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1. INTRODUCTION

My research interests lie within differential geometry, partial differential equations and geomet-
ric measure theory, with a focus on variational methods in geometric problems. A major theme of
my research is to understand geometric and topological structures of manifolds via investigating
stationary points of related geometric functionals.

An important geometric functional is the area (or volume) functional for hypersurfaces 7!
in a Riemannian manifold (M™, g). Suppose ¥ carries a unit normal vector field N (that is, ¥ is
two-sided). The first variation of area along a normal deformation fN, f € C°(M), is

Va(f) = /sz’

where H is the mean curvature of ¥ C (M,g). Critical points of V are called minimal
hypersurfaces, and they are characterized by H = 0. The second variation of volume is given
by

2V (f /|v2f|2 |Ax;|? f2 — Ricps (N, N) f /fJ

where V> is the gradient operator on ¥, Ay, is the second fundamental form, Ricy is the Ricci
curvature of M, and J = —A* — |Ag|? — Ricy/ (N, N) is the Jacobi operator. Assume ¥ is
compact. By standard elliptic theory, the number of negative Dirichlet eigenvalues of J is finite,
and is called the Morse index of ¥ C (M, g). A minimal hypersurface is called stable, if its Morse
index is zero.

Many important problems in differential geometry require a deep understanding of M (M, g, 1),
the space of two-sided minimal hypersurfaces in (M, g) with Morse index bounded by I. Nontrivial
elements of M(M, g, I') have been successfully constructed using minimization, gluing or min-max
methods, see, for instance, [CDL02|[MN17]. It is then a central question to understand the global
structure of M. For instance, is M(M, g,0) non-empty? Is M(M, g, 1) compact with respect to
C* topology?

As a consequence of my work on the geometric and topological structures of minimal hypersur-
faces, I am able to answer the questions above when M is the Euclidean space R™. In particular,
under the assumption that ¥"~! € R™ is a minimal hypersurface with finite total curvature, the
volume growth rate and the first Betti number of ¥ can be bounded by the Morse index and
nullity of its Jacobi operator. Combined with some earlier work in [CKMI17], I obtained a strong
compactness property for minimal hypersurfaces with bounded index in R*.

Another aspect of my research is centered on the interaction between scalar curvature and
minimal hypersurfaces, especially on manifolds with metric singularities. Motivated by a question
of Gromov [Grol4], my coauthor and I have been able to study the effect of codimension two
edge singularities and codimension three uniformly Euclidean singularities on the Yamabe type.
Recently, by a novel application of area minimizing capillary surfaces, I answered affirmatively the
“dihedral rigidity conjecture” of Gromov |Grol4] and obtained a polyhedron comparison theorem
in 3-manifolds with positive scalar curvature.
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2. RESEARCH UP TO NOW

2.1. Index estimate and compactness theorems for minimal hypersurfaces in R". The
basic question regarding the structure of M(M,g,I) is to measure the complexity of minimal
hypersurfaces with bounded index. When M = R? and equipped with the flat metric, this
question has been studied by many authors. Among them, Fischer-Colbrie-Schoen [FCS80],
do Carmo-Peng [dCP79] and Pogorelov [Pog81] proved that the only two-sided stable minimal
surfaces in R3 are affine planes; Lépez and Ros [LR89] proved that the Catenoid and the Enneper
surfaces are the only immersed two-sided index 1 surfaces; Chodosh and Maximo [CM16] proved
an effective upper bound of the first Betti number and the number of ends by the Morse index.
All of such theorems rely heavily on the conformal structure of minimal surfaces in R3 and are
technically difficult to generalize to higher dimensions. To our best knowledge, the only index-
topology type result for high dimensional minimal hypersurfaces with general index was from Li
and Wang [LW02]. They proved that finite index implies finitely many ends, without any effective
control.

In the work [Li], I obtained an effective estimate of some geometric and topological invariants
by the Morse index of minimal hypersurfaces in R™ with finite total curvature:

Theorem 2.1. Let X" be a complete connected two-sided minimal hypersurface in R™, n > 4.
Suppose that ¥ has finite total curvature, that is, fz |A|"=L is finite. Then we have

index(X) + nullity(X) > (#ends+ by (X) — 1),

2
n(n—1)
where nullity (X) is the dimension of the space of L? solutions of the Jacobi operator, and by (%)
is the first Betti number of the compactification of X.

Through a careful rigidity analysis, we were able to get rid of the nullity term under the extra
assumption that n = 4, or that there exists a point on ¥ where all the principal curvatures are
distinct.

Theorem 2.2. Let "' C R" be a complete connected two-sided minimal hypersurface with

finite total curvature. Suppose that n = 4, or that there exists a point on X where all the principal
curvatures are distinct. Then

index(¥) > ———

x(®) 2 n(n—1)

This is the first effective lower bound of Morse index in terms of geometric and topological

invariants. It can be used to obtain several structural theorems of the space M(R", gguclid, I)-

Combined with a recent result of Chodosh-Maximo [CKMI17], I proved that M(R*, gguciid, I) has

at most N = N(I) diffeomorphism types.

2 (#ends+bi(5)) — %

Corollary 2.3. There exists N = N(I) such that there are at most N mutually non-diffeomorphic
complete embedded minimal hypersurfaces ¥ in R* with Euclidean volume growth and index(X) <

I.

In another application, I obtained the following strong finiteness result when I = 1, which is
believed to characterize index 1 minimal hypersurfaces uniquely. See Example 1.6 in [Li].

Corollary 2.4. There exists a constant R such that the following holds: for any complete con-
nected embedded two-sided minimal hypersurface ¥ C R* with finite total curvature and index 1,
normalized so that |Ax|(0) = max |As| = 1, ¥ is a union of minimal graphs in R*\ Bgr(0).

2.2. Positive scalar curvature in singular spaces. Given a closed boundaryless manifold
M™ of dimension n > 3 and a conformal class C of Riemannian metrics, one defines the conformal
Yamabe constant as

Y(M,C) = inf{/MR(g) :g€C,Volg(M) = 1},
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where R(g) defines the scalar curvature of g. The o-invariant (or Schoen-invariant) is then defined
as
o(M) =sup{Y(M,C) : C is a conformal class of metrics on M}.

The sign of o(M), called the Yamabe type of M, is an important invariant of M. Kazdan-
Warner showed that every closed n-manifold with n > 3 carries a metric with negative scalar
curvature. On the other hand, a manifold M carries a metric of positive scalar curvature if and
only if o(M) > 0. A rigidity-type theorem of Schoen [Sch89)] characterizes the boarderline case:
if g is a C? metric on M with o(M) < 0 and R(g) > 0, then Ric(g) =0 and o(M) = 0.

In a recent paper |[Grol4], Gromov proposed a notion of positive scalar curvature for metric
measure spaces. This naturally leads us to the question of whether the validity of the above
theorem of Schoen holds in singular settings:

Question 2.5. Suppose S C M is compact, and ¢ is a bounded measurable metric on M that is
C? away from S. If o(M) < 0 and R(g) > 0 on M \ S, then is it true that o(M) = 0, g extends
smoothly across S and Ric(g) = 07

The answer of Question [2.5|depends significantly on the structure of the singular set S, and the
behavior of g near §. If § is a smooth hypersurface and g approaches smoothly from both sides
of S, Bartnik [Bar97] and Miao [Mia02] answered Question affirmatively under a particular
“positive jump of mean curvature” conditionH C. Mantoulidis and I began to research this
question for more general singular sets S [LM17]: we gave an affirmative answer to Question

for some singular sets S of higher codimensions, justifying some crucial observations by Gromov
[Grol4] and Schoen [Sch17].

Definition 2.6 (Edge singularities, [LM17]). Let U C M™ be open, g be a bounded measurable
metric on U, and N2 C U be a codimension-2 submanifold (without boundary). We say g is
an edge metric on U with singularities along N if g is C% on U\ N and near every p € N there
are local coordinates (x',x2 23 ---  2™) on U such that N is given by x' = 22 = 0 and g can be

locally expressed as
g = exp (a(x) +28(a, - ,2")log|2|) [dz[*

+ Z Fij(z)dz'dz? + Z Gri(z)de®dat, (2.1)
i=1,2 k>3
Jj=3
where z = x'++/—122, and o, Fij, Gy, B> —1, are all C? functions. The (possibly nonconstant)
function 2w (8 + 1) is called the cone angle along N.

Examples of edge metrics include orbifold metrics obtained as quotient metrics under dis-
crete isometry groups with n — 2 dimensional fixed submanifolds, and Kéahler manifolds ad-
mitting cusps along n — 2 dimensional divisors. We mention here that edge metrics have at-
tracted profoud research recently, both in real (e.g. [ALIL3]) and in complex settings (e.g.
[CDS15a] [CDS15b] [CDS15¢] [Tial5][JMR16]). We investigated the effect of edge singularities on
o(M), and obtained:

Theorem 2.7. Let M be a closed n-dimensional manifold with (M) < 0, and let g be a metric
on M. If g is an edge metric on M with singularities with angles € (0, 27| along a closed (n—2)-
dimensional submanifold S C M, and R(g) > 0 on M\ S, then g is a smooth Ricci-flat metric
everywhere on M.

On the other hand, the statement is false for edge metrics with cone angles larger than 27, see
section 8 of [LM17]. Motivated by the surgery results of scalar curvature by Scheon-Yau [SY79)
and Gromov-Lawson [GL80], we speculated that singularities along codimension 3 submanifolds
should be “removable” for positive scalar curvature. Precisely, we proved:

IThe results in [Bar97] and [Mia02] were stated as positive mass theorems with hypersurface singularities, but
the techniques are applicable to answer Question
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Theorem 2.8. Let M be a closed three-dimensional manifold with o(M) < 0. If g is C?
with R(g) > 0 away from a finite subset {p1,...,pr}, and g is bounded with bounded inverse
at {p1, -+ ,pk}, then g is a smooth flat metric everywhere on M.

The assumption that g is bounded across py, - - - , pg is imperative. In fact, allowing the metric
g to blow up will completely invalidate the statement, as illustrated in section 8 of [LMI17].

The basic idea to prove Theorem and Theorem |2.8|is perturbative in nature: assuming the
existence of a singular metric g with R(g) > 0, we were able to construct a family of smooth met-
rics {gs} approaching g as 6 — 0, such that R(gs) > 0. The construction of gs, however, requires
a novel application of area minimizing surfaces in asymptotically Euclidean spaces. Our approach
was also applicable for more robust singular sets in dimension 3, namely skeleton singularities -
a network of piecewise smooth curves intersecting transversely.

Theorem 2.9. Let M be a closed three-dimensional manifold with o(M) < 0. If S C M is a
compact, nondegenerate 1-skeleton, and g is an edge metric on M \ singS with singularities with
angles € [0,27] along regS, where 6 > 0 and R(g) >0 on M \ S, then g is a smooth flat metric
everywhere on M.

2.3. A polyhedron comparison theorem for 3-manifolds with positive scalar curvature.

A fundamental question in differential geometry is to understand metric properties under global
curvature conditions, and study weak notions of curvature lower bounds by ways of comparison
geometry. This has been successfully carried out for sectional curvature lower bounds (Alexandrov
spaces; see, e.g. [ABN86|[BBIOI]) and Ricci curvature lower bounds (Cheeger-Colding-Naber the-
ory [CCO7][CCO00al [CCO0b][CN12], or an optimal transport approach [LV09] [Stu06al [Stu06b] [Stu6d]).
The case of scalar curvature lower bounds is not as well established, possibly due to a lack of
relevant geometric comparison theory. Gromov |Grol4] proposed a geometric comparison result

for cubes in Riemannian 3-manifolds with nonnegative scalar curvature.

Definition 2.10. Let P be a polyhedron in R®. A closed Riemannian manifold M3 with non-
empty boundary is called a P-type polyhedron, if it admits a Lipschitz diffeomorphism ¢ : M — P,
such that ¢~' is smooth when restricted to the interior and the faces and the edges of P. We
consequently define the faces, edges and vertices of M as the image of ¢~ when restricted to the
corresponding objects in P.

The first case that Gromov investigated was cube-type polyhedrons in three manifolds with
nonnegative scalar curvature (P = [0,1]> € R?). He proposed that if (M?3,g) is a cube-type
polyhedron, then it cannot simultaneously satisfy: interior R(g) > 0; the faces of M are strictly
mean convex; the dihedral angles along M’s edges are less than 7/2. The tentative proof he
suggested relid on the fact that cubes are the fundamental domains of a Z3 action on R3, hence
not applicable to general polyhedra. In section 2.2 of |[Grol4], Gromov gave a “Dihedral rigidity
conjecture”: a similar comparison result holds for general polyhedron types, together with the
rigidity statement - if a P-type polyhedron (M3, g) has R(g) > 0, mean convex faces and dihedral
angles less or equal than those of P, then (M3, g) is isometric to an Euclidean polyhedron.

Recently I [Lil7] was able to answer this conjecture affirmatively for a large collection of
polyhedron types. Let us define two polyhedron types in R3:

Definition 2.11. (1) Let k > 3 be an integer. In R3, let B C {a® = 0} be a conver k-
polygon, and p € {x3 =1} be a point. Call the set
{tp+ (1 —t)xz:te[0,1],x € B}

a (B,p)-cone. Call B the base face and all the other faces side faces.

(2) Let k > 3 be an integer. In R?, let By C {2® = 0}, By C {x3 = 1} be two similar convex
k-polygons with parallel corresponding edges (namely, they are congruent up to scaling,
but not rotations). Call the set

{tp+ (1 —t)g:t€0,1],p € B1,q € Ba}
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a (B1, Ba)-prism. Call By, B the base faces and all the other faces side faces.

FIGURE 1. A (B,p)-cone and a (B, Bg)-prism.

Theorem 2.12. Let P be a (B,p)-cone or a (By, Bg)-prism with side faces Fy,--- |, Fy. Denote
7; the dihedral angle between the base and F; of p. Let (M3, g) be a P-type polyhedron with side
faces FYy,--- | F|. Assume that

1+ i1 — 7l < L(Ff, Fig) <= |y — vl (2.2)

Assume also that R(g) > 0 in the interior of M, and that the faces of M are mean convex. Then
the dihedral angles of M along its edges cannot be everywhere less than those of P.

We remark that the angle assumption (2.2]) can be viewed as a mild regularity assumption
of the polyhedron M: it is satisfied for small C' perturbations of the flat polyhedron P, and is
vacuous if all the base angles 1, -,y are /2. I was also able to obtain the rigidity statement:

Theorem 2.13. Let P be a (B, p)-cone or a (By, By)-prism such that the dihedral angles between
the base and the side faces lie within (0,7/2]. Let (M3, g) be a P-type polyhedron satisfying .
Assume that R(g) > 0 in the interior of M, that the faces of M are mean convez, and that the
dihedral angles of M along its edges are everywhere no larger than those of P. Then (M3, g) is
isometric to an Euclidean polyhedron.

The proof of Theorem relies on the study of a variational problem that captures the
relationship between the interior scalar curvature, the face mean curvatures and the edge dihedral
angles. Let us sketch the proof when P is a (B, p)-cone and (M3, g) is a P-type polyhedron. Let
q € M be the vertex of the cone. Consider the variational problem

k
— inf {7—[2 QU N M) = (cosy;)H*(OU N F)) :
7=1

U is a contratible open subset of M containing ¢, and U N B = (Z).}. (2.3)

Then:

e Assume, for the sake of contradiction, that M has dihedral angle everywhere less than P,
we conclude Z < 0.

e An interior maximum principle [SW89] and a new boundary maximum principle guaran-
tees that Z is achieved by an open set U. Denote ¥ = dU N M. Yisa capillary surface:
it is minimal and meets Fj’ at constant angle ;.

e ¥ is a CM* surface up to its corners for some o > 0 ([Lie88]). This is the only place where
the angle assumption is used.

e A contradiction can be deduced from a second variation inequality and the Gauss-Bonnet
formula.

The rigidity theorem [2.13|requires a further analysis of the minimizer for the variational prob-
lem (2.3). We combine the ideas pioneered by Bray-Brendle-Neves [BBN10] and by Ye [Ye91] in
the case of area-minimizing capillary surfaces.
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3. FUTURE RESEARCH

3.1. Morse index of minimal hypersurfaces.

(1)

General index estimate. The quest to characterize minimal surfaces with bounded
index has attracted many interesting works. A general conjecture in this direction is

Conjecture 3.1 (Schoen, Marques-Neves[Marl4][Nevi4]). Let (M", g) be a closed bound-
aryless Riemannian manifold with Ric(g) > 0. Then there exists a constant C' = C(M, g)
such that for any two-sided minimal hypersurface 71,

index(X) > Cby ().

In addition to Theorem and there have been several results (see, e.g. [Sav10]
[ACS16][ACSIT][Sarl7]) providing partial answers to Conjecture All the existing
results depend essentially on:

(a) the conformal structure of a minimal surface when n = 3, or
(b) some nontrivial isometry groups of the ambient space M™.

My long-term course of action is to combine these ideas in the works of index estimates

in higher dimensions. In particular, a directly related question is to characterize embedded
minimal hypersurfaces of R™ with index 1. Conjecturally the only example is the higher
dimensional Catenoid. See [TZ09] for a calculation of the Catenoid’s index, and [Sch8&3]
for a characterization of the Catenoid.
A dynamical characterization of index. Minimal surfaces are stationary points for
the mean curvature flow. Motivated by the “unstable submanifold theory” in ODE, one
may relate the Morse index of a minimal surface and the dimension of an “unstable
manifold” of the mean curvature flow. For strictly stable submanifolds, this has been
carried out by M.T. Wang and his coauthors [TW17]. In general, one may observe the
toy case:

Fact 3.2. Let vy be a closed simple curve on S'. Then the curve shortening flow emanating
from ~ converges to an equatorial S* if and only if v bisects S? into two components with
equal area.

I intend to investigate to what extent this fact may be generalized to minimal surfaces
with general index in higher dimensions.

3.2. Scalar curvature.

(1)

Codimension 3 singularities and o-invariant. Altough the removable singularity
theorem (Theorem has only been proven in dimension 3, the surgery result of Schoen-
Yau [SY79] and Gromov-Lawson [GL80] suggest a similar statement in higher dimensions.
The currents methods of proof have three steps:
(a) “blowing-up” the singularity by the Green’s function of the conformal Laplacian;
(b) excising the asymptotically Euclidean end by cutting along a particular minimal
surface;
(c¢) “filling in” the holes generated in the previous two steps with regions of positive
scalar curvature.

Among them, step (a) and (b) may be carried out in higher dimensions. Step (c), how-
ever, uses several theories specific to minimal surfaces in dimension three: the topology
of area-minimizing surfaces [MY®80], the classification of stable minimal surfaces [FCS80],
and the existence of a proper filling-in [Man17]. Generally, none of these theories hold
in higher dimensions. However, given the special asymptotic structure of the blow-up
metric, I intend to work toward a more precise understanding of the minimization proce-
dure, especially in four dimensions, where it is more likely to have a strong “cut-and-fill”
operation along 4-manifolds.
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(2) Comparison theorem for positive scalar curvature. A natural quest is to generalize
the comparison theorem in higher dimensions. The geometry argument follow from a
Schoen-Yau [SY8I] dimension reduction procedure. The only remaining question is the
regularity of the minimizer of at the corners. I speculate that the following general
theories should hold:

e A curvature estimate for stable capillary surfaces in corners.

e An Allard-type theorem for varifolds with constant contact angle along the boundary.

Motivated by the recent work of the positive mass theorem [SY17] in all dimensions, I
also intend to pursue a similar general approach for the comparison theorem in dimension
above 7.
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