Binary Black Holes: An Introduction

Roger Blandford KIPAC Stanford

Inertial Confinement of Extended Radio Sources

Three-Dimensional
Magnetohydrodynamic
Simulations of Buoyant Bubbles
in Galaxy Clusters

De Young and Axford 1967, Nature O'Neill, De Young and Jones 2011

Mergers and Acquisitions

- Mpc Problem
- kpc Problem
- · pc Problem
- · mpc Problem

The Megaparsec Problem

- Galaxies with Spheroids have massive black holes (MBH)
 - $-m_8 \sim \sigma_{200}^4$; m $\sim 10^{-3} M_{sph}$
 - Evolution? (Treu et al)
- Galaxies assembled through hierarchical mergers of DM halos.
 - Major and minor
 - Halo Occupation Density
 - DM simulations quantitative; gas messy

T = 2.90 Gyr Mayer

Can we calculate $R(m_1, m_2, z, \rho...)$?

Energy self-sufficiency?

- · Kocevski eg (2012) [CANDELS]
 - Modest power
 - X-ray selected
 - Imaged in NIR
 - $-z\sim2$
- · AGN
 - − ~0.5 in disks; ~0.3 in spheroids
 - ->0.8 undisturbed like control sample
- Selection effects rampant!
 - Opposite conclusions drawn from other studies

How do we ask the right questions observationally?

The kiloparsec Problem

- · Circum-Nuclear Disks
 - **− ULIRGs ~ 100pc**
 - Sgr A* ~ 1 pc
- · Invoked to supply friction
 - Is it necessary for merger?

Double AGN

- Sample
 - SDSSIII etc
 - Double-peaked spectra
 - O[III] 5007 Δ V ~ 300-1000 km s⁻¹
 - Adaptive optics
 - X-rays, radio
 - Spectra
- Are they outflows/jets/NLR?

Double gas, disks, holes, NLR?

Deadbeat Dads?

- · Are quasars mergers of two gas-rich galaxies
- · Is there a deficit of dual AGNs?
- · If so, why?
 - Selection effects?
 - Dust?
 - Need both galaxies to be gas rich before merger?
- · ALMA very important; spectra!

Will EVLA, ALMA, VLBI solve this problem?

The parsec Problem

- Bound within ~106m
 - $-\mathbf{r} \sim \mathbf{M}_7 \, \mathbf{pc}$
- · Can binaries harden?
 - Can stars do the job?
 - Dynamical friction
 - Evaculate core vs loss cone filling
 - Bars minor mergers
 - Can gas provide the friction?

Are there sufficient stars to provide dynamical friction?

Eccentricity and Multiplicity

- · Three bodies can change orbits
 - Resonances
 - Ejection
- Dynamical friction can make eccentric
 - At apapse, large lever, small speed
 - Friction changes L (p) not E
- Gravitational radiation and gas likely circularize

The milliparsec Problem

- · Is GR correct?
 - We know it is good to ~10⁻⁵ in weak field limit
 - Stationary strong field in Kerr metric
 - Gas flow
 - Dynamic strong field in mergers
 - Gravitational radiation
- How do AGN release most power?
 - Disks?
 - Winds?
 - Jets?

Velocity

- · Velocity Difference
 - $-z\sim0.4, \Delta V\sim3500 {\rm km s^{-1} m}\sim10^7, 10^9 {\rm M_{sun}}~(Lauer, Boroson)$
- Velocity Change
 - Acceleration (Eracleous)
- May not be Binary
 - Emission line region dynamics

What are standards of proof?

Wages of Spin?

- · Dual twin jets rare
 - eg 3C75
- Disk or spin; field or gas?
 - Magnetically-choked, accretion
 - Jets arefficient, robust and pliable
- · Alignment with disk?
 - Bardeen-Petterson?
 - Magnetic torques more important?

 $\begin{array}{c} 0.60\text{--}0.78^2 \ ^3 \\ 0.56\text{--}0.73^{2,5,6} \\ > 0.98^{11,12} \\ > 0.94^{13} \\ 0.37\text{--}0.59^6, > 0.98^{7,8} \\ \hline > 0.32^2 > 0.88^{16} \\ \hline \text{Measured a!} \end{array}$

Black Hole Imaging

- · Sgr A* and M87
 - 4 million and 7 billion M_{sun}
 - Same angular size m/d ~ 5μas!
 - Event Horizon Telescope
 - Submm VLBI (ALMA), space
 - SgrA* may vary too fast
 - Fringes from ~5m! (Doeleman et al)

Can we convert hydro to mm images?

Pulsar Timing Arrays

- · NanoGRAV, EPTA, PPTA, MeerKat, SKA.... = IPTA!
- · Background vs nearby strong sources
 - Sazhin, Rajagopal & Romani, Sesana....
- \cdot Best timers have 40ns arrival times τ

Depends on angular momentum, L!

 $\tau(t)=L/s[C_{+}(d,s)D_{+}(e,\phi,\theta)+C_{x}(d,s)D_{x}(e,\phi,\theta)]$

Will pulsar timing be the first to detect a binary black hole?

Harbingers and Repercussions

- · LISA/eLISA/NGO...
 - Test GR in strong field limit; Standard sirens
 - $-2m_3^{-1}$ Hz at ISCO, sensitive to 10^5 - 10^7 M_{sun}
 - Probe galaxy/hole co-assembly at early time
- · GW signal and 1° field predicting merger
 - Seek tiny fraction of c⁵/G in ROX with GW phase
 - Identify galaxy and observe merger with all telescopes
 - Also for EMRI
 - At this point this seems a fantasy!
- · Peculiar X-ray signal as gas falls in after BH merger
 - Could be years for small m (Phinney, Milos...,)
 - Nice simulations (MacFadyen)

What are the capabilities of a realizable space mission?

Questions

- Can we calculate $R(m_1, m_2, z, \rho...)$?
- · How do we ask the right questions observationally?
- Double gas, disks, holes, NLR?
- · Are there sufficient stars to provide dynamical friction?
- · Will EVLA, ALMA, VLBI solve this problem?
- What are standards of proof?
- · Can we convert hydro to mm images?
- · Will pulsar timing be first to detect a binary black hole?
- · What are the capabilities of a realizable space mission?