 sin 𝜃 − 𝑚1𝑔

𝑚1 +𝑚2
.

Next,

𝑇 = 𝑚1𝑎 +𝑚1𝑔

=
𝑚1𝑚2𝑔(1 + sin 𝜃

𝑚1 +𝑚2
,

and we’re done. !
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7 Forces of Friction

When an object slides against a surface, there can be friction, due to macroscopic rough-
ness or microscopic forces.

Definition 7.1 (Friction). Friction is a resistive force exerted between two surfaces
that acts parallel to them. Static Friction, or 𝑓𝑠 is when two surfaces experience sliding
stress with no motion. Kinetic Friction, or 𝑓𝑘 , is when two surfaces slide over each
other.

The amount of friction depends on the amount of force pushing the surfaces together, or
the normal force, 𝑛.

Equation 7.1 (Kinetic Friction)
The kinetic friction experienced by some object is

𝑓𝑘 = 𝜇𝑘𝐹𝑛, (7.1)

where 𝐹𝑛 is the normal force, and 𝜇𝑘 is the coefficient of static friction.

Equation 7.2 (Static Friction)
The static friction is given by

𝑓𝑠max = 𝜇𝑠𝐹𝑛, (7.2)

and
𝑓𝑠 ≤ 𝜇𝑠𝐹𝑛, (7.3)

where 𝜇𝑠 is the coefficient of static friction.

Remark. Usually, 𝜇𝑠 > 𝜇𝑘 .

Example 7.1. A hockey puck on a frozen pond is given an initial speed of 20.05 m/s.
If the puck always remains on ice and slides 115 m before coming to rest, determine
𝜇𝑘 .

Solution. Begin by drawing a free body diagram. We see that 𝑓𝑘 is in the negative 𝑥 direc-
tion, 𝑛 is in the positive 𝑦 , and𝑚𝑔 is in the negative 𝑦. We also have 𝑣𝑜 = 20m/s, Δ𝑥 = 115
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m, and 𝑣 = 0, so we have

𝑣2 = 𝑣2
𝑜 + 2𝑎Δ𝑥

𝑎 =
𝑣2 − 𝑣2

𝑜
2Δ𝑥

= −1.739𝑚/𝑠2.

Then, we derive net force equations to be

Σ𝐹𝑦 = 𝐹𝑛 − 𝑚𝑔 = 0,

so 𝐹𝑛 = 𝑚𝑔. Then, in the 𝑥 direction,

Σ𝐹𝑥 = −𝑓𝑘 = 𝑚𝑎
−𝐹𝑛𝜇𝑘 = 𝑚𝑎

𝜇 =
−𝑚𝑎
𝑚𝑔

= 0.177 ,

and we’re done. !

Example 7.2. A block of mass𝑚1 on a rough horizontal surface is connected to a ball
of mass 𝑚2 by a lightweight cord over a lightweight frictionless pulley. A force 𝑓 at
angle 𝜃 with the horizontal is applied to the block. The coefficient of friction is 𝜇𝑘 .
Determine the magnitude of their acceleration.

Solution. We have𝑚1,𝑚2, 𝐹 , 𝜃 , and 𝜇. After drawing a free body diagram, we can see that
we need to bend our horizontal axis. In addition, we have to split 𝐹 into its components.
This gives us

Σ𝐹𝑦 = 𝑚1𝑎𝑦 = 0

and
𝐹𝑛 = 𝑚1𝑔 − 𝐹 sin 𝜗 .

In addition, we have
𝑎 =

Σ𝐹𝑥
𝑚1 +𝑚2

=
𝐹𝑥 − 𝑓 − 𝑚2𝑔
𝑚1 +𝑚2

.

Then, we know
𝑎 =

𝐹 (cos 𝜃 + 𝜇 sin 𝜃) − 𝑔(𝑚1𝜇 +𝑚2)
𝑚1 +𝑚2

,

and we’re done. !

On inclined planes, we must rotate our axes in order to match the direction of accelera-
tion.
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Example 7.3. A 5 kgmass is placed on a plank with 𝜇𝑠 = 0.6 and 𝜇𝑘 = 0.4. The plank is
raised slowly, until the mass begins to slide. Find the angle at which the block slides,
and its acceleration.

Solution. As always, start with a free body diagram. We know𝑚 = 5, 𝜇𝑠 = 0.6, and 𝜇𝑘 = 0.4.
We can then write

Σ𝐹𝑦 = 𝐹𝑛 − 𝑚𝑔 cos 𝜃 = 0,

so 𝐹𝑛 = 𝑚𝑔 cos 𝜃 . In addition,

Σ𝐹𝑥 = 𝑚𝑔 sin 𝜃 − 𝑓𝑠 = 0,

so
𝐹𝑛𝜇𝑠 = 𝑚𝑔 sin 𝜃 ,

meaning that
𝜇𝑠𝑚𝑔 cos 𝜃 = 𝑚𝑔 sin 𝜃 ,

so 𝜇𝑠 = tan−1(0.6) = 30.96◦. Next, we know

𝑎 =
Σ𝐹𝑥
𝑚

,

so
𝑎 = 𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃),

or 𝑎 = 1.68 m/s2. !

Example 7.4 (AP 1981 #1). A block of mass 𝑚, acted upon by a force 𝐹 directed to
the right, slides up an inclined plane that makes angle 𝜃 with the horizontal. The
coefficient of sliding friction is 𝜇.

Solution. a) Draw a free-body diagram - only draw the actual forces, not the components
b) Develop an expression for 𝑎, in terms of 𝑚, 𝜃 , 𝐹 , 𝜇, and 𝑔. We know that

Σ𝐹𝑦 = 𝐹𝑛 − 𝐹 sin 𝜃 − 𝑚𝑔 cos 𝜃 = 0
𝐹𝑛 = 𝐹 sin 𝜃 +𝑚𝑔 cos 𝜃 .

Next,

𝑎𝑥 =
Σ𝐹𝑥
𝑚

=
𝐹 cos 𝜃 − 𝑓𝑘 − 𝑚𝑔 cos 𝜃

𝑚

=
𝐹 cos 𝜃 − 𝜇(𝐹 sin 𝜃 +𝑚𝑔 cos 𝜃) − 𝑚𝑔 cos 𝜃

𝑚
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c) Develop an expression for the magnitude of the force 𝐹 the allows the block to slide up
the plane with constant velocity. We have

𝑎 = 0
𝐹 cos 𝜃 = 𝑚𝑔 sin 𝜃 + 𝜇(𝐹 sin 𝜃 +𝑚𝑔 cos 𝜃)

𝐹 (cos 𝜃 − 𝜇 sin 𝜃) = 𝑚𝑔(sin 𝜃 + 𝜇 cos 𝜃)

𝐹 =
𝑚𝑔(sin 𝜃 + 𝜇 cos 𝜃)
cos 𝜃 − 𝜇 sin 𝜃

.

Note that
cos 𝜃 > 𝜇 sin 𝜃 ,

or
1
𝜇
> tan 𝜃 ,

in order for the expression to be valid. !

8 Circular Motion and Other Applications

Just as in unit one, we may also wish to describe the mechanics of an object in a circular
path.

8.1 Extending the Particle in Uniform Circular Motion

We know that a particle with uniform velocity 𝑣 in a path of radius 𝑟 has centripetal
acceleration

𝑎𝑐 =
𝑣2

𝑟
.

The force creating this motion is directed inwards (centripetal). Thus, we have

Equation 8.1 (Centripetal Force)
For object with mass 𝑚 and velocity vector 𝑣 traveling around a circular path with
radius 𝑟 ,

𝐹𝑐 =
𝑚𝑣2

𝑟
.

This is a result of 𝐹 = 𝑚𝑎. Since the net force is inwards, if the path is opened, the object
will begin moving tangent to its previous circular path.

Question. A small object of mass 𝑚 is suspended from a string with length 𝐿. The
object revolves with constant speed 𝑣 in a path with radius 𝑟 . What is 𝑣, in terms of
𝑚, 𝐿, and 𝑟?
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Solution. After drawing a free body diagram, we have

Σ𝐹𝑦 = 𝑇𝑦 − 𝑚𝑔 = 0,

so

𝑇 cos 𝜃 = 𝑚𝑔

𝑇 =
𝑚𝑔
cos 𝜃

.

In addition, we have

Σ𝐹𝑥 = 𝑇𝑥

Σ𝐹𝑥 = 𝑚𝑎𝑐 =
𝑚𝑣2

𝑟

𝑇 sin 𝜃 =
𝑚𝑣2

𝑟 sin 𝜃
𝑚𝑔
cos 𝜃

=
𝑚𝑣2

𝑟 sin 𝜃
𝑣 =

√
𝑟𝑔 tan 𝜃 ,

so we’re done. !

Example 8.1. A 1500 kg car moves around a curve with radius 35.0. The road has
𝜇𝑠 = 0.5. Find the maximum speed the car can have and still successfully turn.

Solution. First, from a free body diagram,

Σ𝐹𝑦 = 0,

or 𝐹𝑛 = 𝑚𝑔. We also have
𝑓𝑠 max = 𝜇𝑠𝑚𝑔.

Then, since

Σ𝐹𝑥 = 𝑓

Σ𝐹𝑥 = 𝑚
𝑣2

𝑟

𝜇𝑠𝑚𝑔 = 𝑚
𝑣2

𝑟
𝑣 = √𝑟𝜇𝑠𝑔,

so 𝑣 = 13.1 m/s. !
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Example 8.2. An engineer is designing a curve for a car to travel on. Assuming that
the car will have a speed of 13.4 m/s, and that the radius of the curve is 50.0 m, find
the angle at which the curve should be banked.

Solution. We have, from FBDs, that

𝐹𝑛𝑦 = 𝐹𝑛 cos 𝜃

𝐹𝑛𝑥 = 𝐹𝑛 sin 𝜃 .

We then know that

Σ𝐹𝑦 = 0
𝐹𝑛𝑦 = 𝑚𝑔

𝐹𝑛 cos 𝜃 = 𝑚𝑔

𝐹𝑛 =
𝑚𝑔
cos 𝜃

.

Next,

Σ𝐹𝑥 = 𝑚
𝑣2

𝑟
= 𝐹𝑛 sin 𝜃

𝐹𝑛 =
𝑚𝑣2

𝑟 sin 𝜃
𝑚𝑔
cos 𝜃

=
𝑚𝑣2

𝑟 sin 𝜃
tan 𝜃 = 0.366,

so 𝜃 = 20.1◦. !

Example 8.3 (AP 1988 #1). A highway curve has radius of curvature 100m and is
banked at an angle of 15◦. Determine the vehicle speed for which this curve is ap-
propriate if there is no friction between the road and tires. Then, on a dry day when
friction is present, a car negotiates the curve at a speed of 25 m/s. Draw a free body
diagram for the cars motion, and then determine the minimum value for 𝜇 necessary
to prevent the car from sliding.

Solution. We know that
tan 𝜃 =

𝑣2

𝑟𝑔
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from the previous problem. Therefore, 𝑣 = 16.2 m/s. Next, after drawing the free body
diagram,

𝐹𝑛𝑥 = 𝐹𝑛 sin 𝜃
and

𝐹𝑛𝑦 = 𝐹𝑛 cos 𝜃 .
In addition, 𝑓𝑥 = 𝑓 cos 𝜃 and 𝑓𝑦 = 𝑓 sin 𝜃 . Then,

Σ𝐹𝑦 = 0
𝐹𝑛𝑦 − 𝑚𝑔 − 𝑓𝑦 = 0

𝐹𝑛 cos 𝜃 − 𝑚𝑔 − 𝑓 sin 𝜃 = 0.

We also have

Σ𝐹𝑥 = 𝑚
𝑣2

𝑟
= 𝐹𝑛𝑥 + 𝑓𝑥

𝐹𝑛 sin 𝜃 + 𝑓 cos 𝜃 =
𝑚𝑣2

𝑟
.

After some basic algebra,

𝐹𝑛 =
𝑚𝑣2

𝑟
sin 𝜃 +𝑚𝑔 cos 𝜃

𝑓 =
𝑚𝑣2

𝑟
cos 𝜃 − 𝑚𝑔 sin 𝜃 .

Finally, since

𝜇𝑠 ≥
𝑓
𝐹𝑛

,

we have that
𝜇𝑠 min ≥ 0.32,

and we’re done. !

8.2 Nonuniform Circular Motion

If a particle moves with varying speed, there are two components of acceleration – radial
and tangential. Thus, the net force also has these components, or

Equation 8.2
For an object with varying speed,

Σ𝐹 = Σ𝐹𝑟 + Σ𝐹𝑡 .

Radial force indicate change in direction, and tangential force indicates change in speed.
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Example 8.4. A child of mass 𝑚 rides on a Ferris wheel. The child moves in a circle
of radius 10 m at a constant speed of 3.0 m/s. Determine the force exerted by the seat
on the child at the top and bottom of the ride in terms of 𝑚𝑔.

Solution. We know
Σ𝐹𝑌 =

𝑚𝑣2

𝑟
= 𝐹𝑛 − 𝑚𝑔,

or
𝐹𝑛 = 𝑚𝑔(1 +

𝑣2

𝑔𝑟
),

so 𝐹𝑛 = 1.09𝑚𝑔 . At the top,

Σ𝐹𝑦 = −
𝑚𝑣2

𝑟
,

so
𝐹𝑛 = 𝑚𝑔 −

𝑚𝑣2

𝑟
,

and 𝐹𝑛 = 𝑚𝑔(1 − 𝑣2
𝑔𝑟 = 0.91𝑚𝑔 . !

8.3 Motion in Accelerated Frames

When a car banks a corner, we know that force is directed inwards of acceleration – but
we feel a force in the other direction. The Coriolis Effect states that as one rotates, from
an observers point of view, if you throw a ball, it will seem like there is a fictitious force
which makes the ball veer towards them.

9 Motion in the Presence of Resistive Forces

When an object moves through a medium, the medium interacts with the object. The
medium can exert a resistive force 𝐹𝑅 on the object, where

Equation 9.1
The resistive force on an object is

𝐹𝑅 = −𝑏𝑣𝑛,

where 𝑏 is a constant, dependent on the density of the medium and size/shape of the
object, and 𝑛 changes between 1 and 2 depending on the objects speed.

We have 𝑛 = 1 when an object falls through a dense fluid – for example, with a marble
falling through a liquid. We have

Σ𝐹𝑦 = 𝑚𝑔 − 𝑏𝑣1 = 𝑎,
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giving us

𝑎 = 𝑔 −
𝑏𝑣
𝑚

.

When 𝑎 = 0, we have that the terminal velocity is

𝑣𝑇 =
𝑚𝑔
𝑏

.

In addition, if 𝑣 = 0, we know 𝐹𝑅 = 0, so 𝑎 = 𝑔.

Law 9.2
As 𝑡 increases, the resistive force 𝐹𝑅 increases, meaning that 𝑎 decreases. This gives
us

lim
𝐹𝑅→𝑚𝑔

𝑎 = 0.

Question.What is 𝑣, as a function of 𝑡?

Solution. We have

𝑚𝑔 − 𝑏𝑣 = 𝑚𝑎

𝑚𝑔 − 𝑏𝑣 = 𝑚
d𝑣
d𝑡

d𝑣
d𝑡

= 𝑔 −
𝑏𝑣
𝑚

d𝑣
𝑔 − 𝑏𝑣

𝑚
= d𝑡

To solve this, we can take the integral1, so

∫
𝑣

0

d𝑣
𝑔 − 𝑏𝑣

𝑚
= ∫

𝑡

0
d𝑡

This is solvable via 𝑢 substitution. If we let 𝑢 = 𝑔 − 𝑏𝑣
𝑚 , we have

d𝑢
d𝑣

= −
𝑏
𝑚
,

1Note that this is a differential equation
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or d𝑣 = −𝑚
𝑏 d𝑢. Then, we have

−
𝑚
𝑏 ∫

d𝑢
𝑢

= ∫ d𝑡

ln |𝑢| =
−𝑏
𝑚

𝑡

ln
||||
𝑔 −

𝑏𝑣
𝑚

||||
|||
𝑣

0
= −

𝑏
𝑚
|||
𝑡

0

ln
||||
𝑔 −

𝑏𝑣
𝑚

||||
− ln |𝑔| =

ln
|||||

𝑔 − 𝑏𝑣
𝑚

𝑔

|||||
=

ln
||||
1 −

𝑏𝑣
𝑚𝑔

||||
= −

𝑏
𝑚
𝑡

1 −
𝑏𝑣
𝑚𝑔

= 𝑒−𝑏𝑡/𝑚

𝑣 =
𝑚𝑔
𝑏 (1 − 𝑒

−𝑏𝑡
𝑚 ) ,

and we’re done. !

To calculate the terminal velocity, we can say

𝑣 = 𝑣𝑇 (1 − 𝑒−𝑡/𝜏 ),

where 𝜏 is a time constant. When 𝑡 = 𝜏 , we have 𝑣 = 𝑣𝑇 (1 − 1
𝑒 ) = 0.632𝑣𝑇 . The time

constant 𝜏 = 𝑚/𝑏 is the time at which the object reaches 63.2% of 𝑣𝑇 .

Equation 9.3
The velocity under a resistive force 𝐹𝑅 = −𝑏𝑣𝑛 is given by

𝑣 =
𝑚𝑔
𝑏

(1 − 𝑒−
𝑏𝑡
𝑚 ) = 𝑣𝑇 (1 − 𝑒−𝑡/𝜏 )

Next, we need to find 𝑎 in terms of time. We can take the derivative of our earlier equation,
yielding

𝑎 =
d𝑣
d𝑡

=
d
d𝑡 (

𝑚𝑔
𝑏

−
𝑚𝑔
𝑏

𝑒−𝑏𝑡/𝑚)

= −
𝑚𝑔
𝑏

⋅
−𝑏
𝑚

𝑒−𝑏𝑡/𝑚

= 𝑔𝑒−𝑏𝑡/𝑚.
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Example 9.1. A small sphere of mas 2.00 g is released from rest in a large vessel
filled with oil, where it experiences resistive force proportional to speed. The sphere
reaches terminal speed 5.00 cm/s. Determine the time constant and time at which the
sphere reaches 90.0% of its terminal speed.

Solution. We have 𝑚 = 2.00𝑔, 𝐹𝑅 = −𝑏𝑣, 𝑣𝑇 = 5.00 cm/s, and we want to solve for 𝜏 and 𝑡
at 𝑣 = 0.9𝑣𝑇 . From net force equations,

Σ𝐹 = 𝑚𝑔 − 𝑏𝑣 = 0

𝑣𝑇 =
𝑚𝑔
𝑏

𝑚
𝑏

=
𝑣𝑇
𝑔

𝜏 =
5
980

= 5.10 × 10−3 s .

We also need to find the time where 0.90 of the final speed is reached. From our equation,

𝑣 = 𝑣𝑇 (1 − 𝑒−𝑏𝑡/𝑚)
0.9𝑣𝑡 = 𝑣𝑡 (1 − 𝑒−𝑡/𝜏

𝑒−𝑡/𝜏 = 0.1

𝑡 = − ln(0.1)𝜏 ≈ 11.7 × 10−3 s ,

and we’re done. !

We have 𝑛 = 2 when an object falls at high speeds through air. However, instead of just 𝑏,
we have

Equation 9.4
The resistive force upon an object falling through air is given by

𝐹𝑅 =
1
2
𝐷𝜌𝐴𝑣2,

where 𝜌 is the air density (1.20 kg/m3 at sea level), 𝐴 is the cross-sectional area of the
object, and 𝐷 is the drag coefficient, which depends on the objects shape.
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Example 9.2. A pitcher hurls a 0.145 kg baseball past a batte rat 40.2 m/s. Find the
resistive force acting on the ball.

Solution. We know that 𝑚 = 0.145 kg, 𝑣 = 40.2 m/s, and (from an engineering table),
𝐴 = 4.2 × 10−3 m2, and 𝑣𝑇 = 43. Then, we have

𝐹𝑅 = −
1
2
𝜌𝐴𝐷𝑣2 = −𝑏𝑣2,

and at 𝑣𝑇 , we have
Σ𝐹 = 𝑏𝑣2

𝑇 − 𝑚𝑔 = 0,
so 𝑏 = 𝑚𝑔

𝑣2𝑇
. Then,

𝐹𝑅 = 𝑏𝑣2

=
𝑚𝑔
𝑣2
𝑇

⋅ 𝑣2

= (0.145)(9.8)(
40.2
43 )

2

= 1.24𝑁 ,

so we’re done. !

Example 9.3. A motor boat cuts its engine when its speed is 𝑣𝑜 and coasts to stop.
The only horizontal force acting on the boat is the resistive force 𝐹𝑅 = −𝑐𝑣. Determine
the horizontal acceleration of the boat. Then, derive the equation expressing the boats
velocity as a function of time. Finally, determine the horizontal acceleration of the
boat as a function of time, and then find the distance the boat travels.

Solution. We know that
𝑎 =

Σ𝐹
𝑚

=
−𝑐𝑣
𝑚

.

Next, we have
d𝑣
d𝑡

= −
𝑐𝑣
𝑚

d𝑣
𝑣

=
−𝑐
𝑚

d𝑡

∫
𝑣

𝑣𝑜

d𝑣
𝑣

= −
𝑐
𝑚 ∫

𝑡

0
d𝑡

ln |𝑣||||
𝑣

𝑣𝑜
= −

𝑐
𝑚
𝑡|||
𝑡

0

ln
||||
𝑣
𝑣𝑜

||||
= −

𝑐
𝑚
𝑡

𝑣 = 𝑣𝑜𝑒−
𝑐
𝑚 𝑡 .
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Then, we can derive

𝑎 =
d𝑣
d𝑡

= −
𝑐
𝑚
𝑣𝑜𝑒−

𝑐
𝑚 𝑡 ,

from the chain rule. Finally, we have

d𝑥
d𝑡

= 𝑣𝑜𝑒−
𝑐
𝑚 𝑡

d𝑥 = 𝑣𝑜𝑒−
𝑐
𝑚 𝑡 ⋅ d𝑡

∫
𝑥

0
d𝑥 = ∫

𝑡

0
𝑣𝑜𝑒−

𝑐
𝑚 𝑡d𝑡 .

If we let 𝑢 = − 𝑐
𝑚 𝑡 , then d𝑢 = − 𝑐

𝑚d𝑡 , so

𝑥 = 𝑣𝑜 ∫ 𝑒𝑢d𝑢 (−
𝑚
𝑐 )

= −
𝑚
𝑐
𝑣𝑜 (𝑒−

𝑐
𝑚 )

|||
𝑡

0

= −
𝑚
𝑐
𝑣𝑜𝑒−𝑐𝑡/𝑚 +

𝑚
𝑐
𝑣𝑜

𝑥 =
𝑚
𝑐
𝑣𝑜 (1 − 𝑒−

𝑐
𝑚 𝑡) .

Taking the limit as 𝑡 goes to ∞,

𝑥 = lim
𝑡→∞

𝑚
𝑐
𝑣𝑜 (1 − 𝑒−

𝑐
𝑚 𝑡)

=
𝑚𝑣𝑜
𝑐

,

and we’re done. !
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Part III

Work and Energy
This unit covers unit 3 of the AP Physics C: Mechanics curriculum.

10 Introduction to Work and Energy

The concept ofwork is very useful for understandingmechanics, and for designing systems
for efficient energy use.

10.1 Work Done by a Constant Force

Constant forces, while typically not common in the real world, give us an opportunity to
discuss some key concepts in work & energy.

Definition 10.1.When a force acts on an object while displacement occurs, the force
has done work on the object. The magnitude of 𝑊 is the product of the amount
of force applied along the direction of displacement and the magnitude of the
displacement.

Therefore, we can say that
𝑊 = 𝐹 cos 𝜃Δ𝑥 ,

where 𝜃 is the angle between the force and direction of displacement. Because we know
that 𝐴 ⋅ 𝐵 = 𝐴𝐵 cos 𝜃 , we can say that

Equation 10.1 (Dot Product of Work)
Work can be expressed as

𝑊 = 𝐹 ⋅ Δ𝑥

Work is expressed in Joules, 𝐽 , which are equal to 𝑁 ⋅𝑚. Positive work means that energy
is transferred into the system, and negative work means that energy is being transferred
out.

Example 10.1. Rank the following situations in order of work done by the force on
the object, from most positive to least negative (displacement is to the right and of
the same magnitude).

Solution. We know that 𝑊 = 𝐹 ⋅ Δ𝑥 . In (a), the force is perpendicular to displacement,
meaning that cos 𝜃 = cos 90 = 0, so 𝑊 = 0. In (b), since force is opposite displacement,

46 AP Physics C: Mechanics



10 INTRODUCTION TO WORK AND ENERGY

Figure 10.1: Example 4.1

cos 𝜃 = cos 180 = −1, so 𝑊 < 0. For (c), since they are in the same direction, 𝑊 > 0. For
(d), we look at the horizontal component, which is opposite displacement. However, since
the component is weaker than the actual force, we can say that 𝑐 > 𝑎 > 𝑑 > 𝑏 . !

Remark. At this point, the textbook and video review the concept of scalar/dot prod-
ucts of vectors. Check out section 2.2 if you’d like to review this.

Example 10.2. A particle moving in the xy plane undergoes a displacement Δ𝑥 =
(2.0�̂� + 3.0�̂�) m as a constant force 𝐹 = (5.0�̂� + 2.0�̂�) N acts on the particle.

a) Calculate the magnitudes of the displacement and the force.

b) Calculate the work done by force 𝐹 .

c) What is the angle between force and displacement?

Solution. For (a), we know that

|𝐀| =
√
𝐀2
𝑥 + 𝐀2

𝑦 .

Substituting with Δ𝑥 ,

|Δ𝑥 | =
√
Δ𝑥2𝑥 + Δ𝑥2𝑦

=
√
2.02 + 3.02

= 3.6 m .
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Substituting with 𝐹 ,

|𝐹 | =
√
𝐹 2𝑥 + 𝐹 2𝑦

=
√
5.02 + 2.02

= 5.4 N .

Then, for (b), we have

𝑊 = 𝐅 ⋅ Δ𝐱
= 𝐹𝑥Δ𝑥𝑥 + 𝐹𝑦Δ𝑥𝑦
= (2.0)(5.0) + (3.0)(2.0)

= 16 J .

Finally, for (c), we know that
𝑊 = 𝐹Δ𝑥 cos 𝜃 .

Since𝑊 = 16 J, and we know the magnitudes from (a), we can derive

16 = (5.4)(3.6) cos 𝜃
0.823 = cos 𝜃

𝜃 = 34.6◦ ,

and we’re done. !

Example 10.3. Find the work done by all forces as a 4.0 kg mass slides 5.0 m down a
30◦ where the coefficient of kinetic friction is 0.30.

Solution. As always, begin with a free body diagram. Setting the 𝑥 axis parallel to the
plane,
Note that 𝐹𝑔 has not been split into components. We begin with the first force, 𝐹𝑁 . Since
𝐹𝑁 is perpendicular to Δ𝑥 ,

𝑊𝑁 = 𝐹 cos 90Δ𝑥 = 0.

Next, for 𝐹𝑔 ,

𝑊𝑔 = 𝐹𝑔 ⋅ Δ𝑥
= 𝐹𝑔𝑥Δ𝑥𝑥 + 𝐹𝑔𝑦Δ𝑥𝑦
= 𝑚𝑔 sin 𝜃Δ𝑥 +𝑚𝑔 cos 𝜃Δ𝑥
= (4)(9.8)(sin 30)(5) + 0

= 98 J .
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𝐹𝑔

𝑓𝑘

𝐹𝑁

Figure 10.2: Example 4.3

Finally, for 𝑓𝑘 , we have
𝐹 = 𝜇𝑚𝑔 cos 𝜃 ,

since 𝐹𝑁 = 𝑚𝑔 cos 𝜃 . Then,

𝑊𝑓 = 𝑓𝑘 ⋅ Δ𝑥
= 𝑓𝑘𝑥Δ𝑥𝑥 + 𝑓𝑘𝑦Δ𝑥𝑦
= −𝜇𝑚𝑔 cos 𝜃Δ𝑥
= −(0.3)(4)(9.8)(cos 30)(5)

= −51 J ,

and we’re done. !

Graphically, with a constant force 𝐹𝑥 , we can see that

Figure 10.3: Work as area

Therefore,
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Theorem 10.2
Work done is the area under the curve of 𝐹 and 𝑥 .

10.2 Work Done by a Varying Force

We can see that with a non-constant force, the above principle still applies. That is, for
some graph of 𝐹 and 𝑥 , work done is still the area under the curve. We can use Riemann
sums to approximate this area–or, instead, we can calculate the exact area from integra-
tion. This means

Figure 10.4: Work as an integral

Equation 10.3
For some force 𝐹𝑥 in the same direction as displacement

𝑊 = ∫
𝑥𝑓

𝑥𝑜
𝐹𝑥d𝑥 .

Example 10.4.The force acting on a particle varies with 𝑥 as shown below. Calculate
the work done as the particle moves from 𝑥 =

a) 0 to 8.0 m

b) 8 to 10 m

c) 0 to 10 m

Solution. We can calculate the area using triangles, so
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Figure 10.5: Example 4.4

a) 𝑊 = 1
2 (8)(6) = 24 J .

b) 𝑊 = 1
2 (2)(−3) = −3 J .

c) 𝑊0−10 = 𝑊0−8 +𝑊8−10 = 21 J ,

and we’re done. !

Example 10.5. An object is pushed by variable force 𝐅 = (3.0 𝑁
𝑚2 )𝑥2 �̂�, from 𝑥 = 1.0 to

2.0. Find the work done by this force.

Solution. We have, from Equation 2.1,

𝑊 = ∫
2

1
𝐹𝑥d𝑥

= ∫
2

1
3𝑥2d𝑥

=
1
3
3𝑥3|||

𝑥=2

𝑥=1

= 23 − 13

= 7 J ,

and we’re done. !

11 Springs &The Work–EnergyTheorem

This section covers two very important concepts in work and energy.
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11.1 Springs And Other Varying Forces

Springs are extremely interesting objects to study from a mechanics perspective, as you’ll
see in Unit 5. For the purposes of this unit, we explore the effect of force on springs, and
energy considerations with them.

Definition 11.1. A spring is an elastic object that can be deformed by a force and
return to its original shape after that force is removed.

The force applied per unit area is called stress. Under this stress, most materials strain,
which is the ratio of length change to original length. Each material responds differently
to stress.

Definition 11.2 (Types of Deformations). Elastic deformations are ones where, upon
the stress being removed, the material returns to its original dimensions. Plastic de-
formations, on the other hand, are ones where the stress is too great, meaning that
the material will be permanently deformed.

Hooke noticed that the stress vs. strain curve has a linear region for many materials.
Eventually, he developed Hooke’s Law, which states

Law 11.1 (Hooke’s Law)
The force exerted by a spring is proportional to the distance the spring is stressed or
compressed, such that

𝐹𝑠 = −𝑘𝑥 ,

where 𝑥 is the position relative to equilibrium and −𝑘 is the “spring constant” (ex-
pressed in N/m).

Note that the negative signifies that the force is always directed opposite to the displace-
ment 𝑥 . We can now determine the work done by a spring. Recall that

𝑊 = ∫
𝑥𝑓

𝑥𝑜
𝐹 ⋅ d𝑥 .
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We know that cos 𝜃 = 1, since 𝜃 = 0, meaning that the dot product is irrelevant. We can
substitute with Hooke’s Law, from above, so

𝑊𝑠 = ∫
𝑥𝑓

𝑥𝑜
𝐹𝑠d𝑥

= ∫
0

−𝑥max

(−𝑘𝑥)d𝑥

= −
1
2
𝑘𝑥2|||

0

−𝑥max

= 0 − (−
1
2
𝑘𝑥2)

=
1
2
𝑘𝑥2

Remark. Again, note the sign of the work. Since the force is in the same direction as
displacement (when compressed), the work is positive.

Question.What is the expression for work when the spring is past its equilibrium
point–that is, when the spring is stretched?

We can use similar logic as above. However, the lower bound of the integral is +𝑥max,
instead of negative. Thus,

𝑊𝑠 = ∫
0

𝑥max

(−𝑘𝑥)d𝑥

= −
1
2
𝑘𝑥2 .

We can visualize the force and displacement vectors as seen above.
More generally, then, we can say

Equation 11.2 (Work Done by a Spring)
The work done by a spring, 𝑊𝑠 , is given by

𝑊𝑠 = ∫
𝑥𝑓

𝑥𝑜
(−𝑘𝑥)d𝑥 =

1
2
𝑘𝑥2𝑜 −

1
2
𝑘𝑥2𝑓 .

Even further, we can derive the work done on a spring. Since we know

𝑊𝑒𝑥𝑡 = ∫
𝑥𝑓

𝑥𝑜
𝐹𝑎𝑝𝑝d𝑥 ,
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Figure 11.1: Force vectors for springs in various positions

we can replace 𝐹𝑎𝑝𝑝 with 𝑘𝑥 using Hooke’s Law. This is positive, because it is equal and
opposite to the force done by the spring. Thus,

Equation 11.3
The work done on a spring, 𝑊𝑒𝑥𝑡 , is given by

𝑊𝑒𝑥𝑡 = ∫
𝑥𝑓

𝑥𝑜
𝑘𝑥d𝑥 =

1
2
𝑘𝑥2𝑓 −

1
2
𝑘𝑥2𝑜 .

We can also see that𝑊𝑠 = −𝑊𝑒𝑥𝑡 .

Example 11.1. If a string is stretched 2.0 cm by a suspended mass of 0.55 kg, what is
𝑘, the spring constant? How much work is done by the spring as it stretches through
this distance?

Solution. We have that 𝑥 = 0.02 m, and 𝑚 = 0.55 kg. As we can see, Σ𝐹𝑦 = 0 = 𝑚𝑔 − 𝐹𝑠 .
Thus,

𝐹𝑠 = 𝑘𝑥 = 𝑚𝑔𝑘 =
𝑚𝑔
𝑥

,
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or 𝑘 = 2.7 × 102 N/m . Next, we know

𝑊 = ∫
𝑥

0
−𝑘𝑥d𝑥

= −
𝑘𝑥2

2
|||
0.02

0

= −
𝑘(0.02)2

2
− (−

𝑘(0)2

2 ) ,

or𝑊 = −5.4 × 10−2 J . !

Example 11.2. If it takes 4.00 J of work to stretch a Hooke’s Law spring 10.0 cm from
its unstressed length, determine the extra work required to stretch it an additional
10.0 cm.

Solution. We know that 𝑊𝑒𝑥𝑡 = 4 J, and 𝑥 = 0.1 m. We want to find Δ𝑊𝑒𝑥𝑡 when 𝑥 = 0.2
m. We have

𝑊𝑒𝑥𝑡 = ∫
𝑥

𝑜
𝑘𝑥d𝑥

=
1
2
𝑘𝑥2

𝑘 =
2𝑊
𝑥2

𝑊𝑒𝑥𝑡−𝑥2 =
1
2
𝑘𝑥2|||

0.2

0.1

=
𝑊𝑒𝑥𝑡−𝑥1
(𝑥1)2

(0.20)2 −
𝑊𝑒𝑥𝑡−𝑥1
(𝑥1)2

(0.10)2

= 16 − 4,

so 𝑊𝑒𝑥𝑡−𝑥2 = 12 J . !

Example 11.3. A light springwith spring constant 1200N/m is hung from an elevated
support. From its lower end a second light spring is hung, which has spring constant
1800 N/m. An object of mass 1.50 kg is hung at rest from the lower end of the second
spring. Find (a) the total extension distance of the pair of springs and (b) the effective
spring constant of the pair of springs as a system.
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Remark. We describe these springs as in series.

Solution. We have 𝑘1 = 1200 N/m, 𝑘2 = 1800 N/m, and 𝑚 = 1.50 kg. We want to find Δ𝑥
and 𝑘𝑒𝑞 . If we recall that

𝑘𝑒𝑞 = (
1
𝑘1

+
1
𝑘2)

−1

,

we have that 𝑘𝑒𝑞 = 720 N/m. Then, we have

𝐹 = 𝑘𝑒𝑞Δ𝑥

Δ𝑥 =
𝐹
𝑘𝑒𝑞

=
𝑚𝑔
𝑘𝑒𝑞

=
(1.5)(9.8)

720
,

so Δ𝑥 = 0.0204 m . !

Example 11.4. A force given by 𝐹 = (4𝑥�̂�+ 3𝑦�̂�) N acts on an object as it moves in the
𝑥-direction from the origin to 𝑥 = 5.00 m. Find the work done on the object by 𝐹 .

Solution. We know

𝑊 = ∫
𝑥

𝑥𝑜
𝐹 ⋅ d𝑥

= ∫
5

0
(4𝑥�̂� + 3𝑦�̂�)d𝑥�̂�

= ∫
5

0
4𝑥d𝑥 + 0

=
4𝑥2

2
|||
5

0
,

so 𝑊 = 2(25)2 = 50 J !

11.2 Work–Kinetic Energy Theorem

Suppose a net force directed right on a box causes the box to accelerate. We know

Σ𝑊 = ∫
𝑥𝑓

𝑥𝑜
Σ𝐹d𝑥 .
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Substituting with Σ𝐹 = 𝑚𝑎, we have

Σ𝑊 = ∫
𝑥𝑓

𝑥𝑜
𝑚𝑎d𝑥 .

We also know that 𝑎 = d𝑣
d𝑡 , so

Σ𝑊 = ∫
𝑥𝑓

𝑥𝑜
𝑚
d𝑣
d𝑡

d𝑥

= ∫
𝑥𝑓

𝑥𝑜
𝑚
d𝑣
d𝑥

d𝑥
d𝑡

d𝑥

= ∫
𝑣𝑓

𝑣𝑜
𝑚𝑣d𝑣.

Thus, we have
Σ𝑊 =

1
2
𝑚𝑣2

𝑓 −
1
2
𝑚𝑣2

𝑜 .

Definition 11.3.The kinetic energy, 𝐾 , of a system with mass 𝑚 moving at velocity
𝑣 is

𝐾 =
1
2
𝑚𝑣2

Therefore, we can use our above derivation to say

Theorem 11.4 (Work–EnergyTheorem)
The work done by the net force is the change in kinetic energy of the system. That is,

Σ𝑊 = Δ𝐾

Example 11.5. Calculate the work done on a satellite by gravity using two different
methods.

Solution. For the first method, we have

𝑊 = ∫ 𝐹𝑔 ⋅ d𝑠 = 0,

since 𝜃 = 0. We can also use the work-energy theorem. Since 𝑣𝑜 = 𝑣𝑓 , then Δ𝐾 = 0, so
Σ𝑊 = 0 J . !
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Example 11.6. A 6.0 kg block initially at rest is pulled to the right along a horizontal,
frictionless surface by a constant horizontal force 𝐹 = 12 N. Find the speed of the
block after it has moved 3.0 m.

Figure 11.2: Example 4.11

Solution. We have that

Σ𝑊 = ∫ 𝐹 ⋅ d𝑥

Δ𝐾 = 𝐹Δ𝑥 cos 𝜃
1
2
𝑚 (𝑣2

𝑓 − 𝑣2
𝑜) = 𝐹Δ𝑥

𝑣2
𝑓 − 𝑣2

𝑜 =
2𝐹Δ𝑥
𝑚

𝑣𝑓 =
√
2𝐹Δ𝑥
𝑚

=

√
2(12)(3.0)

6.0
=
√
12,

or 𝑣 = 3.46 m/s . !

Example 11.7. A man wishes to load a refrigerator onto a truck using a ramp. He
claims that less work would be required to load the truck if the length, 𝐿, of the ramp
were increased. Is his statement valid?
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Solution. We have that

Σ𝑊 = 𝑊𝑚𝑎𝑛 +𝑊𝑚𝑔 = Δ𝐾
𝑊𝑚𝑎𝑛 +𝑚𝑔𝐿 cos(90 + 𝜃) = 0

𝑊𝑚𝑎𝑛 = −𝑚𝑔𝐿 sin 𝜃 .

We can see, however, that 𝐿 sin 𝜃 = ℎ, the height of the ramp. Therefore, 𝑊𝑚𝑎𝑛 = 𝑚𝑔ℎ.
Since ℎ is constant, the work will not change, even if 𝐿 does. !

Example 11.8. A 4.00 kg particle is subject to a total force that varies with position,
as shown below. The particle starts from rest at 0. What is its speed at (a) 𝑥 = 5, (b)
𝑥 = 10, and (c) 𝑥 = 15?

Figure 11.3: Example 4.13

Solution. We can use the work–energy theorem. Since 𝑣𝑜 = 0, we have

Σ𝑊 = Δ𝐾 =
1
2
𝑚𝑣2.

Therefore,
𝑣2 =

2Σ𝑊
𝑚

.

For (a), we can find the area between 0 and 5, so that

∫
5

0
𝐹d𝑥 = 𝑊 .

Then,

𝑣 =

√
(2)(15)
(4)(2)

,

or 𝑣 = 19.3 m/s . For (b), we have

Σ𝑊 =
15
3
,

so 𝑣 = 3.35 m/s . Finally, for (c) we have Σ𝑊 = 30, so 𝑣 = 3.46 m/s . !
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12 Energy Considerations with Kinetic Friction

Suppose two forces are sliding together. We know that the force of friction is being caused
at a microscopic level. However, solving for the work done by this force microscopically
is intractable, so instead, we use Newton’s second law. Say that a book accelerates from
𝑣𝑜 to 𝑣𝑓 over a distance 𝑑 , with the only horizontal force being friction. Then,

Σ𝐹𝑥 = −𝑓𝑘 = 𝑚𝑎.

We know that

𝑣2
𝑓 = 𝑣2

𝑜 + 2𝑎𝑑

𝑣2
𝑓 − 𝑣2

𝑜 = 2𝑎𝑑
1
2
𝑚(𝑣2

𝑓 − 𝑣2
𝑜 ) =

1
2
𝑚(2𝑎𝑑)

1
2
𝑚(𝑣2

𝑓 − 𝑣2
𝑜 ) = 𝑚𝑎𝑑

𝐾𝑓 − 𝐾𝑜 = 𝑚𝑎𝑑
Δ𝐾 = −𝑓𝑘𝑑 .

Therefore, we have

Equation 12.1
The energy lost by kinetic friction is

Δ𝐾 = −𝑓𝑘𝑑 ,

where 𝑑 is the length of any path followed.

Law 12.2
The result of a friction force is to transform 𝐾 into internal energy, and the increase
in internal energy is the decrease in 𝐾 . That is,

Δ𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = Δ𝐾 + Δ𝐸𝑖𝑛𝑡 = 0.

We can also derive that
Δ𝐸𝑖𝑛𝑡 = 𝑓𝑘𝑑 .

Suppose forces other than friction act on the system. Then,

Σ𝑊𝑛𝑜𝑡−𝑓 = Δ𝐾 + Δ𝐸𝑖𝑛𝑡 .
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Example 12.1. A 40.0 kg box initially at rest is pushed 5.00 m along a rough horizon-
tal floor with a constant force 130 N. If the coefficient of friction is 0.300, find (a) the
work done by 𝐹𝑎𝑝𝑝 and (b) the increase in internal energy due to friction. Then, find
(c) the work done by normal force, (d) the work done by gravitational force, (e) the
Δ𝐾 of the box, and (f) the final speed of the box.

Solution. We know that

𝑊𝐹 = 𝐹 ⋅ Δ𝑥
= 𝐹Δ𝑥

= 650 Nm .

Next, we have that

𝑓𝑘 = 𝜇𝐹𝑁
= 𝜇𝑚𝑔

Δ𝐸𝑖𝑛𝑡 = 𝑓𝑘𝑑
= 𝜇𝑚𝑔𝑑 ,

so Δ𝐸𝑖𝑛𝑡 = 588 NM . Then, we know that 𝐹𝑁 and 𝐹𝑔 are perpendicular to motion, so
𝑊𝑁 = 0 and 𝑊𝑔 = 0 . For (e), we have that

Δ𝐾 + Δ𝐸𝑖𝑛𝑡 = Σ𝑊 .

Since Σ𝑊 = 𝑊𝑎𝑝𝑝 +𝑊𝑁 +𝑊𝑔 , we have Σ𝑊 = 650𝑁 . Thus,

Δ𝐾 = Σ𝑊 − Δ𝐸𝑖𝑛𝑡 ,

so Δ𝐾 = 650 − 588 = 62 J . Finally, we have

Δ𝐾 =
1
2
𝑚𝑣2

𝑓 −
1
2
𝑚𝑣2

𝑜

2Δ𝐾
𝑚

= 𝑣2
𝑓 ,

so 𝑣𝑓 = 1.76 m/s. !

Example 12.2. Suppose force 𝐹 is applied at angle 𝜃 above the horizontal. At what
angle should 𝐹 be applied to achieve the largest possible speed after the block has
moved 5.0 m to the right? There is a frictional force 𝑓𝑘 .
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Solution. We have that

Σ𝐹𝑦 = 𝑛 + 𝐹𝑦 − 𝑚𝑔 = 0
𝑛 = 𝑚𝑔 − 𝐹𝑦
= 𝑚𝑔 − 𝐹 sin 𝜃 .

We also know

𝑓𝑘 = 𝜇𝑛
= 𝜇(𝑚𝑔 − 𝐹 sin 𝜃)

Next,

Δ𝐸𝑖𝑛𝑡 = 𝑓𝑘Δ𝑥
= 𝜇(𝑚𝑔 − 𝐹 sin 𝜃)Δ𝑥 .

We want Δ𝐾 to be maximized. We have

𝑊𝑛 +𝑊𝑔 +𝑊𝐹 = Δ𝐾 + Δ𝐸𝑖𝑛𝑡
𝐹𝑥Δ𝑥 = Δ𝐾 + Δ𝐸𝑖𝑛𝑡

𝐹 cos 𝜃Δ𝑥 = Δ𝐾 + 𝜇(𝑚𝑔 − 𝐹 sin 𝜃)Δ𝑥
𝐹 cos 𝜃Δ𝑥 + 𝜇𝐹 sin 𝜃Δ𝑥 − 𝜇𝑚𝑔Δ𝑥 = Δ𝐾

𝐹Δ𝑥(cos 𝜃 + 𝜇 sin 𝜃) − 𝜇𝑚𝑔Δ𝑥 = Δ𝐾 .

To maximize cos 𝜃 + 𝜇 sin 𝜃 , we take the derivative and set to 0. Then,
d
d𝜃

cos 𝜃 + 𝜇 sin 𝜃 = 0

sin 𝜃 − 𝜇 cos 𝜃 = 0
sin 𝜃 = 𝜇 cos 𝜃
tan 𝜃 = 𝜇.

Therefore, when 𝜃 = tan−1(𝜇), the maximum speed will be reached. !

13 Power

Power is a useful metric when designing and study energy systems.

Definition 13.1. Power is a measurement of the rate at which work is done. It is
given by

𝑃 =
𝑊
𝑡
.

The SI units of power are J/s, or W.

Another units of power is horsepower, which is roughly 735.5 watts.

62 AP Physics C: Mechanics



13 POWER

Equation 13.1
Average power is given by

𝑃 =
𝑊
Δ𝑡

.

Instantaneous power is

𝑃 =
d𝑊
d𝑡

.

Since we know d𝑊 = 𝐹 ⋅ d𝑥 , and d𝑥/d𝑡 = 𝑣, we have

𝑃 = 𝐹 ⋅ 𝑣.

Power is measured in Watts (W), where 1 W = 1 J/s = 1kgm2/s3 = 1
746 hp. The

killowatt-hour (kWh) is the energy transferred in 1 hour at a rate of 1kW (1000 J/s). That
is, 1 kWh = 3.60 × 106 J.

Remark. The killowatt-hour is a unit of energy, not power.

Example 13.1. An elevator car has a mass of 1600 kg, and carries passengers with
a combined mass of 200 kg. A constant friction force of 4000 N slows its motion
upwards. Find (a) the power required to lift the elevator car at a constant speed of
3.00 m/s and (b) the power required at the instant the speed is 3.00 m/s if the motor
is designed to provide an upwards acceleration of 1.00 m/𝑠2

Solution. First, we create a free body diagram.
From this, we see

Σ𝐹𝑦 = 𝑇 − 𝑓 − 𝑚𝑔 = 0
𝑇 = 𝑓 +𝑚𝑔
= 4000 + (1600 + 200)(9.8)
= 2.16 × 104 N.

We know that
𝑃 = 𝑇 ⋅ 𝑣,

so 𝑃 = (2.16 × 104)(3) = 6.39 × 104 W . For (b), we have the same diagram. Here, however,
we have

Σ𝐹𝑦 = 𝑇 − 𝑚𝑔 − 𝑓 = 𝑚𝑎
𝑇 = 𝑚(𝑔 + 𝑎) + 𝑓
= 2.34 × 104 N.

Then, similar to (a), we have 𝑃 = 𝑇 ⋅ 𝑣 = 7.03 × 104 W . !
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𝐹𝑔

𝑇

𝑓

Figure 13.1: Example 4.16

Example 13.2. Find the instantaneous power delivered by gravity to a 4kg mass 2s
after it has fallen from rest.

Solution. We know that
𝑃 = 𝐹𝑣.

Since 𝐹 = 𝑚𝑔, and 𝑣 = 𝑔𝑡 , then
𝑃 = 𝑚𝑡𝑔2,

so 𝑃 = 768W !

Example 13.3. Find the instantaneous power delivered by the net force at t = 2s to a
0.5 kg mass moving in one dimension according to

𝑥(𝑡) =
1
3
𝑡3.

Then, calculate the work done on this object between 𝑡 = 0 and 𝑡 = 2.

Solution. We have that

𝑣 =
d𝑥
d𝑡

= 𝑡2

𝑎 =
d𝑣
d𝑡

= 2𝑡 .

64 AP Physics C: Mechanics



13 POWER

Since 𝑚 = 0.5, we have 𝐹 = 𝑚𝑎, so

𝑃 = 𝐹𝑣
= 𝑚𝑎𝑣
= 𝑚(2𝑡)(𝑡2)
= 2𝑚𝑡3.

Thus, 𝑃 = 8W . For (b), we have

𝑊 = 𝐹Δ𝑥
= 2𝑚𝑡 (𝑥(2) − 𝑥(0))

= 2(0.5)
1
3
(24)

so 𝑊 = 5.3 J . !

Example 13.4. A car of mass 𝑚 accelerates up a hill inclined at angle 𝜃 . The magni-
tude of the resistive force is measured to be 𝑓𝑡 = (218 + 0.70𝑣2) N, where 𝑣 is in m/s.
Determine the power the engine must deliver as a function of speed.

Solution. We know that

Σ𝐹𝑥 = 𝐹 − 𝑚𝑔 sin 𝜃 − 𝑓𝑡 = 𝑚𝑎
𝐹 = 𝑚𝑎 +𝑚𝑔 sin 𝜃 + 𝑓𝑡

Since 𝑃 = 𝐹𝑣, we have

𝑃 = 𝑚𝑎𝑣 +𝑚𝑔𝑣 sin 𝜃 + 218𝑣 + 0.70𝑣3 ,

and we’re done. !

Example 13.5 (AP 2003 # 1). A 100kg box is pulled along the 𝑥-axis by a student. The
box slides across a rough surface, and its position, 𝑥 , varies with time 𝑡 according to
𝑥 = 0.5𝑡3 + 2𝑡 , where 𝑥 is in meters and 𝑡 is in seconds. Determine (a) the speed of the
box at 𝑡 = 0, (b) i. the kinetic energy of the box, ii. the net force acting on the box,
and iii. the power being delivered to the box, and (c) the net work done on the box
from 𝑡 = 0 to 𝑡 = 2. Then, indicate whether the work done on the box in the interval
𝑡 = 0 to 𝑡 = 2 would be greater than, less than, or equal to the answer in part (c).

65 AP Physics C: Mechanics



14 POTENTIAL ENERGY & CONSERVATION OF ENERGY

Solution. We know that

𝑣 =
d𝑥
d𝑡

= 3(0.5)𝑡2 + 2,

so 𝑣(0) = 2 m/s. For (b) i., we have

𝐾 =
1
2
𝑚𝑣2

=
1
2
𝑚(

3
2
𝑡2 + 2)

2
,

so 𝐾 (𝑡) = 50 (1.5𝑡2 + 2)
2 . For (b) ii., we know that

𝑎 =
d𝑣
d𝑡

= 3𝑡 .

Then, since 𝐹 = 𝑚𝑎, we can say Σ𝐹 (𝑡) = 300𝑡 . Then, for (b) iii., we know that 𝑃 = 𝐹𝑣, so

𝑃 = (300𝑡)(1.5𝑡2 + 2)

= 450𝑡3 + 600𝑡 .

For (c), we can use the work–energy theorem. Since Σ𝑊 = Δ𝐾 ,

Σ𝑊 = Δ𝐾
= 𝐾 (2) − 𝐾 (0)

= 3000 J .

Finally, for (d), it should be greater than. This is because the net work, in part (c), is being
reduced by the frictional force. !

14 Potential Energy & Conservation of Energy

Potential energy is the final type of energy we will look at in this unit.

14.1 Potential Energy

Suppose a book sits on a table at position 𝑎. By lifting the book, we will be doing work
on it as an external agent. At the end, since 𝑣𝑜 and 𝑣 are 0, the change in kinetic energy,
Δ𝐾 , is also 0. However, this implies that no work has occurred, even though we clearly
did work on it. When yhe book is at position 𝑏, however, it has the potential to become
kinetic energy. From the equation 𝑊 = 𝐹 ⋅ Δ𝑥 , we cans say that
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Equation 14.1
When lifting an object of mass𝑚 at constant velocity, the potential energy 𝑈 is given
by

𝑈𝑔 = 𝑚𝑔𝑦

and
𝑊𝑎𝑝𝑝 = Δ𝑈𝑔 .

Proof. Since we have
𝑊 = 𝐹𝑎𝑝𝑝 ⋅ Δ𝑦,

we can say

𝑊 = (𝑚𝑔�̂�) ⋅ [(𝑦𝑏 − 𝑦𝑎)�̂�]
= 𝑚𝑔𝑦𝑏 − 𝑚𝑔𝑦𝑎,

and we’re done. !

Remark. Gravitational potential energy is a scalar, and is expressed in Joules.

Example 14.1. A bowling ball held by a careless bowler slips from the bowler’s hands
and drops on the bowler’s toe. The bowler is 1.8 m tall, and the ball started 1 m from
the ground. Setting the floor level as 𝑦 = 0, estimate the Δ𝑈𝑔 of the ball earth system.
Repeat this using the top of the bowler’s head as the origin.

Solution. We have that

Δ𝑈𝑔 = 𝑈𝑔𝑓 − 𝑈𝑔𝑜

= 𝑚𝑔𝑦𝑓 − 𝑚𝑔𝑦𝑜
= 0 − 𝑚𝑔(1)
= −𝑚𝑔 .

For the second part, we have that Δ𝑈𝑔 = 𝑚𝑔(−1.8) − 𝑚𝑔(−0.8) = −𝑚𝑔 . Note that this is
the same. !

This exercise shows that 𝑈𝑔 is relative, and the reference point doesn’t affect change
in potential energy.
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15 Conservative and Non-conservative Forces

There are two ways to determine if a force is conservative or non-conservative.

1. The work done by (or against) a conservative force on a particle moving between
any two points is independent of the path taken by the particle.

Suppose that we want to move an object from the origin to a point (5,4) on a coordinate
plane. Say we do so by moving up 5, then to the right 4, and finally down 1. Then, the
force we apply indicates that

𝑊 = 𝑚𝑔5 cos 0 +𝑚𝑔5 cos 90 +𝑚𝑔 cos 180,

so 𝑊 = 4𝑚𝑔. Consider the same method, but instead, going right 5, then up 4. Then,

𝑊 = 𝑚𝑔5 cos 90 +𝑚𝑔4 cos 0,

which is still 4𝑚𝑔. The path we take doesn’t matter, meaning that 𝐹𝑔 is conservative. Now
suppose that both 𝑥 and 𝑦 are on the floor. In the first case, we have

𝑊 = 5𝑓 cos 0 + 5𝑓 cos 0 + 1𝑓 cos 0,

or𝑊 = 11𝑓 . However, with the second path,

𝑊 = 5𝑓 cos 0 + 4 cos 0

so 𝑊 = 9𝑓 . Here, the path we take matters, so 𝑓 is not conservative.

2. The work done by a conservative force on a particle moving through any closed path
is 0 (a close path is one where the beginning and end points are identical)

Question. How does this method apply with the above examples?

We’ve seen that the work done by a spring is

𝑊 = ∫
𝑥𝑓

𝑥𝑖
𝐹 ⋅ d𝑥 ,

which gives us
𝑊𝑠 =

1
2
𝑘𝑥2𝑖 −

1
2
𝑘𝑥2𝑓 .

Therefore, we can see that the work done by a spring depends only on the 𝑦 coordinates,
and is independent of the path. In addition, we can see that, where 𝑦𝑖 = 𝑦𝑓 (in other
words, when the object moves over a closed path), 𝑊𝑠 = 0. Therefore, the spring force is
conservative.
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15.1 Conservation of Energy

If the only forces on a system are conservative, we can say that mechanical energy is
conserved. Suppose that a book falls from 𝑦𝑜 to 𝑦𝑓 . Then,

𝑊𝑔 = 𝑚𝑔 ⋅ Δ𝑦

= (−𝑚𝑔�̂�) ⋅ [(𝑦𝑓 − 𝑦𝑜)�̂�]
= −Δ𝑈𝑔 .

From the work energy theorem, we have

𝑊𝑔 = Δ𝐾 ,

so

Theorem 15.1 (Conservation of Energy)
The mechanical energy, 𝐸𝑚𝑒𝑐ℎ, of a system, is conserved, such that

Δ𝐾 = −Δ𝑈𝑔 .

In addition, we can then say that

𝐾𝑓 + 𝑈𝑓 = 𝐾𝑖 + 𝑈𝑖 .

Remark. This only works if there are no nonconservative forces in the system.

We know that
𝑊𝑎𝑝𝑝 =

1
2
𝑘𝑥2𝑓 −

1
2
𝑘𝑥2𝑖

and that
𝑊𝑎𝑝𝑝 = Δ𝑈 .

Therefore,

Equation 15.2
The elastic potential energy stored in a spring is given by

𝑈𝑠 =
1
2
𝑘𝑥2.
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Example 15.1. A pendulum consists of a sphere of mass 𝑚 attached to a light cord
of length 𝐿. The sphere is released from rest at 𝐴 when the cord makes an angle 𝜃𝐴
with the vertical, and the pivot at 𝑃 is frictionless. Find (a) the speed of the sphere at
its lowest point, 𝐵, (b) the tension in the cord at 𝐵, and (c) the tension in the cord at
𝐶 , the point at which the mass is exactly opposite 𝐴.

Solution. We know that 𝑣𝐴 = 0, and we want to find 𝑣𝐵. We know that 𝐹𝑔 is conservative,
so we can say that 𝑈𝑔 = 𝐾 . If we say 𝑈𝑔 = 0 at the bottom of the path, point 𝐴 is at height
𝐿 − 𝐿 cos 𝜃 . Then,

𝐾𝐴 + 𝑈𝑔𝐴 = 𝐾𝐵 + 𝑈𝑔𝐵

𝑚𝑔(𝐿 − 𝐿 cos 𝜃) =
1
2
𝑚𝑣2

𝐵

𝑣𝐵 =
√
2𝑔𝐿(1 − cos 𝜃).

To find the tension at 𝐵, we know that

Σ𝐹 =
𝑚𝑣2

𝑟

𝑇𝐵 − 𝑚𝑔 =
𝑚(2𝑔𝐿(1 − cos 𝜃))

𝐿
𝑇𝐵 = 𝑚𝑔 + 2𝑚𝑔 − 2𝑚𝑔 cos 𝜃

= 3𝑚𝑔 − 2𝑚𝑔 cos 𝜃 .

Finally, to find 𝑇𝐶 , we know that

𝑎𝑟 =
𝑣2

𝑟

0 =
𝑣2

𝑟
Σ𝐹𝑟 = 0

𝑇𝑐 − 𝑚𝑔 cos 𝜃 = 0,

so 𝑇𝑐 = 𝑚𝑔 cos 𝜃 . !

Example 15.2. An object of mass 𝑚 starts from rest and slides a distance 𝑑 down an
incline of angle 𝜃 . While sliding, it contacts a spring of negligible mass. The object
slides an additional distance 𝑥 as it is brought to rest by the spring (which has spring
constant 𝑘). Find 𝑑 .
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Solution. We know that energy is conserved, so

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓

𝑚𝑔(𝑥 + 𝑑) sin 𝜃 =
1
2
𝑘𝑥2

𝑥 + 𝑑 =
𝑘𝑥2

2𝑚𝑔 sin 𝜃

𝑑 =
𝑘𝑥2

2𝑚𝑔 sin 𝜃
− 𝑥

and we’re done. !

16 Nonconservative Forces

We know that conservative forces have the following two properties:

1. The work done by a conservative force on a particle moving between any two points
is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed path
is zero.

This gives us

Definition 16.1. Nonconservative forces are ones that do not satisfy the properties
of a conservative force. In other words, the work done by a nonconservative force is
dependent on the path.

Law 16.1
Nonconservative forces acting within a system cause a change in the mechanical en-
ergy of the system.

Friction is an example of a nonconservative force. However, if the forces acting on objects
within a system are conservative, the mechanical energy is conserved. That is,

Δ𝐸𝑚𝑒𝑐ℎ = Δ𝐾 + Δ𝑈 = 0.

If any of the forces acting on objects within a system are nonconservative, then the me-
chanical energy does change. For example, if friction acts within a system,
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Equation 16.2
The energy of a system with nonconservative forces is given by

Δ𝐸𝑚𝑒𝑐ℎ = 𝑊𝑛𝑐 .

With friction, this becomes
Δ𝐸𝑚𝑒𝑐ℎ = −𝑓𝑘𝑑 .

Example 16.1. A 3.00 kg crate slides down a ramp. The ramp is 1.00 m in length and
is inclined at an angle of 30◦. The crate starts from rest at the top and experiences a
frictional force of 5.00 N. Find (a) the speed of the crate at the bottom of the ramp and
(b) how far the crate slides on the horizontal floor if it continues to experience a 5 N
frictional force.

Solution. We have

Δ𝐾 + Δ𝑈 = −𝑓 𝑑
Δ𝐾 = −Δ𝑈 − 𝑓 𝑑

1
2
𝑚(𝑣2

𝑓 − 𝑣2
𝑜 ) = −(0 − 𝑈𝑜) − 𝑓 𝑑

= 𝑚𝑔ℎ − 𝑓 𝑑

𝑣2
𝑓 =

2(𝑚𝑔ℎ − 𝑓 𝑑)
𝑚

𝑣𝑓 =
√
2𝑚𝑔ℎ − 2𝑓 𝑑

𝑚
,

so 𝑣𝑓 = 2.54 m/s . Next, we have

Δ𝐾 + Δ𝐸𝑖𝑛𝑡 = Σ𝑊other than friction.

Therefore,

Δ𝐾 + Δ𝐸𝑖𝑛𝑡 = 0
Δ𝐾 + 𝑓 Δ𝑥 = 0

Δ𝐾 = −𝑓 Δ𝑥

−
1
2
𝑚𝑣2

𝑜 = −𝑓 Δ𝑥 .

Since we know that 0.5𝑚𝑣2
𝑜 = 9.7 J, from part (a), we can say Δ𝑥 = 9.7/5 = 1.94 m . !
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Example 16.2. A child of mass 𝑚 rides on an irregularly curved slide of height ℎ =
2.00 m. The child starts from rest at the top. Determine his speed at the bottom,
assuming no friction is present. Then suppose that a force of kinetic friction does act
on the child. How much mechanical energy does the child lose, if 𝑣𝑓 = 3.00 m/s and
𝑚 = 20.0 kg?

Solution. We know that, in (a),
Δ𝐸𝑚𝑒𝑐ℎ = 0,

so
𝐾𝑜 + 𝑈𝑜 = 𝐾𝑓 + 𝑈𝑓 .

We have that 𝐾𝑜 = 0, and, letting the bottom of the slide be 𝑈 = 0, we have 𝑈𝑓 = 0.
Therefore

1
2
𝑚𝑣2

𝑓 = 𝑚𝑔ℎ

𝑣2
𝑓 = 2𝑔ℎ

𝑣𝑓 =
√
2𝑔ℎ.

Therefore, 𝑣𝑓 = 6.26 m/s . Next, we assume that there is a force of friction. We know that

Δ𝐸𝑚𝑒𝑐ℎ ≠ 0.

Therefore, we can say

Δ𝐸𝑚𝑒𝑐ℎ = 𝐾𝑓 − 𝐾𝑜 + 𝑈𝑓 − 𝑈𝑜

=
1
2
𝑚𝑣2

𝑓 − 0 + 0 − 𝑚𝑔ℎ

= 𝑚(
1
2
𝑣2
𝑓 − 𝑔ℎ) ,

so Δ𝐸𝑚𝑒𝑐ℎ = −302 J . !

Example 16.3. Two blocks, 𝑚1 and 𝑚2, are connected by a light sting that passes
over a frictionless pulley. The block of mass 𝑚1 lies on a horizontal surface and is
connected to a spring of force constant 𝑘. The system is released from rest when the
spring is unstressed. If the hanging block of mass𝑚2 falls a distance ℎ before coming
to rest, calculate the coefficient of friction between 𝑚1 and the surface.

Solution. We know that
Δ𝐸𝑚𝑒𝑐ℎ + Δ𝑈𝑔 + Δ𝑈𝑠 = −𝑓 𝑥 ,
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where 𝑥 is the sliding distance of 𝑚1, and 𝑈𝑠 is the elastic potential energy. Since the
system starts and ends at rest, Δ𝐾 = 0. If we set 𝑈𝑔 = 0 at the final resting height of 𝑚2,
we have Δ𝑈𝑔 = −𝑚2𝑔ℎ. Finally, for spring potential, we know that 𝑈𝑠𝑜 = 0, so Δ𝑈𝑠 = 1

2𝑘𝑥
2.

Finally, note that 𝑥 = ℎ. Then, we have

0 − 𝑚2𝑔ℎ +
1
2
𝑘ℎ2 = −𝑓 ℎ

−𝑚2𝑔 +
1
2
𝑘ℎ = −𝑓

𝑚2𝑔 −
1
2
𝑘ℎ = 𝑓 .

Since we want to find 𝜇𝑘 , and we know that 𝑛 = 𝑚1𝑔, we have

𝑚2𝑔 −
1
2
𝑘ℎ = 𝜇𝑚1𝑔

𝜇 =
𝑚2𝑔 − 1

2𝑘ℎ
𝑚1𝑔

,

and we’re done. !

17 Potential Energy Curves

Since potential energy is only dependent on position, we can graph potential energy as a
function of position. We’ve established that

𝐹 = −
d𝑈
d𝑡

,

so the steeper the curve, the greater the force. If we treat a graph as if it’s a roller-coaster,
we can intuitively see that the steeper the graph, the greater the force. The force will
always be pointing “downhill,” and with greater height, the velocity (and therefore, kinetic
energy) will be lower.
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Example 17.1. An object with mass 9kg is initially at position 𝑥 = 0 and moves to
the right. The object is subject to only a conservative net force such that the potential
energy of the object is given by

𝑈 (𝑥) =
20

1 + (𝑥 − 3)2

The graph is shown below.

(A) What minimum initial velocity must the object have at 𝑥 = 0 in order to make
it to 𝑥 = 6 m?

(B) Describe how the magnitude of the acceleration changes from 𝑥 = 3 to 𝑥 = 6.

(C) Suppose the object has 1% more velocity than it needs to get over the hump at
𝑥 = 3. Sketch position and velocity vs. time graphs for the object.

Figure 17.1: Example 4.27

Solution. We know that
𝐾 + 𝑈 > 20 J,

since 20 is the maximum of the function. We know that 𝑈𝑜 = 2 J, so
1
2
𝑚𝑣2 + 2 > 20

1
2
(9)𝑣2 > 18

𝑣2 > 4,

so 𝑣𝑜 > 2 m/s . We know that 𝐹 ∝ 𝑎. Since 𝐹 is the slope of 𝑈 , we see that 𝑎 will increase
from 𝑥 = (3, 3.5), and will decrease after that. !
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Example 17.2. An object with mass 4 kg is initially 𝑥 = 6m, moving with 𝑣 = 4m/s.
The potential energy is given by

𝑈 (𝑥) =
144
𝑥

+ 4𝑥 − 48.

(A) What are 𝑥min and 𝑥max, the positions farthest left and right that the object can
attain?

(B) Describe how the acceleration changes as the object moves from 𝑥min and 𝑥max.

(C) Sketch force, position, and velocity vs. time graphs.

Solution. We know that
𝐸 = 𝐾 + 𝑈 ,

so 𝐸 = 0.5𝑚𝑣2 + 0 = 32 J. Importantly, we know that energy is conserved, so 32 J is
the maximum potential energy. Therefore, 𝑥min = 2 and 𝑥max = 18. Next, we see that
acceleration is to the right and decreasing until 𝑥 = 6, and then to the left and increasing.
This varies with the slope. !

18 More Potential Energy Curves

The steeper the graph, the more force – force always acts downhill.

Example 18.1. An object with mass 4 kg is initially at x = 2 m and is moving to the
left. The potential energy is given by

𝑈 (𝑥) =
200
𝑥2

−
200
𝑥

+ 50.

(a) Whatminimum initial velocitymust the object have to ultimate reach a position
very far to the right and not oscillate?

(b) If the object has the initial velocity in (a) and initially moves left, what is the
farthest left the object goes before reversing direction?

(c) Sketch force vs. positions, position vs. time, and velocity vs. time graphs.

Solution. We know that the asymptote of 𝑈 is

lim
𝑥→∞

200
𝑥2

−
200
𝑥

+ 50 = 50 J.
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Therefore, we see that 𝐸 = 𝐾 + 𝑈 , so

50 =
1
2
𝑚𝑣2 + 0

25 = 𝑣2,

so 𝑣 = 5 m/s . For (b), we know that 𝐸 = 50. We see that 𝑈 = 50 when 𝑥 = 1 m . !

Example 18.2. An object with mass 2 kg is released from rest at x = 0 m, where
𝑈 = 100 J.The object is subject to the potential energy graph shown.

(a) How fast does the object move at (8, 36)? At (16, 84)? At (30, 0)?

(b) How much time does it take the object to move from 𝑥 = 0 to 𝑥 = 8 m, 8 to 16,
and 16 to 30?

(c) Sketch force vs. positions, position vs. time, and velocity vs. time graphs.

Solution. We know that
𝐸 = 𝐾 + 𝑈 .

Since 𝑈 = 100, we then have 𝐸 = 100. Therefore, we can say

100 =
1
2
(2)𝑣2 + 36,

so 𝑣 = 8 m/s at (8, 36). Similarly, we find that 𝑣 = 4 m/s and 𝑣 = 10 m/s at (16, 84)
and (30, 0), respectively. Next, we can calculate average velocity from our answers above,
since

𝑣 =
𝑣(𝑡1) − 𝑣(𝑡𝑜)

𝑡1 − 𝑡𝑜
.

Therefore, the average velocity of part 1 is 4 m/s, meaning that 𝑡 = 2, since Δ𝑥 = 8.
Similarly, 𝑡 = 1.33 and 𝑡 = 2. !
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Part IV

Collisions and Rotations
This covers units 4 and 5 of the AP Physics C: Mechanics curriculum.

19 Momentum and Impulse

Momentum is a very special property because, as you will see later, it is one of a few
conserved quantities.

Definition 19.1. If a particle has mass 𝑚 and velocity 𝑣, its momentum is

𝑝 = 𝑚𝑣.

Momentum is the product of a scalar and a vector, making it a vector quantity with units
kg⋅m/s.

Question.Why is momentum important?

In mechanics, momentum is one of just three quantities that are conserved in an isolated
system (the others are energy and angular momentum). Recall that Newton’s second law
states

𝐹 = 𝑚𝑎 = 𝑚
d𝑣
d𝑡

.

We can multiply this by d𝑡 , so
𝐹d𝑡 = 𝑚d𝑣.

Say that we observe the object from 𝑡1 to 𝑡2. Then, we have

∫
𝑡2

𝑡1
𝐹d𝑡 = ∫

𝑡2

𝑡1
𝑚d𝑣

= 𝑚Δ𝑣
= Δ𝑝.

The integral on the left, ∫ 𝑡2
𝑡1 𝐹d𝑡 is called impulse.

Definition 19.2.The impulse of the net force acting on a particle over a time interval
is equal to the particles change in momentum, such that

𝐽 = Δ𝑝 = ∫ 𝐹d𝑡 .
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Again, since 𝐽 = Δ𝑝, 𝐽 is also a vector quantity, and its units are N⋅s = kg⋯m/s. When
force is constant, we can see that impulse is just the product of force and time.

Equation 19.1 (Impulse with Constant Force)
When force is constant,

𝐽 = 𝐹Δ𝑡 .

Of course, we can use our knowledge of integrals to say that geometrically, impulse is the
area under a force vs. time graph. Finally, we know that from Newton’s second law,

𝐹 = 𝑚
d𝑣
d𝑡

=
d𝑝
d𝑡

,

so we have

Equation 19.2
The net force acting on an object is equivalent to the derivative of momentum with
respect to time, so

𝐹 =
d𝑝
d𝑡

.

Note that this holds even if mass is not constant. In that case,

𝐹 = 𝑚
d𝑣
d𝑡

+ 𝑣
d𝑚
d𝑡

Example 19.1. A block of mass 𝑚 slides to the left with speed 𝑣𝑜 on a horizontal
frictionless surface. At 𝑡 = 0, a horizontal time-dependent force 𝐹 is applied to the
block. Force 𝐹 is directed to the right, and its magnitude is given by 𝐹 (𝑡) = 𝑏𝑡2, where
𝑏 is a constant. How long (𝑇 ) would it take for the block to acquire the velocity 𝑣𝑜 to
the right?

Solution. We know that 𝐽 = ∫ 𝐹d𝑡 = Δ𝑝. If we express impulse in terms of 𝑏 and 𝑇 , and
then set this equal to Δ𝑝, we can solve for 𝑇 . Since the block is changing direction, the
change in momentum (being a vector quantity), is

Δ𝑝 = 2𝑚𝑣𝑜 .
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Next, we know

𝐽 = ∫
𝑇

0
𝐹d𝑡

= ∫
𝑇

0
𝑏𝑡2d𝑡

=
𝑏𝑇 3

3
.

Setting 𝐽 = Δ𝑝,

2𝑚𝑣𝑜 =
𝑏𝑇 3

3

𝑇 3 =
6𝑚𝑣𝑜
𝑏

,

so 𝑇 = 3

√
6𝑚𝑣𝑜
𝑏

. !

20 Conservation of Linear Momentum

The principle of conservation of linear momentum is critical for our understanding of
collisions.

20.1 Conditions for Conservation of 𝑝

First, identify the internal forces within the system. Make sure that there are no net ex-
ternal forces.

Question. A ball is dropped and falls towards the earth. Is linear momentum con-
served?

Solution. If we let the ball be the system, there is an external force acting on it (gravity),
so momentum is not conserved. However, adding the earth to the system, the momentum
is conserved, since gravity is now internal. !

20.2 Inelastic Collisions

If linear momentum is conserved, we have

𝑝𝑜 = 𝑝
𝑝𝑜𝐴 = 𝑝𝐴+𝐵

𝑀𝐴𝑣𝑜𝐴 = (𝑀𝐴 +𝑀𝐵)𝑣.
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Substituting experimental data, we see that linear momentum is conserved in an inelastic
collision. We can look at kinetic energy as well. We see that

1
2
𝑀𝐴𝑣2

𝑜𝐴 =
1
2
(𝑀𝐴 +𝑀𝐵)𝑣2

if kinetic energy is conserved. However, from experimental data, we see that this equality
does not hold. Therefore,

Law 20.1
In an inelastic collision, linear momentum is conserved, and kinetic energy is not.

20.3 Explosions

In an explosion, an additional force is added. We can again check if momentum is con-
served by determining if

𝑝𝑜 = 𝑝.

We see that if the above relation holds,

0 = 𝑝𝐴 − 𝑝𝐵
0 = 𝑀𝐴𝑣𝐴 − 𝑀𝐵𝑣𝐵.

From our experimental data, we see that this holds. We also check if kinetic energy is
conserved, so that

𝐾𝑜 = 𝐾 .

This would mean that
0 =

1
2
𝑀𝐴𝑣2

𝐵 +
1
2
𝑀𝐵𝑣2

𝐵,

which does not hold with the experimental data. Therefore,

Law 20.2
In an explosion, linear momentum is conserved, and kinetic energy is not.

20.4 Elastic Collisions

Again, we wish to determine if
𝑝𝑜 = 𝑝,

which means that
𝑀𝐴𝑣𝑜𝐴 = 𝑀𝐵𝑣𝐵.
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From experimental data, this holds. With kinetic energy, we see that

1
2
𝑀𝐴𝑣2

𝑜𝐴 =
1
2
𝑀𝐵𝑣2

𝐵,

which holds. Therefore,

Law 20.3
In an elastic collision, both linear momentum and kinetic energy are conserved.

21 Two Dimensional Collisions

A classic example of a two-dimensional collision is a pool table, shown in Figure 16. As
we can see, the diagonal vectors have a horizontal and vertical component. We know that

𝑝𝑜1 = 𝑝1 + 𝑝2,

by conservation of momentum. Therefore, from basic geometric principles, we can derive
Equation 5.3.

𝐵1 𝐵2

Figure 21.1: Initial State (𝑝𝑜)

Equation 21.1
For a system with 2 items, one with initial momentum 𝑝𝑜1, we can say

𝑝2𝑜1 = 𝑝21 + 𝑝22 − 2𝑝1𝑝2 cos 𝜃 ,

where 𝜃 is the angle in between 𝑝1 and 𝑝2. If 𝜃 = 90◦, we have

𝑝2𝑜1 = 𝑝21 + 𝑝22 ,

the Pythagorean theorem.

Example 21.1. Ball 𝐴, of mass 5.0 kg, moving at velocity 3.0 m/s, collides with ball
𝐵 of mass 4.0 kg, which is at rest. After the collision, 𝐴 moves in a direction 40◦ to
the left of its original direction, and 𝐵 moves in a direction 50◦ to the right of ball 𝐴’s
original direction. Calculate the momenta of each ball after the collision.
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𝐵1

𝐵2

Figure 21.2: Final State (𝑝𝑓 )

Solution. Trivially, we see that 𝑝𝑜𝐴 = 𝑚𝑎𝑣𝑜𝐴 = 15 kgm/s. Then, we know that

𝑝𝑎 = 𝑝𝑜𝐴 cos 𝜃 ,

and
𝑝𝑏 = 𝑝𝑜𝐵 sin 𝜃 ,

so 𝑝𝐴 = 10 kgm/s, and 𝑝𝐵 = 11.18 kgm/s. !

Question. An object moving on a horizontal, frictionless surface makes a glancing
collision with another object initially at rest on the surface. What can we say about
the momentum and kinetic energy?

Solution. We know that momentum must always be conserved. However, we don’t know
if the collision is elastic or inelastic, meaning that we don’t know whether kinetic energy
is conserved or not. !

22 Ballistic Pendulums

Ballistic pendulums are used to analyze the initial velocity of launching systems. First,
we want to see what’s conserved in the system. We see that there are three components
- the launching system, the collision, and the final movement of the pendulum. In the
first system, energy and momentum conserved, since the only force is the spring. In the
second, however, there’s a frictional force, meaning that energy is not conservered (but
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as always, momentum is). Finally, in the swing, the only force is gravity, so energy is
conserved again.Note that over the course of the system, energy is not conserved, so we
cannot solve using only conservation of energy.

First, we want to determine the spring constant. We note that in the swing,

𝐸𝑜 = 𝐸
𝐾𝑜 = 𝑈𝑔

1
2
(𝑚𝑏 +𝑚𝑐)𝑣2

𝑜 = (𝑚𝑏 +𝑚𝑐)𝑔ℎ

𝑣𝑜 =
√
2𝑔ℎ.

From our data, this gives 𝑣𝑜 = 0.883 m/s. Next, during the collision, we see

𝑝𝑜 = 𝑝
𝑝𝑜𝑏 = 𝑝𝑏+𝑐

𝑚𝑏𝑣𝑜𝑏 = 𝑣(𝑚𝑏 +𝑚𝑐)

𝑣𝑜𝑏 =
𝑣(𝑚𝑏 +𝑚𝑐)

𝑚𝑏
.

From our data, 𝑣𝑜𝑏 = 5.24 m/s. Finally, during the launch,

𝐸𝑜 = 𝐸
𝑈𝑠𝑜 = 𝐾

1
2
𝑘𝑥2𝑜 =

1
2
𝑚𝑏𝑣2

𝑏

𝑘 =
𝑚𝑏𝑣2

𝑏
𝑥2𝑜

.

Again from data, we see that 𝑘 = 1032.41 N/m.

Equation 22.1
For a ballistic pendulum system with a ball of mass 𝑚𝑏 , carrier of mass 𝑚𝑐 , initial
spring compression 𝑥𝑜 , and a vertical displacement ℎ,

𝑘 =
2𝑔ℎ(𝑚𝑏 +𝑚𝑐)2

𝑚𝑏𝑥2𝑜
.

Example 22.1. A 0.03 kg ball is launched into a 0.50 kg wood block supported by a
light vertical string. The ball passes through the wood block and leaves with a velocity
of 15 m/s. The block rises to a final height of 0.085 cm. Calculate the initial velocity
of the ball (a) during the swing and (b) when it is launched.
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Solution. We know that during the swing, the only forces are conservative, so energy is
conserved. Therefore

𝐾𝑜 = 𝑈𝑔

1
2
𝑚𝑤𝑣2

𝑜 = 𝑚𝑤𝑔ℎ

𝑣𝑜 =
√
2𝑔ℎ,

so we have 𝑣𝑜 =
√
2(9.8)(0.085) = 1.29 m/s . Next, we know that momentum is conserved

in part (b). Therefore,

𝑝𝑜 = 𝑝
𝑚𝑏𝑣𝑜𝑏 = 𝑚𝑏𝑣𝑏 +𝑚𝑤𝑣𝑤

𝑣𝑜𝑏 =
𝑚𝑏𝑣𝑏 +𝑚𝑤𝑣𝑤

𝑚𝑏
,

so 𝑣𝑜𝑏 = (0.03)(15)+(0.50)(1.29)
0.03 = 36.5 m/s . !

23 Center of Mass

Before now, we’ve studied the motion of single particles. Now, we will learn about how
to apply our knowledge to systems of particles, using center of mass. These systems may
be a finite number of particles, or an infinite one. We can still apply our laws of motion
to these, as there exists one point in each system that moves as if the mass of the entire
particle were concentrated in it.

Definition 23.1.The center of mass of a system is a unique point within a system
such that the system behaves as a classical particle at that point.

There is also a center of gravity, a point where the net force of gravity on the system can
be assumed to be applied.

Question. Is the center of gravity the same as the center of mass?

Generally, this is not true – but realistically, it is. This is because the CoG is the same as
the CoM for any system of masses located in a uniform gravitational field.

Law 23.1
The center of mass of a system is at the weighted average of the masses of the system.
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23.1 Determining the Center of Mass

For non-symmetrical object, locating the center of mass is a more difficult task.

Equation 23.2
Given a discrete system of particles of mass 𝑚𝑖 each at position 𝑥𝑖 , the 𝑥-coordinates
of the center of mass is given by

(𝑥𝑐𝑚, 𝑦𝑐𝑚) = (
∑𝑚𝑖𝑥𝑖
∑𝑚𝑖

,
∑𝑚𝑖𝑦𝑖
∑𝑚𝑖 ) .

Taking the derivative with respect to time,

𝑣𝑐𝑚 =
∑𝑚𝑖𝑣𝑖
∑𝑚𝑖

.

Multiplying, we find that

Equation 23.3
For an object with velocity 𝑣𝑐𝑚 and particles of masses 𝑚𝑖 ,

𝑣𝑐𝑚 ∑𝑚𝑖 = ∑𝑚𝑖𝑣𝑖 .

Question. How do we find the center of mass of an extended object?

Interestingly, this is very similar.

Equation 23.4
For an extended object with positions 𝑥 ,

𝑥𝑐𝑚 =
∫ 𝑥d𝑚
∫ d𝑚.

In AP Physics C, extended objects tend to be more simplistic than those that appear in real
life.

Question.What is the center of mass of a bar of length 𝐿 which has linear density

𝜆 = 𝑏𝑥2,

where 𝑏 is a constant, and 𝑥 is the distance from the left end of the bar?
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Hint.The linear density of an object is given by

𝜆 =
d𝑚
d𝑥

,

where d𝑚 is the mass of an infinitely short (d𝑥) piece of the object.

Solution. Since 𝜆 is a function of 𝑥 , we must integrate with respect to 𝑥 . Assuming that
the left end is at 𝑥 = 0, we integrate from 0 to 𝐿. First, we begin by calculating the mass.
We have

d𝑚
d𝑥

= 𝜆

d𝑚 = 𝜆d𝑥
d𝑚 = 𝑏𝑥2d𝑥 .

Then, to find the mass,

𝑚 = ∫
𝐿

0
d𝑚

= ∫
𝐿

0
𝑏𝑥2d𝑥

=
𝑏𝐿3

3
.

Then, since

𝑥𝑐𝑚 =
∫ 𝑥d𝑚
∫ d𝑚

,

we only need to calculate ∫ 𝑥d𝑚. We have

∫
𝐿

0
𝑥d𝑚 = ∫

𝐿

0
𝑏𝑥3d𝑥

=
𝑏𝐿4

4
.

Finally, dividing yields

𝑥𝑐𝑚 =
3𝐿
4
,

and we’re done. !

24 Rotational Kinematics

Given a circle of radius 𝑅, 1rad is equal to traversing a length 𝑅 aroung the circle.
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Definition 24.1.The angular counterparts of rectangular kinematics are 𝜔, angular
velocity, and 𝜃 , angular position.

We can derive, then, that if Δ𝜃 is the angular displacement over time interval Δ𝑡 ,

𝜔avg =
Δ𝜃
Δ𝑡

,

and
𝜔 =

d𝜃
d𝑡

.

We also have a quantity 𝛼 , which refers to angular acceleration. Again, we can say that

𝛼avg =
Δ𝜔
Δ𝑡

,

so
𝛼 =

d𝜔
d𝑡

=
d2𝜃
d𝑡2

.

This then gives us

Equation 24.1 (Rotational Kinematic Equations)
For a particle with constant angular acceleration 𝛼 ,

𝜔𝑓 = 𝜔𝑜 + 𝛼𝑡

𝜔2
𝑓 = 𝜔2

𝑜 + 2𝛼Δ𝜃

Δ𝜃 = 𝜔𝑜𝑡 +
1
2
𝛼𝑡2,

Example 24.1. Aparticle rotates around a circle of radius 𝑅with𝜔𝑜 = 0, and 𝛼 = 2 rad𝑠2 .
Determine its final angular velocity after 1 rotation.

Solution. We can use

𝜔2
𝑓 = 𝜔2

𝑜 + 2𝛼Δ𝜃

𝜔2
𝑓 = 2(2)(2𝜋 ),

so 𝜔𝑓 =
√
8𝜋 rad/s . !
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Example 24.2. A particle moves with a position given by 𝜃 = 2𝑡4. Find its angular
velocity, 𝜔, and angular acceleration, 𝛼 , after 1 second.

Solution. We know that
𝜔 =

d𝜃
d𝑡

,

so 𝜔 = 8𝑡3, and 𝜔(1) = 8 rad/s . This can be used if 𝛼 is not constant. To find 𝛼 , we again

take the derivative giving us 24𝑡2, so at 1 second, 𝛼 = 24 rad/s2 . !

In some cases, we want to express the tangential velocity and acceleration. To do so, we
can use the bridge equations, stated below.

Equation 24.2
For an object traveling along a circle of radius 𝑟 ,

𝑥 = 𝑟𝜃 ,

𝑣𝑇 = 𝑟𝜔,

and
𝑎𝑇 = 𝑟𝛼 .

Finally, as we’ve seen before, if an object moves and accelerates, it has a centripetal com-
ponent of acceleration

𝑎𝑐 =
𝑣2
𝑇
𝑟
.

Substituting, we can say that

Equation 24.3
Along a circle of radius 𝑟 ,

𝑎𝑐 = 𝑟𝜔2.

Since the acceleration is made of two components, we can say
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Equation 24.4
For an object accelerating along a circular path,

𝑎 = 𝑎𝑇 + 𝑎𝐶

and
|𝑎| =

√
|𝑎𝑇 |2 + |𝑎𝐶 |2.

Interestingly, we can substitute from the bridge equations and say that

Equation 24.5
An object with angular acceleration 𝛼 has total acceleration 𝑎 given by

𝑎 =
√
𝛼𝑟 + 𝑟𝜔2.

25 Moment of Inertia

When an object rotates around an axis, it has a rotational inertia 𝐼 , such that

Equation 25.1
The rotational inertia 𝐼 of an object made of masses 𝑚𝑖 which are of distance 𝑟𝑖 from
the axis is given by

𝐼 = ∑
𝑖
𝑚𝑖𝑟2𝑖 .

The value of 𝐼 changes depending on the axis.

25.1 Moment of Inertia for a Long Rod

For an extended object, we can still calculate the moment of inertia. Say that we have a
rod of length 𝐿 and mass 𝑀 with uniform density. For some small mass d𝑚, we can say
that

d𝐼 = d𝑚𝑥2,

where d𝑚 is a distance 𝑥 from the axis of rotation. Then, we can say

𝐼 = ∫ 𝑥2d𝑚.

However, the integral is in terms of 𝑥 , rather than 𝑚. We know that

𝜆 =
𝑀
𝐿

=
d𝑚
d𝑥

,
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since 𝜆 is constant. Therefore, d𝑚 = 𝑀
𝐿 d𝑥 , so substituting, we have

𝐼 = ∫
𝑀𝑥2

𝐿
d𝑥 .

Replacing the bounds with ±𝐿/2, we have

𝐼 = ∫
𝐿/2

−𝐿/2

𝑀𝑥2

𝐿
d𝑥

=
𝑀
𝐿 ∫

𝐿/2

−𝐿/2
𝑥2d𝑥

=
𝑀
𝐿 (

𝑥3

3
|||
𝐿/2

−𝐿/2)

=
𝑀
𝐿 (

𝐿3

8
+
𝐿3

8 )

=
𝑀𝐿2

12
.

26 Torque

Torque is to angular motion as force is to rectilinear motion. In fact,

Law 26.1 (Newton’s First Law of Rotation)
An object will remain rotationless or continue to rotate with constant angular velocity
unless acted upon by a net external torque.

Definition 26.1.The torque, 𝜏 , of an object is a quantitiative measure of the tendency
of a force to cause a change in the objects angular velocity.

To maximize torque, we apply the force perpendicular to the object, as far from the objects
axis of rotation as possible. This means

Equation 26.2
The torque of a force 𝐹 applied at a distance 𝑟 from the point of rotation is

𝜏 = 𝑟𝐹⟂,

or
𝜏 = 𝑟𝐹 sin 𝜃 .
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In the language of vectors in ℝ3,
𝜏 = 𝑟 × 𝐹 ,

where × represents the cross product. Observe that the magnitude of the cross product of
two vectors 𝐴 and 𝐵 is |𝐴⟂𝐵 |𝐵|.

Example 26.1. Say a force 𝐹 = 5 N is applied to a wrench 10 centimeters from its
axis of rotation. The force has components of 4 and 3 N each. Find the torque.

Solution. We have

𝜏 = 𝑟 × 𝐹
= (0.1)(4)

= 0.4 Nm .

Note that we used 4 N, since that is the perpendicular force. !

Theorem 26.3
The cross product is not commutative in direction, but is in magnitude. That is,

𝑟 × 𝐹 = −(𝐹 × 𝑟),

but
|𝑟 × 𝐹 | = |𝐹 × 𝑟 |.

Example 26.2. A rectangle of width 2 m rotates around its center such that 𝑟 is half
of it’s diagonal. A force of 10 N is applied to its corner. Determine the net torque on
the object.

Solution. We say that the force acts in a line of action parallel to the side of the rectangle.
We can use the perpendicular component of 𝑟 as 𝑟⟂, where 𝑟⟂ represents the effective lever
arm. Then,

|𝜏 | = |𝑟 × 𝐹 |
= |𝐹 × 𝑟 |
= 𝐹𝑟⟂
= (10)(1),

so 𝜏 = 10 Nm . !
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Example 26.3. Ameterstick of mass 0.5 kg is held horizontally at one end. Determine
the net torque acting upon it.

Solution. The net torque acts at the center of mass, which is at 0.5 m from the axis of
rotation. Then,

𝜏 = 𝑟 × 𝑚𝑔
= (0.5)(5),

so 𝜏 = 2.5 Nm !

In the same setup as above, suppose that the meterstick is now at angle 30◦ from the
horizontal. Then, we have 𝑟 = 0.5 cos 30, and

|𝜏 | = (0.5 cos 30)(5).

Example 26.4. Say a string is wrapped around a wheel of radius 0.1 m. The string
has tension 10 N. Determine it’s torque.

Solution. These problems are trivial, as the force is always perpendicular. Therefore,

𝜏 = (10)(0.1),

so 𝜏 = 1 Nm . !

Example 26.5. Twowheels are fused together, one of radius 𝑅 and the other of radius
2𝑅. String is wrapped around both wheels, and two forces 𝐹 are applied clockwise
to the larger wheel, and one force 𝐹 is applied counterclockwise to the small wheel.
Determine the torque.

Solution. We have

Σ𝜏 = 𝐹2𝑅 + 𝐹2𝑅 − 𝐹𝑅
= 3𝐹𝑅,

and we’re done. !
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27 Rotational Kinetic Energy

Earlier, we’ve looked at linear kinetic energy, defined as 1
2𝑚𝑣2. Now, we’ll look at kinetic

energy in a rotational context.

Definition 27.1.The rotational kinetic energy of an object rotating around an axis
with angular velocity 𝜔 is

𝐾𝑅 =
1
2
𝐼𝜔2.

Suppose that a disk of mass𝑀 rotates with angular velocity 𝜔. Then, its rotational kinetic
energy is

𝐾𝑅 =
1
2 (

1
2
𝑀𝑅2

)𝜔2 =
𝜔2𝑀𝑅2

4
.

Example 27.1. Say an Atwoodsmachine has twomasses,𝑚1 and𝑚2, where𝑚1 > 𝑚2.
Determine the speed of 𝑚1 when it hits the ground.

Solution. We know that

𝐸𝑜𝐸𝑓

𝑚1𝑔ℎ =
1
2
(𝑚1 +𝑚2)𝑣2 +𝑚2𝑔ℎ +

1
2
𝐼𝑃𝜔2

Notice that all points along the string have the same velocity, meaning that the tangential
velocity of each point is related to the angular velocity such that

𝜔 =
𝑣
𝑅
,

from the bridge equations. Substituting,

2(𝑚1𝑔ℎ − 𝑚2𝑔ℎ) = (𝑚1 +𝑚2)𝑣2 + 𝐼𝑃 (
𝑣
𝑅)

2

2𝑔ℎ(𝑚1 − 𝑚2)
𝑚1 +𝑚2 + 𝐼𝑃

𝑅2

= 𝑣2

𝑣 =
√
2𝑔ℎ(𝑚1 − 𝑚2)
𝑚1 +𝑚2 +𝑀

,

and we’re done. !
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Example 27.2. Suppose a 1 meter long rod rotates around its left axis, starting from
the horizontal. Determine its angular velocity at the bottom.

Solution. We use conservation of energy, giving

𝑚𝑔(0.5) =
1
2
𝐼𝜔2,

since ℎ = 0.5. We know that
𝐼 =

1
3
𝑚𝓁 2,

so, since 𝓁 = 1,

𝑚𝑔 =
1
3
𝑚𝜔2

𝜔 =
√
3𝑔 ,

and we’re done. !

Example 27.3. A cylinder (𝐼 = 1
2𝑀𝑅2) of mass𝑚 and radius 𝑅 rolls along a horizontal

surface without slipping. Determine its total kinetic energy after one rotation.

Solution. Note that the velocity of the center of mass is equal to the tangential velocity.
Then,

Σ𝐾 =
1
2
𝑚𝑣2 +

1
2
𝐼𝜔2 =

1
2
𝑚𝑣2 +

1
2 (

1
2
𝑀𝑅2

)(
𝑣2

𝑅2)

=
3
4
𝑚𝑣2 ,

and we’re done. !

Example 27.4. Say that a hollow hoop (𝐼 = 𝑀𝑅2) of mass 𝑚 rolls down an inclined
plane of height ℎ. Determine its final velocity.

Solution. We can use conservation of energy, giving us

𝑚𝑔ℎ =
1
2
𝑚𝑣2 +

1
2
𝐼𝜔2

𝑚𝑔ℎ =
1
2
𝑚𝑣2 +

1
2
𝑀𝑅2

(
𝑣2

𝑅2)

2𝑔ℎ = 𝑣2 + 𝑣2,

so 𝑣 =
√
𝑔ℎ . !
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28 Angular Momentum

Angular momentum, like linear momentum, is one of just three conserved quantities in
classical mechanics.

Definition 28.1.The angular momentum, 𝐿, of a particle is

𝐿 = 𝑟 × 𝑝,

where 𝑟 is the position and 𝑝 is the momentum of the particle.

Remark. Note that 𝐿 is a vector quantity.

We can determine the direction of the cross product using the right hand rule. The mag-
nitude of 𝐿 is given by

|𝐿| = |𝑟 |𝑚|𝑣| sin 𝜃 .

For an extended body rotating around an axis, we have

Equation 28.1
The angular momentum of an extended object with moment of inertia 𝐼 and angular
velocity 𝜔 is

𝐿 = 𝐼𝜔

Proof. Notice that the angular momentum of some particle 𝑖 in the extended object is

𝐿𝑖 = 𝑟𝑖𝑚𝑖𝑣𝑖 .

To determine the angular momentum of the entire disk, we have

𝐿𝑡𝑜𝑡 = ∑
𝑖
𝑟𝑖𝑚𝑖𝑣𝑖 .

Substituting 𝑣𝑖 = 𝑟𝑖𝜔 gives us
𝐿𝑡𝑜𝑡 = 𝜔∑

𝑖
𝑚𝑖𝑟2𝑖 .

Of course, we know that ∑𝑖 𝑚𝑖𝑟2𝑖 = 𝐼 , so we have 𝐿𝑡𝑜𝑡 = 𝐼𝜔. !

Question. A solid cylinder and a hollow cylinder have the same mass, radius, and
angular speed. Which one has greater angular momentum?
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Solution. We have
𝐿 = 𝐼𝜔.

Since 𝜔 is the same for both objects, we simply need to compare moment of inertia. The
mass of the hollow cylinder is all concentrated a distance 𝑟 from its center, while the solid
cylinder is spread out, meaning that 𝐼𝐻 > 𝐼𝑆 , so 𝐿𝐻 > 𝐿𝑆 . !

Example 28.1. Frank and Debra sit at opposite ends of a seesaw of mass M at equal
distances from the pivot. The seesaw rotates at angular speed 𝜔. Derive an expression
for the angular momentum of the system.

Solution. We have

𝐿 = 𝐿𝑓 + 𝐿𝑑 + 𝐿𝑠

= 𝑀𝐹 (
𝓁
2)

𝜔 +𝑀𝐷 (
𝓁
2)

𝜔 +
1
12

𝑀𝓁 2𝜔,

so 𝐿 =
1
4
𝜔𝓁 2 (𝑀𝑓 +𝑀𝐷 +

1
3
𝑀) . !

Example 28.2. A student of mass 𝑚 runs at speed 𝑣 towards a merry-go-round and
jumps on the edge, causing her to move in a circular path. What is her angular mo-
mentum as she moves around the cirlce? What is her angular momentum if she were
to run directly toward the axis of rotation when she is a distance 2𝑅 away from the
axis? What about if she were to run in a straight line offset from the axis rotation by
a distance 𝑋 > 𝑅?

Solution. We know, from the definition of angular momentum,

𝐿 = 𝑟𝑚𝑣 sin 𝜃 .

Since we have 𝜃 = 90◦,
𝐿 = 𝑅𝑚𝑣 .

For (b), we have 𝜃 = 𝜋 = 180◦, so since sin 𝜋 = 0, 𝐿 = 0 . Finally, for (c), we have that

𝐿 = 𝑚𝑣(𝑟 sin 𝜃).

Note that 𝑟 sin 𝜃 = 2𝑅. Then, 𝐿 = 2𝑅𝑚𝑣 . !
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Example 28.3. Two objectsmoving at speed 𝑣 are connected by a stringwhich passes
over a frictionless pulley of radius 𝑅. The pulley can be treated as a thin hoop. Find
an expression for the angular momentum of the system.

Solution. We can see that
Σ𝐿 = 𝐿1 + 𝐿2 + 𝐿𝑃 .

We use the definition of angular momentum, which states

𝐿 = 𝐼𝜔.

Since 𝜔 = 𝑣𝑅, we can simply subsitute giving

Σ𝐿 = 𝑀1𝑣𝑅 +𝑀2𝑣𝑅 +𝑀𝑃𝑅2𝑉
𝑅
,

or 𝐿 = 𝑣𝑅(𝑀1 +𝑀2 +𝑀𝑃 ). !

29 Conservation of Angular Momentum

From Newton’s 2nd law for rotation, we know that

𝛼 =
Σ𝜏
𝐼
.

Rearranging gives Σ𝜏 = 𝐼 𝛼 . We know 𝛼 is the time derivative of 𝜔, so we can say

Σ𝜏 = 𝐼
d𝜔
d𝑡

.

However, we also know that d
d𝑡 𝐼𝜔 = 𝐿, so we have

Equation 29.1
For an object with angular momentum 𝐿,

Σ𝜏 =
d𝐿
d𝑡

.

Suppose that Σ𝜏 = 0. Then we have Δ𝐿 = 0, or

𝐿𝑜 = 𝐿𝑓 ,

giving us
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Law 29.2
For an object under no net torque, angular momentum is conserved.

Question. For a sphere rolling without slipping down an incline, is 𝐿 conserved?

Effectively, we need to determine if the sum of the torques is 0. We can see that the forces
which act on the sphere are 𝑓𝑘 , 𝐹𝑔 , and 𝐹𝑛. Note that the axis of rotation is the contact
point between the sphere and the ramp, so only 𝐹𝑔 causes torque. Therefore, Σ𝜏 ≠ 0, and
angular momentum is not conserved.

Example 29.1. The moon has an elliptical orbit around the Earth with its closest
approach to Earth at 3.6×105 km, and darthest at 4.06×105 km. If the speed at closest
approach is 1.082 km/s, how fast does it move at farthest distance?

Solution. Call the closest radius 𝑟𝑐 with velocity 𝑣𝑐 , and the farthest 𝑟𝑎 with velocity 𝑟𝑎.
Notice that velocity is always perpendicular to position. We have

𝐿𝑜 = 𝐿𝑓
𝑚𝑣𝑐𝑟𝑐 = 𝑚𝑣𝑎𝑟𝑎

𝑣𝑎 =
𝑣𝑐𝑟𝑐
𝑟𝑎

,

so 𝑣𝑎 = 959 m/s . !

Example 29.2. A puck with mass 𝑚𝑝 slides on ice and strikes a stick of mass𝑀𝑠 and
length 2𝑟 lying flat. Assuming the collision is elastic, find the final velocity of the
puck, stick, and 𝜔 after the collision.

Solution. We can use conservation of linear momentum,

Δ𝑝 = 0.

Then,

𝑚𝑝𝑣𝑝𝑓 +𝑚𝑠𝑣𝑠 − 𝑚𝑝𝑣𝑝𝑜 = 0.

From conservation of angular momentum,

Δ𝐿 = 0
(−𝑟𝑚𝑝𝑣𝑝𝑓 + 𝐼𝜔) − (−𝑟𝑚𝑝𝑣𝑝𝑜) = 0.
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Finally, we use conservation of kinetic energy, so

1
2
𝑚𝑝𝑣2

𝑝𝑓 +
1
2
𝑚𝑠𝑣2

𝑠 +
1
2
𝐼𝜔2 −

1
2
𝑚𝑝𝑣2

𝑝𝑜 = 0.

The rest of the solution is trivial. !

29.1 Conservation of Angular Momentum with Non Constant 𝐼 .

Suppose a skater on ice changes from an extended position to a close position. What
happens to her angular speed?

Solution. We see that
Σ𝜏 = 0,

so we have
𝐿𝑜 = 𝐿𝑓 .

Substituting,
𝐼𝜔𝑜 = 𝐼𝑓𝜔𝑓 .

However, upon pulling her arms in, the skater decreases her rotational inertia. Therefore,
𝜔𝑓 > 𝜔𝑜 . !

Example 29.3. A platform rotates with angular speed 𝜔 about a central pivot with
negligible friction. A person jumps onto the edge. What is the new angular speed?
What is the angular speed when they reach R/2?

Solution. We use conservation of linear momentum, giving us

𝐼𝜔 +𝑚𝑣𝑟 sin 𝜃 = (𝑚𝑅2 + 𝐼 )𝜔𝑓 ,

and we find

𝜔𝑓 =
𝑚𝑣𝑅 + 𝐼𝜔
𝑚𝑅2 + 𝐼

.

Next, we follow a similar setup, giving

𝐿𝑜 = 𝐿𝑓
𝐼𝑜𝜔𝑜 = 𝐼𝑓𝜔𝑓

(𝑚𝑅2 +
1
2
𝑀𝑅2)𝜔 = (𝑚(

𝑅
2)

2

+
1
2
𝑀𝑅2)𝜔𝑓

𝜔𝑓 = 𝜔 (
𝑚 + 0.5𝑀

0.25𝑚 + 0.5𝑀) ,

and we’re done. !
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30 Systems of Balanced Torques

Balanced torques, like balanced forces, are very common in solving statics problems.

Example 30.1. A uniform bridge 24 m long which weighs 5 × 105 N is supported by
two pilllars located 4.0 m from each end. A 2 × 104 N car is parked 8.0 m from the left
end of the bridge. Calculate the force the pillars exert on the bridge.

Solution. From a free body diagram, we see that 𝐹𝑔 acts downwards in the middle. In
addition, there are two vertical forces 𝐹𝑝 on each side of the bridge, and that there is an
addition downward force 𝐹𝑔𝑐 . We start with a net force equation, which gives

Σ𝐹𝑦 = 𝐹𝑝1 − 𝐹𝑔𝑐 − 𝐹𝑔 + 𝐹𝑝2 = 0.

However, this is one equation with two unknowns. To solve for one of them, we can use
the net torque equation. We place our pivot point at the force of the rightmost pillar, 𝐹𝑝2.
Then, we have

Σ𝜏 = 𝜏𝑔 + 𝜏𝑔𝑐 − 𝜏𝑝1 = 0
𝜏𝑝1 = 𝜏𝑔 + 𝜏𝑔𝑐

𝑟1 × 𝐹𝑝1 = (𝑟𝑔 × 𝐹𝑔) + (𝑟𝑔𝑐 × 𝐹𝑔𝑐)

𝐹𝑝1 =
𝑟𝑔𝐹𝑔 + 𝑟𝑔𝑐𝐹𝑔𝑐

𝑟1
= 2.65 × 105 N.

To solve for 𝐹𝑝2, we simply use our net force equation, yielding

𝐹𝑝2 = 𝐹𝑔 + 𝐹𝑔𝑐 − 𝐹𝑝1,

so 𝐹𝑝2 = 2.55 × 105 N . !
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Example 30.2 (Multiple Choice). Solve the following:

1. A 5 kg sphere is connected to a 10 kg sphere by a rigid rod of negligible mass.
The system can be pivoted about an axis perpendicular to the plane that passes
through one of 5 points (A is the 10 kg mass, C is the center, and E is the 5 kg
mass). Through which point should the axis pass to maximize 𝐼?

2. A door opens outward. If the hinges are on the right, what is the direction of
the torque?

3. A uniform beam of weight 𝑊 is attached to a wall by a pivot at one end, and
is held horizontally by a cable attached to the other end of the beam and to the
cable. Find the tension, 𝑇 , if the cable makes an angle 𝜃 with the beam.

4. A uniform thin rod has mass 𝑚 and length 𝓁 . The moment of inertia of the rod
about an axis perpendicular through its center is 1

12𝑚𝓁 2. Find the moment of
inertia at distance 𝓁 /4 from the end of the rod.

Solution. We know that 𝐼 = ∑𝑚𝑟2. To maximize 𝐼 , we then maximize the distance from
the largest object, giving us (E) . For (2), we can use the right hand rule to get (B) Down .
Again, note that the torque vector system is in ℝ3. For (3), we choose the pivot point on
the wall. Then, we have

Σ𝜏 = 𝜏𝑤 − 𝜏𝑡 = 0
𝑟 × 𝑇 = 𝑟 × 𝑊

𝑇𝐿 sin 𝜃 =
𝑊𝐿
2

,

so we have (B)
𝑊

2 sin 𝜃
. Finally, for (4) we can use the parallel axis theorem to find

𝐼𝑃 = 𝐼𝑐𝑚 +𝑚𝑑2

𝐼𝑃 =
𝑚𝓁 2

12
+
𝑚𝓁 2

16
,

so we have (E)
7𝑚𝓁 2

48
. !

Example 30.3. A uniform plank of length 𝓁 = 3 m and mass 𝑚 = 35 kg is supported
by a scale distance 0.5 m from each end. Calculate the reading of the scale 𝑚 = 55 kg
closest to the student when she stands on the left end.
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Solution. We use the net torque equation to find

Σ𝜏 = 𝜏𝑠 − 𝜏1 + 𝜏𝑝
𝑟1 × 𝐹1 = (𝑟𝑠 × 𝐹𝑠) + (𝑟𝑝 × 𝐹𝑝)

2𝐹1 = 2.5(550) + 1(350),

so 𝐹1 = 862.5 N . !
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Part V

Gravitation and Simple Harmonic Motion
This unit covers units 6 and 7 of the AP Physics C: Mechanics Curriculum.

31 Escape Velocity

Often, we need to determine how fast we must launch an object to successfully send it to
space, or the maximum speed for it to stay in orbit.

Definition 31.1 (Escape Velocity). The escape velocity of an object is the minimum
launching velocity required for an object to never return, assuming no energy is
added.

We can use conservation of energy to derive an expression for escape velocity. We have

𝐸𝑜 = 𝐸𝑓 .

If the object has velocity 𝑣, we can use the expression 𝑈 = −𝐺𝑚𝑀
𝑅 to say

𝐸𝑜 =
1
2
𝑚𝑣2 −

𝐺𝑚𝑀
𝑅

.

We want lim
𝑅→∞

𝐾 = 0, or, lim
𝑅→∞

𝑣 = 0. Then,

𝐸𝑓 = lim
𝑅→∞

1
2
𝑚𝑣2

𝑓 −
𝐺𝑚𝑀
𝑅

= 0.

Thus, we have

1
2
𝑚𝑣2 −

𝐺𝑚𝑀
𝑅

= 0

1
2
𝑚𝑣2 =

𝐺𝑚𝑀
𝑅

,

so we have

Equation 31.1
The escape velocity of an object traveling from a planet with radius 𝑅 and mass 𝑀 is

𝑣 =
√
2𝐺𝑀
𝑅

.
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Example 31.1. Suppose an object is dropped from distance 𝑅 away from the Earths
surface. Determine its velocity at the surface, assuming air resistance is negligible.

Solution. We use conservation of energy to find

𝐸𝑜 = 𝐸𝑓

−
𝐺𝑚𝑀
2𝑅

= −
𝐺𝑀𝑚
𝑅

+
1
2
𝑚𝑣2

𝑓

𝐺𝑀
𝑅

−
𝐺𝑀
2𝑅

=
1
2
𝑣2
𝑓

𝑣𝑓 =
√
𝐺𝑀
𝑅

,

and we’re done. !

32 Binary Star Systems

Suppose that we have two stars, of masses𝑚1 and𝑚2, such that𝑚2 > 𝑚1. Then, the center
of massis closer to 𝑚2. Let the distance from their center of mass to the stars be 𝑟1 and 𝑟2,
respectively, such that 𝑟1 > 𝑟2. Because the stars are constantly opposite one another, they
each have the same period 𝑇 , such that 𝑇1 = 𝑇2.

Because both stars have circular orbits, we’re able to say that 𝑚1𝑎1 = Σ𝐹1. Note that
𝑎1 = 𝑣2

1/𝑟1, and that

Σ𝐹 =
𝐺𝑚1𝑚2

Σ𝑟2
.

Therefore, we can say that

𝑣2
1
𝑟1

=
𝐺𝑚1𝑚2

(𝑟1 + 𝑟1)2𝑚1
=

𝐺𝑚2

(𝑟1 + 𝑟2)2
.

We can apply the same logic to 𝑚2, such that

𝑣2
2
𝑟2

=
𝐺𝑚1

(𝑟1 + 𝑟2)2
.
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33 Simple Harmonic Motion

We can apply principles from circular motion to the study of harmonic motion. Suppose
an object rotates around a circle with constant angular velocity 𝜔. Compare this to an
object attached to a spring which is stretched from it’s equilibrium position. Once the
object is released, it’s momentum will compress the spring, and the spring will push back
against it. The oscillation that ensues is called simple harmonic motion. As in the gif
below, you can see that the circular motion is exactly in parallel to the harmonic motion,
such that the object around the circumference exactly matches the 𝑦 coordinate of the
block2. To formalize this, examine the following system.

𝑚

𝑥 = 0−𝐴 𝐴

Figure 33.1: Spring in SHM

The mass 𝑚 has no friction against the surface, and the spring has spring constant 𝑘.
Imposing this system on a circle, we see that the circle is of radius 𝑟 = 𝐴. In addition, we
can use trigonometry to find that the 𝑥 coordinate of the block at any point in its path is
the same as 𝐴 cos 𝜃 , where 𝜃 is the angle from the horizontal radius of the circle to the
projection of 𝑥 onto the circle. We also know that 𝜔 = 𝜃/𝑡 , as 𝜃𝑜 = 𝑡𝑜 = 0. Thus, 𝜃 = 𝜔𝑡 .
From this, we can derive that 𝑥 , the distance from the equilibrium position is

𝑥 = 𝐴 cos(𝜔𝑡),

and the derivative of 𝑥 with respect to time is the velocity, such that

𝑣 = −𝐴𝜔 sin(𝜔𝑡)

from the chain rule (as d
d𝑡𝜔𝑡 = 𝜔 and d

d𝑡 cos 𝑡 = − sin 𝑡). We can also show that

𝑎 = −𝐴𝜔2 cos(𝜔𝑡),

since 𝑎 = d
d𝑡 𝑣. Observe that the farthest possible distance 𝑥 from equilibrium 𝑥 = 0 is 𝐴,

as max 𝑎 sin(𝑏𝑡) = 𝑎. Similarly, max 𝑣 = 𝐴𝜔 and max 𝑎 = 𝐴𝜔2. The above equations are
restated here.

2gif is removed in this version
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Equation 33.1
For an object at the end of a spring oscillating between 𝑥 = 𝐴 and 𝑥 = −𝐴,

𝑥(𝑡) = 𝐴 cos(𝜔𝑡)
𝑣(𝑡) = −𝐴𝜔 sin(𝜔𝑡)
𝑎(𝑡) = −𝐴𝜔2 cos(𝜔𝑡),

where 𝑡 = 0 at 𝑥 = 𝐴.

Remark. Note that this is subject to where we place 𝑥𝑜 . For example, setting 𝑡 = 0 at
𝑥 = 0, where the object moves in the positive 𝑥 direction, we have

𝑥(𝑡) = 𝐴 sin(𝜔𝑡),

and the velocity and acceleration follow by differentiating with respect to 𝑡 .

Again drawing on the same parallels between circular and harmonicmotion, we can define
the following values.

Definition 33.1.The period, 𝑇 , of an object in SHM is the time it takes to complete
one cycle in seconds. The frequency, 𝑓 , is the number of cycles an object makes in
one second, in Hertz (hz). Finally, the angular frequency 𝜔 of an object is the number
of radians it moves in one second, in rad/s.

Note that this gives us
𝑇 =

1
𝑓
.

Looking at the graph of sin 𝑡 , we see that one cycle is equal to 2𝜋 rad. Then, we have

𝜔 =
2𝜋
𝑇
,

as 𝜔 = Δ𝜃/Δ𝑡 , and 𝑡2𝜋 = 𝑇 . Also, we have 𝜔 = 2𝜋𝑓 .

34 Simple Harmonic Motion & Pendulums

In this section, we look at more implications of our study of simple harmonic motion,
including pendulums.
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34.1 Harmonic Oscillator with Two Objects

Examine the following system, similar to the spring we used to study SHM previously, but
with an additional block on top.

𝑚1

𝑚2

𝑥 = 0−𝐴 𝐴

Figure 34.1: Spring with two blocks

Note that the bottom surface is frictionless, the surface between𝑚1 and𝑚2 has friction
so that 𝑚2 stays on top of 𝑚1.

Question.What is the maximum 𝐴 to which the system can oscillate such that 𝑚2
stays at rest on 𝑚1?

Solution. We can start with free-body diagrams. We see that at 𝑥 = 𝐴, the acceleration is
maximized, meaning that 𝑓𝑠 is also maximized. Then,

𝑎2−max =
𝜇𝑠𝐹𝑛
𝑚2

= 𝜇𝑠𝑔.

This is also equivalent to the maximum acceleration of the system. Thus,

𝑎𝑠𝑦𝑠−max =
Σ𝐹𝑠𝑦𝑠
𝑚𝑠𝑦𝑠

𝜇𝑠𝑔 =
𝑘𝐴

𝑚1 + 2
,

as Σ𝐹𝑠𝑦𝑠 = 𝑘𝑥 , and 𝑥 = 𝐴. Then,

𝐴max =
(𝑚1 +𝑚2)𝜇𝑠𝑔

𝑘
,

and we’re done. !

34.2 The Period of a Simple Pendulum

Observe the pendulum of mass 𝑚, length 𝐿, and angle 𝜃 below.3

3For this derivation to be successful, 𝜃 must be very small.
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𝐿

𝜃

𝑚

Figure 34.2: Simple pendulum

Question.What is the period, 𝑇 , of this pendulum in simple harmonic motion?

Solution. Recall that in simple harmonic motion, 𝑎 = −𝜔2𝑥 , such that 𝜔 = 2𝜋
𝑇 .4 From the

free-body diagram, observe that the forces acting on 𝑚 are 𝑚𝑔 and 𝐹𝑇 . We can split 𝑚𝑔
into radial and tangential forces using some basic trigonometry and geometry, giving us
that the tangential component is 𝑚𝑔 sin 𝜃 .

𝐿
𝜃

𝜙

𝐹𝑔

𝑚𝑔 sin 𝜃

𝐹𝑇

𝑥

ℎ

Figure 34.3: Free body diagram of a pendulum
4This is from taking the second derivative of 𝑥(𝑡), and then observing that 𝑥(𝑡) = 𝐴 cos(𝜔𝑡) and 𝑎(𝑡) =

−𝐴𝜔2 cos(𝜔𝑡), giving us the relation.
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Then, we have

𝑎 =
Σ𝐹
𝑚

=
𝑚𝑔 sin 𝜃

𝑚
,

or 𝑎 = 𝑔 sin 𝜃 . Now note our assumption that 𝜃 ≃ 0. In that case, we can estimate that the
arc formed between 𝑚 and the axis is perpendicular to the axis, meaning that 𝜙 ≃ 90◦. In
addition, we have the approximation ℎ ≃ 𝐿. This yields

tan 𝜃 =
𝑥
ℎ
≃
𝑥
𝐿
= sin 𝜃 ,

or tan 𝜃 ≃ sin 𝜃 .5 Thus, 𝑎 = 𝑔 tan 𝜃 and tan 𝜃 = 𝑥
𝐿 , meaning that 𝑎 = − 𝑔𝑥

𝐿 . From our original
expression, then,

𝑎 = −
𝑔𝑥
𝐿

−𝜔2𝑥 = −
𝑔𝑥
𝐿

𝜔 =
√
𝑔
𝐿
.

Finally, since 𝑇𝜔 = 2𝜋 ,

𝑇 = 2𝜋
√
𝐿
𝑔
,

and we’re done. !

Again, note that this holds only for small 𝜃 , and it’s accuracy scales inversely as a
function of 𝜃 .

34.3 Horizontal and Vertical Springs.

Note the following two possible setups for springs.

Question.What is the difference between the vertical spring and horizontal spring?

Interestingly, we can ignore the force of gravity in the vertical spring, meaning that there
is effectively no difference in our analysis. Observe that in the vertical case, once the object
is attached extending the spring, there is a restoring force 𝐹 = 𝑘𝑥𝑜 , where 𝑥𝑜 is the amount
of distance the spring was extended. From a force perspective, we can see that

Σ𝐹𝑦 = 𝑘𝑥𝑜 − 𝑚𝑔 = 0,
5Note that this can also be derived through the approximation sin 𝜃 ≃ 𝜃 and tan 𝜃 ≃ 𝜃 , also known as the

small angle approximation.
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Figure 34.4: Orientations of a spring

so 𝑚𝑔 = 𝑘𝑥𝑜 . Now suppose that we stretch this spring further by distance 𝑥 . Then, the
forces acting upon it are 𝐹 = 𝑘(𝑥𝑜 + 𝑥) and 𝑚𝑔. Therefore,

Σ𝐹𝑦 = 𝑘(𝑥 + 𝑥𝑜) − 𝑚𝑔
= 𝑘𝑥 + 𝑘𝑥𝑜 − 𝑚𝑔
= 𝑘𝑥 +𝑚𝑔 − 𝑚𝑔,

so Σ𝐹𝑦 = 𝑘𝑥 . In the case of the horizontal spring, we see that Σ𝐹𝑥 = 𝑘𝑥 , meaning that there
is no difference.

The End.
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The End.
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35 DIFFERENTIAL CALCULUS REVIEW

Part VI

Mathematical Appendix
This section contains a brief review of the calculus and other non-pre-calculus math used
in the notes and the course.

35 Differential Calculus Review

The derivative of a function 𝑓 (𝑥) ∶ ℝ → ℝ is given by

𝑓 ′(𝑥) =
d
d𝑥

𝑓 (𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

. (35.1)

We can use derivative rules when calculating derivatives of functions:

d
d𝑥

𝐶𝑓 (𝑥) = 𝐶
d
d𝑥

𝑓 (𝑥) (35.2)

d
d𝑥

𝑥𝑛 = 𝑛𝑥𝑛−1 (35.3)

d
d𝑥

(𝑓 (𝑥) + 𝑔(𝑥)) = 𝑓 ′(𝑥) + 𝑔′(𝑥) (35.4)

d
d𝑥

(𝑓 (𝑥) ⋅ 𝑔(𝑥)) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥) (35.5)

d
d𝑥 (

𝑓 (𝑥)
𝑔(𝑥))

=
𝑓 ′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)

(𝑔(𝑥))2
(35.6)

d
d𝑥

𝑓 (𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥). (35.7)

Other common derivatives:

d
d𝑥

𝑒𝑥 = 𝑒𝑥 (35.8)

d
d𝑥

ln(𝑥) =
1
𝑥

(35.9)

d
d𝑥

sin(𝑥) = cos(𝑥) (35.10)

d
d𝑥

cos(𝑥) = sin(𝑥) (35.11)

d
d𝑥

tan(𝑥) = sec2(𝑥). (35.12)

Most other derivatives can be computed through trivial application of the chain, product,
and quotient rules. Additionally, TI-84 calculators can compute derivatives at a point 𝑥
using the function nDeriv(function, variable, value).
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36 Integral Calculus Review

The indefinite integral of a function 𝑓 (𝑥) ∶ ℝ → ℝ is the function 𝐹 (𝑥) such that

𝑓 (𝑥) = 𝐹 ′(𝑥), (36.1)

which is written as

∫ 𝑓 (𝑥) = 𝐹 (𝑥). (36.2)

The definite integral of 𝑓 is defined as

∫
𝑏

𝑎
𝑓 (𝑥) = lim

𝑛→∞

∞
∑
𝑖=1

𝑏 − 𝑎
𝑛

⋅ 𝑓 (𝑥𝑖). (36.3)

If 𝐹 (𝑥) is an antiderivative of 𝑓 (𝑥), the FundamentalTheorem of Calculus states

∫
𝑏

𝑎
𝑓 (𝑥) = 𝐹 (𝑎) − 𝐹 (𝑏). (36.4)

Common integral rules are effectively the rules described in the previous section, but in
reverse.

One common method of evaluating an integral, often called the “opposite of the chain
rule,” is 𝑢-substitution, which is particularly prevalent in solving differential equations
(e.g. for the behavior of resistive forces, capacitors, and inductors). For 𝑢-substitution, if
a function 𝑓 (𝑥) can be expressed as 𝑔(ℎ(𝑥)) for functions 𝑔 and ℎ, 𝑢-substitution allows us
to substitute 𝑢 = ℎ(𝑥), such that we have d𝑢 = ℎ′(𝑥)d𝑥 . For example,

∫ 𝑒sin 𝑥 cos 𝑥d𝑥

can be written as

∫ 𝑒𝑢d𝑢,

where 𝑢 = sin 𝑥 and d𝑢 = cos 𝑥d𝑥 . This integral is much simpler to evaluate, resolving to

𝑒𝑢 + 𝐶 = 𝑒sin 𝑥 + 𝐶 .

Another common method of integration is integration by parts, which is effectively
the opposite of the product rule. It is stated as

∫ 𝑢d𝑣 = 𝑢𝑣 − ∫ 𝑣d𝑢. (36.5)

For example, the above integral of 𝑒sin 𝑥 cos 𝑥 can be expressed as

𝑒sin 𝑥 sin 𝑥 − ∫ sin 𝑥 cos 𝑥𝑒sin 𝑥d𝑥 .

114 AP Physics C: Mechanics



37 VECTORS AND VECTOR CALCULUS

37 Vectors and Vector Calculus

A vector is a quantity in vector space with both magnitude and direction. Vectors can be
written in two forms: component form or unit vector form, or with their magnitude and
angle. In component form, a vector 𝑣 is written as

𝑣 = ⟨𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧⟩.

In unit vector form, this is expressed as

𝑣 = 𝑣𝑥 ı̂ + 𝑣𝑦 ȷ̂ + 𝑣𝑧 �̂�,

where ı̂, ȷ̂, and �̂� are vectors with magnitude 1. The magnitude of a vector is given by√
𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧 , and is notated |𝑣| (or ||𝑣||).

Basic vector operations are very simple. To add two vectors, we add their components,
such that 𝑢 + 𝑣 = ⟨𝑢𝑥 + 𝑣𝑥 , 𝑢𝑦 + 𝑣𝑦 , 𝑢𝑧 + 𝑣𝑧⟩. The same is true of subtraction. There are
two types of products between vectors: the dot product (or scalar product), and the cross
product (or vector product). The dot product produces a scalar, such that

𝑢 ⋅ 𝑣 = 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 = |𝑢||𝑣| cos 𝜃 (37.1)

Contrastingly, the cross product produces a vector, given by

𝑢 × 𝑣 =
|||||||

ı̂ ȷ̂ �̂�
𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

|||||||

, (37.2)

or the determinant of thematrix. Themagnitude of the cross product is given by |𝑢||𝑣| sin 𝜃 ,
where 𝜃 is the angle between the vectors.

Calculus with vectors is relatively simple. The derivative of a vector valued function
𝑣(𝑡) = ⟨𝑣𝑥 (𝑡), 𝑣𝑦 (𝑡), 𝑣𝑧(𝑡)⟩ is simply

d
d𝑡
𝑣(𝑡) = ⟨𝑣′

𝑥 (𝑡), 𝑣
′
𝑦 (𝑡), 𝑣

′
𝑧(𝑡)⟩ (37.3)

Similarly, the integral of a vector valued function is

∫ 𝑣(𝑡)d𝑡 = ⟨∫ 𝑣𝑥 (𝑡)d𝑡 ,∫ 𝑣𝑦 (𝑡)d𝑡 ,∫ 𝑣𝑧(𝑡)d𝑡⟩. (37.4)

Additionally, we use vector fields, written in boldface, to describe the magnitude and
direction of a vector at a given point in space. Figure 37 is an example of a vector field.
In physics, the three most common vector fields are the gravitational field 𝐠, the electric
field 𝐄, and the magnetic field 𝐁. Any vector operation can occur between a vector and a
vector field, with the effect of that operation occurring on each vector in the field.
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Figure 37.1: An example vector field

With vector fields, two additional types of integrals arise in the AP Physics curriculum.
The first is the closed surface integral, which appears in both of Gauss’s laws. It is
defined as

∮
𝐴
𝐅 ⋅ d𝐴, (37.5)

where 𝐅 is a vector field, and d𝐴 represents the normal through a small area. For the most
part, these integrals quickly resolve to |𝐹 |𝐴, where 𝐴 is the surface area, as the dot product
will trivially collapse since 𝜃 = 90◦. Additionally, there is the closed loop integral, which
is similar:

∮
𝓁
𝐅 ⋅ d𝓁 , (37.6)

where 𝓁 is the normal through a small length. This appears in Ampere’s law, and typically
resolves to |𝐹 |𝐿, where 𝐿 is the length of the loop.
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