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ABSTRACT

ESSAYS ON THE THEORY OF WEALTH
Robert E.vHall

Submitted to the Department of Economics on May 12, 1967 in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy.

This thesis consists of five essays on diverse aspects of the inter-
temporal competitive equilibrium in an idealized economy in which all
markets are competitive and all participants anticipate future economic
events correctly, 1In the first essay, a model is proposed in which the
.family is the basic consuming unit; various aspects of the allocation of
wealth among the generations of a family are discussed. The resulting
competitive equilibrium in a model with a simple production technology
is described. '

In the second essay some of the implications of the inheritance
hypothesis of the first essay are discussed in the context of a family
utility function., The problem of variable rates of impatience is con-
sidered in some detail.

In the third essay the macroeconomic model of the first essay is
used to examine dynamic substitution effects which arise when fiscal
policy changes. Some important anticipation effects are described, and
it is shown that the price system acts to cushlon the shocks in real
variables caused by fiscal action,

In the fourth essay the problem of speculative booms in certain
kinds of assets is considered, and a condition is derived which rules
out these booms,

Finally, in the fifth essay, the effects of technical change and
deterioration on the relations between the prices for durable capital
goods is examined in detail, and a unified theory of deterioration, technlcal
change, deprec1atlon, and obsolescence is developed.

Thesis Supervisor: Robert M. Solow

Title: Professor of Economics
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INTRODUCTION AND SUMMARY



Wealth ié the most important connection between today's economic
equilibrium and the economic future. The familiar apparatus of capital
theory -~ presént diSQOunted'value formulas and the equation of yield --
depends fundamentally on the assumption that it is wealth that forms this
connection for the consumer., This argument was firs# presented by Irving
Fisher almost half a century ago; on the consumer's side, it has undergone
relatively little development since then. This series of essays investi-
gates some of the properties of the dynamic compefitive equilibrium in
an economy in which both consumers and investors are concerned about the
future in such a way that wealth has the important role which Fisher
assigned it. To the extent that the essays have a further unifying theme,
it is that vhile the moderately distant future may affect today's equili-
brium in an important way, the far distant future is always irrelevant.
This is revealed in two relaﬁed properties of the equilibrium of a well-
behaved economy: £first, any equilibrium in an economy which lasts forever
can be found as the limit as the horizon goes to infinity of the equilibria
in a sequence of similar economies with finite horizons -- in other words,
the fact that the economy lasts forever is not intrinsically.important.
Second, the sensitivity of today's behavior to future disturbances decreases
to zero as the time interval before the disturbance becomes large. The
second prOpertyvis a consequence of the instability of the difference
equatibns which determine the behavior. Becauée of the fundamental terminal
or liniting conditions -~ the budget constraint for the consumer and the

non-speculztion condition for the investor -~ the instability of the

-1 -



difference equation implies stability of behavior. There has been a
certain amount of confusion on this point recently, especially in con-
néctioa with what has come to be called the Hahn problem.

These essays take only the first step in discussing the competitive
equilibrium in this kind of model, that of deriving the price vectors
which, if expected with certainty, would in fact bring about equality of
supply and demand. In intertemporal problems there is an especially acute
problem of specifying a mechanism by which a decentralized economy might
find these prices, Although I have done some work on this problem (men-
tioned briefly in Chapter 1), it is still in an early stage and is not
presented here, except in the form of the illustrations, which were drawn

by a computer program using a modified tatonnement algorithm,

Summary

Chapter 1 investigates the competitive equilibrium in an economy
composed of individuals who are connected with the future by their concern
for the well-being of their children., Under a precise specification re-
fefred to as the inheritance hypothesis, various properties of the equili-
brium are demonstrated. These are expressed in a competitive turnpike
theorem, a theorem on the irrelevance of the distant future for the indi-
vidual family, and remarks on the efficiency of the competitive equilibrium
and on the general non-speculation condition.

Chapter 2 investigates the implications bf a set of postulates on
intertemporal preferences which turn out to be gquivaleﬁt to the inheri-

tance hypothesis. The important results are, first, that there exists
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no intemporal utility function with a variable rate of impatience which
meets all of the other poétulates, and, second, that there exists a
non-integrable set of marginal rate% of substitution with both variable
rates of impatience and generalized diminishing marginal rate éf substi-
tution. Further, the rate of impatience may decline with increasing
consumption, in contrast to the alternative specifications appearing in
the literature, all of which require increasing rates of impatience,

Chapter 3 exemines the effects of discontinuous disturbances on the
dynamic equilibrium of the model of Chapter 1, when these disturbances
take the form of sudden jumps in tax rates. The equilibrium is shown to
be highly stable; the economy always returns smoothly to its steady state
after large finite disturbances, Further, important adjustments take
place in anticipation of a tax change -- while the distant future is
irrelevant, the near future enters the determination of the equilibrium
in a fundamental way.

Chapter 4 is concerned with the eduilibrium prices of assets in an
economy with diverse assets, The notion of speculation in assets is de-
fined, and in a Non-Speculation Theorem, it is shown that speculation in
reproducible assets is ruled out if there is a market-clearing price at
time zero for each productive factor considered as an asset, This shows
that the equilibriuﬁ prices may be obtained as the limit of the solutions
to a sequence of problems with finite horizons;.

Finally, Chapter 5 examines in greater detail the problem of the
determination of the price of a2 reproducible physical asset under general

assumptions about deterioration and technical change. The non-speculation
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condition supplies a missing boundary condition which makes the problem
determinate. 1In the last section, theorems are presented which show that
it is possible to measure deterioration and technical change from data

on prices,
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Chapter 1

THE ALLOCATION OF WEALTH AMONG THE GENERATIONS
OF A FAMILY WHICH LASTS FOREVER «~-

A THEORY OF INHERITANCE
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Recent models of economic érowth have been based on a variety of
assumptions about consumption behavior. First, a large literature has
grown out of thg assumption that consumers make decisions by arbitrary
rules, particularly the rule of consuming a fixed fraction of total income
or that of consuming all wages and saving all profits. Second, in the
past two or three years there has been a resurgence of interest in models
of optimal accumulation in which consumption behavior is regulated by an
authority which can see far beyond the lifetime of any individual and
vhich manimizes a social welfare function defined over the consumption of
present and future generations., Finally, an important series of papers
by Samuelson (6), Diamond (3), and Cass and Yaari (1) have investigated
competitive models in which individuals determine their consumption for
two or more periods by maximizing 2 utility function subject to a wealth
constraint, The results of these investigations are somevhat disturbing --
in particular, the competitive equilibrium interest rate may be permanently
less than the rate of growth because of over-saving, This implies that
the equilibrium is inefficient by a well-knqwn theorem of Phelps and
Koopmans (53). Further, as Diamond has shown, some seemingly neutral fiscal
activities of the government may have an important effect on the equili-
brium ~- there may indeed be a "burden" of the public debt.

These models neglect an important aspeét of the intertemporal de-
cisions of the consumer, namely that a person ﬁSually cares not only about
his own consumption but also abéut the well-being of his children., A
father has a considerable amount of control over his sons' wealth because

he can vary the size of the bequest which he makes to them. In this essay

-1 -
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I derive some of the implications of an hypothesis about the way in which
a famil§ makes decisions about inheritance. The hypothesis is that a
father and his sons decide jointly how to allocaté their wealth between the
father's and the sons' consumption by maximizing a utility function in
which each one's consumption appears as an argument. Interestingly, while
the spirit of this hypothesis is similar to that of the competitive utility
maximizing models of Samuelson-Diamond-Cass-Yaari, the properties of the
resulting model are very much like those of the centrally-directed social
welfare-maximizing models of optimal growth, In fact, I will demonstrate
that this competitive model has the catenary turnpike property common to
almost all models of optimal growth.

This essay treats a highly stylized economy in which there is one
kind of output which may either be consumed or used as capital in pro-
duction, Each person lives two periods, but only consumes and earns wages
in the second period, At the beginning of the second period each person
marries and has 1+4n sons and l4n daugﬁtérs. A family consists of a man
and his wife, their children, and all of their future descendents; however,
only men enter the utility function, There is a perfect market for loans
between any two periods. Production is carried out by profit-maximizing
entrepreneurs who borrow from the public to finance all of their invest-
ments, Production is assumed to take place with constant returns to scale,
and output is sold in a competiti%e market, so0 entrepreneurs earn no

profit. °'Finally, all families are assumed to be identical.
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1, Family demand functions with a finite horizon.

The assumptions of this essay about the family allocation process
can be stated in two main hypotheses, First, we have the

Hypothesis on the allocation of wealth between father and son:

However much wealth a father and his sons devote to thelr consumption,

they divide it among themselves so as to maximize a joint utility function,

U(Cf’cs) ’
where Ce is the father's consumption and cg is the consumption of each
of his sons. We further assume that U is quasi-concave.
Then, as a consequence of this maximization process, for any given
amount of wealth which they spend in total, there is a unique demand func-

tion giving the father'a share, where the father is now identified as

generation t:
(L c, = d(x.,T,) ;

X, is the present value of the consumptién of father and sons and T is
the interest rate on loans between period t and period t+l.
It is sensible to assume that the father's consumption is not an

infexrior good:

(074

a2
X

(2) 0.

]

Now if each pair of generations makes its decisions by this process,
and if the decisions are consistent in that each son's planned consumption
is the same as his actual consumption as a father, then the consumption of

all future generations can be predicted exactly, given today's father's
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consumption. This follows by induction after establishing the uniqueness
of the sons' consumption given the father's consumption, since each son

subsequently becomes a father, For'this purpose, consider the following

diagram:
°
45
d
(x,)
- d(x %)
|
I
[
y ‘ ;
ar,
<< e - 2]
To determine the Cet corresponding to a particular Coo draw a vertical
a3

(o] N . .
line up from c¢_ to the 45 line and extend it horizontally to its inter-

t

section with the d(xt,rt) curve (the intersection is unique by the assump-
tion that the curve does not turn down). The horizontal distance at the

intersection is the total expenditure X, corresponding to c_; the con-

£’
sunpption per son 1s given by

l1+1r

et _
3) © %1 TTEm K- -
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Thue the father can predict the consumption of every generation cor-
responding to a particular value of his own consumption. Analytically,

this can be seen by substituting

14+n
c 3

(% X = Tor_ Cel

C
t t+

in equation (1) to get an implicit difference equation

14n

) e, = d(eg +T-F§; Cepl 0 Tg) o

which can always be stated explicitly in the form

(6) e pp = 8l ,T,) -

Today's father can use this relation to predict the consumption of all
future generations,

It remains to introduce an additional hypothesis to specify in
vhat way today's father and sons care about future generations of the
family, or, in other words, how they choose the part.of the total family
wealth wvhich they will eppropriate for themselves, X, o This is the

Hypothesis on future generatiomns: Today's father and sons spend

the largest amount of wealth, x_, that is consistent with the long-run

t
family budget constraint requiring that terminal wealth not be negative,
Then the decision-making process of the family may be visualized
in the following way: today's father and sons examine the various'family
congumptibn trajectories which correspond to alternative values of X

and pick the value of EN whose consumption trajectory will exhaust family
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wealth at the terminzl time, T, The easiest way to state the exhaustion
of wealth is in terms of family assets (non-human wealth); if At denotes

fanily assets per person measured at the beginning of period t, then
(7) A = e———— A 4+ wW_ - C ’

where Ve is non-interest income (wages) per person in period t. Then the

budget constraint is
(8) A =0 .

Because of the continuity of the functions involved, there is always a ¢
value of the father's consumption c, corresponding to a trajectory wﬁich
exactly meets this budget constraint,

The discussion so far has considered oanly the behavior and motiva-
tion of one pair of generations of a family, and has carefully avoided the
notion that any individual made plans which are binding on future genera-
tions, It is interesting at this point to investigate the consequences
of this kind of behavior for the family as a whole, In particular, we inquire
wvhether or not this behavior is recasonable in the sense that it resembles
the behavior which might be prescribed if the family in fact had a planner.

The discussion will draw upon the results of (4), which proposes
a hypothesis which is equivalent to the present one in the special case
vhere the intergenerational utility function has the special additive

form
(9 Ulese,,q) = ule) + (L+ m)vie, ) .

This form will be assumed in the following discussion,
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The first important property of family consumption under the inheri-
tance hypothcsis is efficiency. A consumpfion trajectory is efficient if
there is no gencration whose consumption could be increased without vio-
lating the family budget constraint., Clearly with a finite horizon any
trajectory which meets the budget constraint exactly is efficient; the
real significance of this property is apparent only when the family is
assumed to last forever, However, family consumption behavior based on
arbitrary rules (such as a constant savings ratio) may fail to meet even
this simple criterion,

The second important property is what Samuelson (7) calls reversi-
bility: for any consumption trajectory there is a total family wealth and
an interest rate trajectory which yields the consumption trajectory as the
family demand. 1In other words, there are no parts of the consumption
space which are permanently in the dark in the sense that they would never
be the demand of a family in a competitive economy. If a surrogate
family utility function exists, this property is equivalent to quasi-
concavity of the function. 1In the present model this property always holds

if the horizon is finite, The conditions for family equilibrium are

vi(c,,i) l+r
_vle) t
(10) s(ct’ct+l)==' u'(ct) " 14 n and
T t-1
: _ 1+n
b W=1Z 8 (lox-r,t) ¢ -

Thus the reversibility conditions are satisfied with .
(12) r, = (14 n)s(ct,ct+1) -1 ,

zn? the value of VW given in equation (11).
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A third property, equivalent to the sccond if a surrogate family

utility function exists, is diminishing marginal rate of substitution,

This is important because it indicates a tendency for the family consumption
plan to involveAapproximately equal consumption for all generations rather
than concentrating on only a few generétions. In (4) I have shown that
diminishing marginal rate of substitution will hold in this model if the
rate of change of the rate of impatience with respect to the consumption
level is small in absolute value., The rate of impatience, € (c), is

defined by
(13) €(c) = (1 +mn)s(e,e) - 13

it is the interest rate at which the level of consumption c will remain
constant. Diminishing marginal rate of substitution is guaranteed over

any horizon T if

| P'gcgl

(1 T+ ¢

for a positive constant ¢ , independent of T.

A fourth property of possible interest is the existence of a surro-
gate family utility function q*(cl,...,cT) with the property that gll
family consumption decisions could be portrayed as if they were made by
maximizing this function subject to the family budget constraint. We find
from (4) that in general there i; no such surrogate family utility and
hence no meaning can be given to the notion of”family preferences among
alternative consumption trajectories. This is neither a destructive, nor,

in retrospect, a surprising conclusion. After all, the only connection
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that today's generations have with the future in this model is a concern
for the financial integrity of the family; it would be surprising indeed
if this were equivalent to having preferences between any pair of consump-
tion trajectories even when the only difference between the trajectories
was in the consumption of a generation far in the future.

There is one significant exception to this conclusion. If the rate
of impatience is constant over all consumption levels, then there is, in

fact, a surrogate utility with the familiar form

(15) v (e e.) = §' G E ey
ey T t=1 1+() u t L]

Then the process of allocating wealth between succeeding generations is

exactly the same as would be implied by the Euler equation for maximizing
(15); the budget constraint is exactly the transversality condition for
this maximization, In this case.the inheritance hypothesis amounts to
assuming that the family has adopted as its behavioralbrule, not the notion
of maximizing a utility function, but an.OperatiOnally identical rule
which turns out to be the Euler equation and its transversality condition.
This, I think, makes the notion of a family utility function of the special
form (15) more acceptable to those who reject the idea of a family con-
sciously maximizing a utility function on the grounds that there is no

central authority within a family who makes and enforces consumption plans.

2, Consumption demand for a family which lasts forever.

Economic intuition suggests that the behavior of a family which
expects to last a thousand years should be only infinitesimally different

from one which expects to last forever. The hypotheses on family behavior

g



22

10

proposed in Secticn 2 are not sufficiently strong to guarantee this
irrelevance of the distant future, nor, in fact, are they strong enough
to insure that the criteria of reasoﬁable family demand behavior are.met
vhen the family lasts forever., Paradoxically, demand functions which are
efficient and reversible for any horizon T, no matter how far distant,
may be inefficient or irreversible when the horizon is infinitely distant,
Not surprisingly, this is closely related to the problem of impatience,
A similar paradox has been observed in models of optimal economic growth
(for example, by Samuelson (8)), where it has been resolved by showing
that impatience is a logical necessity if a true utility function is to
exist (see Diamond (2)). Thus we may immediztely conclude that the inheri-
tance hypothesis implies a surrogate family utility function if and only
if ¢¢(c) >n and @'(c) = O for all c,

The difficulty with respect to the properties of efficiency and
reversibility>is the following: If there is a ¢ such that { (c) < n,
then either: |

(i) if reversibility holds, the consumption trajectory

. =¢ for all t is inefficient, because the implied

interest rate is less than the rate of growth, and a debt

incurred by any generation vanishes in the limit*, or

(i1) reversibility fails, This will happen if ¢'(c) € 0;
see Section 3 in this regard.

Thus the inheritance hypothesis must be strengthened in the following way:

*The effect on the limit of family assets per person of one additional unit

of consuinpbion by generation t is lim (liijgﬁsl)T't = 0,
' T—3co n
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Hypothesic on impatience: Either both efficiency and reversibility hold

for the consumption demand of a family which lasts forever, or (equiva-
lently) the family is always impatient: ((c) > n. Efficiency is the
more important of the first two properties, since it alone implies that
the competitive equilibrium involves an interest rate whose limit is at
least as large as the rate of growth.

Now we are prepared to discuss the full family wealth allocation
problem over infinite time, Stated formally, the problem is to find a
first generation consumption c¢; so that for given initial family assets

Ay, lim A 2 0, where future consumption and assets are predicted by
t—n

the pair of difference equations

(16) ey = B(e,T,)
1+ r
a7 Aey1 T T m 4% " S

As several authors have remarked, this problem may not have a sensible
solution, For example, if

1+ r,
(18) 8(eesTy) =T S

(this comes from a log-linear intergenerational utility), if T has the

constant value ;: T >nand if w

e = O for all t, future consumption is

14+ x . t-1
a9 e =gy e -
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Family assets at time t are
_ 1+ ¥ t-l
(20) A= (1 T n) (Ay - tey)
For any positive ¢y, lim A_= - . The fact that some interest rate

toe ©
trajectories make it impossible for the famiiy to allocate its wealth in a
reasonable fashion should not cause us to reject this model of family be-
havior. Rather, it shows how the inheritance hypothesis restricts the form
of the competitive equilibrium. For example, if families have a fixed rate
of impatience, the competitive equilibrium capital stock will approach a
steady state over time such that the net marginal product of capital will

exactly equal the rate of impatience, This is discussed at greater length

in Section 3,

3. General equilibrium in the inheritance model.

Suppose that a neoclassical technology prevails, in which output

per person, y, is given by a smooth convex function of capital per person:

(21) y = f(k) .

For convenience we assume that f£'(0) exists. Further, capital deteriorates
geometrically at a rate § , so investment for replacement is JSk. After
taking account of population growth and consumption, the capital stock

per person held by the next generation is

] f(kt) + (1 - gf)kt

1+n

(22) k -c

t+l t+l

Consumption behavior is given by

(24) Coq1 = g(ct,rt) and
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the fundamental budget constraint At+1 = kT = 0, The analysis of this

system will be carried out in terms of consumption and the interest rate,

although it could also be done in terms of any of several pairs of variables,
The r;c) phase plane can be divided into two areas according to

whether r is increasing or decreasing. The interest rate is unchanged

from one period to the next only if k is unchanged, or

(25) f(k) = (& + n)k + (1 + n)c

In ordex to characterize this line in terms of r, we differentiate with

respect to r: t

N dk . yd¢
(26) f(k)dr-(3+n)dr+(14n)dr R
Ar=0

dt 1

104 { = ! * - e BT Se——-a————
Now since r = f'(k) S, ar £ (k)

, end

(27) de - f'(k) - éy_ -1

9l Ax=0 (1 + n)£"(K)

... r-nm

(14n) £'' (k) *
Thus the line slopes upward if r & n, reaches its maximum at r = n
(the golden rule), and declines if r > n; above the line capital is de-
creasing and r is increasing and vice versa below the line, as shown in
Figure 1. A gimilar division of the phase plane is possible for the con-
sumption equation: consumption is increasing whenever r >(’(c) and is
decréasing whenever r < ¢e(c). The directions of movement everywhere in

the phase plane are shown in Figure 2.
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Dircction of movement in the general phasc plzne
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Since the zbsolute vélue of ¢'(c) is restricted to small values,
it is reasonable to assume that the two stationary loci meet at a unique
stationary point (x¥*,c*)., If so, @(c) cuts Ar=0 from below, the
stationary point is a saddle point, and from the catenary properties of a
saddle point, the follbwing result is established:*

Competitive Turnpike Theorem

As the end of the world becomes more distant (as the
horizon T becomes large) the competitiﬁe equilibrium
interest rate-consumption trajectory spends almost all
of its time arbitrarily close to the point (i*,c*) where
the rate of time preference is equal to the stationary

interest rate,

Figures 3 and 4 illustrate trajectories for various T's, starting
with the seme initial capital stock,

The case of an economy which lasts forever is a simple extension
of the previous case, except that the limiting value of family assets
cannot be zero but is rather the steady state capital stock k%, The
only infinitely long (r,c) trajectories are those running along the top
of the szddle, as shown iﬁ Figure 5. From any iniéial capital stock,
the economy eventually approaches indefinitely close to the steady state

.poinﬁ (ri,c*).
It remains to show that these trajectories are truly competitive

equilibria. That is, we must show that given the interest rate and wage

*Strictly'Speaking, the tufnpike property is known to hold only for a
system of differential equations approximating the difference equations
(22) =nd (24).
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Some compsitive equilibriuvam trajectories
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Unique infinitely long trajectories
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trajectories derived from the phase plane analysis, femily demand would in
fact be the consumption trajectory shown. Since these trajectories satisfy
the difference equation (24), the conditions on the marginal rate of sub-
stitution between consecutive generations are clearly met. Furthermore,
if the hérizon is finite, terminal family assets are zero and no generation
could increase its consumption without decreasing the consumption of
another generation. Thus the budget constraint is also met; we conclude
thet this trajectory is in fact the unique family demand. On the supply
side, the assumption that the production function is convex guarantees
that the supply of consumption goods is uniquely this trajectory.

With an infinite horizon, the limiting value of family assets is
not zero, &s it would be if the family could exhaust its wealth, but
rather is the value of the steady state capital stock k¥, However, if all
debts must eventually be paid back (that is, if the present value of one

t
unit of income per person,’gzl(%—i—% ), goes to zero in the limit) no

generation could increase its consumg;ion by even the smallest amount
witheut causing eventual family bankruptcy. Thus, even though family
assets eventually always have a large positive value close to k¥, the
budget constraint is met, and the trajectory is the true family demand.
The requirément.that debts must be paid back is crucial, For example, if
there is a surrogate family utility function with a rate of impatience
equal to the rate of growth n, the present value function does not go to
zero and there can be no competitive equilibrium, Given the interest rate

trajectory from the phase plane analysis, the family will not choose the

consumption trajectory shown there, but rather will choose one with higher
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consumption for one or more generations and for which the limiting value
of family assets is not k¥ but ze?o. This is one of a variety of diffi-
culties which arise in an economy in which the interest rate goes to n
sufficiently quipkly for the present value function not to have limit
zero., Most of the hard problems of optimal growth theory are related
to this problem; sinmilarly, the interesting aspects of the study of the
efficiency of an economy which lasts forever arise only in this case.
One property of the family's allocation problem deserves further

attention; it is stated in the

Theorem on the irrelevance g£ the distant future

Along competitive equilibrium interest rate and wage trajectories
the consumption of the present generation of a family becomes increasingly
insensitive to their desired level of assets for generation t, as t in-
creases, provided (?(c) > n. Their sensitivity decreases with increasing

and troreisis with an ingreasing vade o c"‘-’*“‘JC X ”"'P:"-*““‘“'
impatiencejwith respect to consumption, '

proof:
The sensitivity of the present gencration to future asset levels is
measured as the reciprocal of the derivative of At with respect to c;. The

system of difference equations governing the allocation of family wealth is

(28) €y1 = 8T

1+ rt

A1 “TTn

At+wt-ct.
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Differentiating with respect to c;, we get

de,,;  oele,,ry) dego

(29) dcl - B?t dCl
30) dAt+1 ) 1+ r, dAt _ dct
dc, I1+n dey dey, ?

with initial conditions 95 = 1 and 981 - o
dcl dcl

Now the function g(ct,rt) is defined implicitly by

)
v (ct+1) ~ 14 r,

(3;) u'(ct) " 14 n ’

S0 .
v'(c, . .) v'(c _,Du'"(c,)
t+l” dg t+1 t
(32) u'(e,) oc ) ' 2
t [u'(e,)]
or
(33) 2 D00 o)

Sc, = vi(e v (c)

Now ¢, approaches the limit ¢¥*, and from (4),

(34) €' (C*) = [1 + e (C*) ] [::"'(C*) ull(c*)

COME O

Thus if @'(c*) < O, there is a T such that t > T implies

17
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u''(c,) v''(c )
35 ey STy o
t t+l
L 51 .
t
Similarly, if @'(c%) > 0, eventually %ﬁ%-.<]..
t
1+ r,
In the asset equation, eventually T >1, since L approaches

the limit (@ (c*), which is greater than n. Because of its simple recur-

sive form, the properties of the system (29) and (30) may be seen by in-
1+

spection. Since %%— is always positive and s eventually strictly

t l1+n
greater than one, dAt
T becomzs indefinitely negative with increasing t.
1
: dct
If @'(c*) <0, the contribution of the term - == also becomes indefinitely
1

large, while in the opposite case, its contribution is eventually zero,
But in either case, gﬁl has the limiting value zero, and the theorem is
established. ‘

The property stated in this theorem is also observed in all optimal
growth problems with catenary motions; it is sometimes referred to as
instability, but this is extremely misleading, since its behavioral impli-
cation is one of stability, not instability.

The assumption that the family faces interest rate and wage tra-
jéctories which will turn out to be the equilibrium trajectories is crucial
in this theorem. Along other trajectories, there may not be a solution to
the allocation problem. This will almost always be true'if (9'(c)-< 0,.

since any stationary point of equations (28) is an unstable node, with roots
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both of which exceed 1, Usua11§ no trajectory can reach such a sta-
tionary point of an asymptotically autonomous system. Along an equilibrium
.trajectory, however, the iﬁterest rate changes over time exactly fast
enough to allow the (At’ct) trajectory to reach the unstable node., This
means that a t2tonnement procedure would probably not be able to find the
equilibrium, since it would require families to solve the allocation pro-
blem with interest rate trajectories which are not equilibria. In fact,
computational experiments have indicated that the family must take account
of the effect of its allocation of wealth (and the identical allocation

of all other families) on the interest rate, in order to obtain a tZtonne-
ment procedure that is likely to work., It is possible to show that there
is an interest rate adjustment of a simple form which.can be applied by
each family and vhich guarantees convergence to the competitive equilibrium -~
this adjustment converts the family's allocation problem into one with

strictly catenary properties,

4, Some implications of the inheritance hypothesis

The most important difference between this and other models of
competitive equilibrium with individually-directed saving is that each
person is required to see some distance into the future because he is
sensitive to future economic developments. This has a2 number of important
implications, First, since the famlly has a rate of preference for the
father's consumption at least equal to the rate of growth, the possibility

of an inefficient competitive equilibrium is ruled out,
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Sccond, in this model the equilibrium is independent of the size
of the government's debt, so there is no bérden of the debt. 1In Diamond's
model, the equilibrium is sensitive to the size of the debt because the
market capitalizes all of the interest payments which a bond yields but
the individual takes account of only the tax payments to finance the in-
terest which are levied during his lifetime. This asymmetric effect
makes him spend more and save less, driving up the interest rate, Under
the inheritance hypothesis there is no asymmetry because the individual
does not distinguish between his own wealth and the wealth of the future
generations of his famnily., The equilibrium is independent of any trans-
fer of wealth between generations and in particular is independent of the
transfer implied by taxing and paying interest,

Third, this model resolves a perplexing question about the competi-
tive equilibrium price for an asset which cannot be produced, such as land,
Nothing in the equilibrium condition for the market for such an asset
prevents an upward SpeculativeAmovement in its price which lasts forever.
This is, if P, is the equilibrium price for the asset, then

t
(36) P * S, Tio(l + r&)
is also an equilibrium price, where 50 is any positive constant. Under my
hypothesis, however, no price which goes to infinity is a general equili-
brium price, becausc families would then have ihfinite wealth in the limit,
allowing additional consumption for at least one generation. 1In this way,

speculative booms in non-reproducible assets can be ruled out.
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Chapter 2

INTERTEHPORAL PREFERENCES WITH VARIABLE

RATES OF IMPATIENCE
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Stated most generally, the problem of specifying intertemporal
p;eferencesvamong alternative vectors of consumption of a single good in
various periods of time differs from the atemporal problem with many
kinds of consumption goods only in the dimension of the consumption space,
However, the study of economies in which the participants individually
or collectively maximize an intertemporal utility function has achieved
much more dramatic and powerful results than the study of atemporal
economies, This has comz about because the investigators of intertemporal
problems have felt that the strong assumptions they make about the form of
intertemporal preferences still capture the essential properties of the
problem; few economists would accept the same assumptions for an atemporal
analysis, In fact, almost all investigators have assumed that intertem-
poral prefercences can be stated in a utility function of the form pro-

posed by Ramsey,

Linc ]

Xed 2y ulet) .

This hypothesis has been extremely fruitful, first in problems of optimal
growth where it specifies the social welfare function, and, more recently,
in models of intertemporal competitive equilibrium, where it specifies
the utility function of the individual or family.

In this essay, I will examine the problem of generalizing.the Ramsqy'
utility function along lines which would retain.the properties of the
Ramsey function which yield such useful results in the theory of inter-

temporal equilibrium., The approach of this investigation is close to the

-1 -
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opposite of that fak:n by Koopmans in his famous paper on iﬁtertemporal
utility functions (5); Koopmans specializes the most general utility
function in accordence with postulates.which state restrictions which are
natural for intertemporal preferences., Unfortunately, the recursive
functional form which he obteins does not yield an easy characterization
of the implied demand functions, so the’ study of general equilibrium with
these preferenceé is quite difficult. The uﬁpublished papers of Beals
and Koopmans (1) and Uzawa (8) are apparently the only studies of this
problem, Both of them report the somewhat unnatural result that the rate
of impatience must be a rising function of consumption -~ in fact, this
property underlies all of Uzawa's conclusions about family demand functions.
One of the purposes of this essay is to show that under an alternztive
specification the rate of impatience may decline with increasing consump-

tion.

1. Postulates on intertemporal preferences

- The following postulates express the restrictions which I seek to
impose on intertemporal preferences.

I. Independence. The marginal rate of substitution

——

b and i i
etween coande ., isa function s(ct,ct+l,t),
independent of the consumption level in any other

period.

This centrally important postulate enables us to characterize
the demand for consumption with a difference equation of

the form
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(2) . ct+1 = g(ct ’rt’t> s

(where r,_ is the interest rate and ct_!_1 = g(ct,s(ct,ct+1,t)-1,t)),

subject to a budget constraint on terminal or limiting assets.

t

IT. Stationsrity. The marginal rate of substitution function

—

s is independent of time.
While this is not crucial, it simplifies the discussion and the notation.

I1Y. Varizble impatience, The rate of impatience is not a

constant function of consumption., The rate of impatience
€ (c) is defined as the marginal rate of substitution
less one when c. and .4 2T equal:

(’(c) = s(c,c) - 1,

‘We require ¢€'(c) not identically zero,

IV, Declining margincl rate of substitution.

The rate of substitution between c¢; and any linear

combination of the other ctfs declines with increasing

amounts of the linear combination,

While these postulates appear at first to define a reasonable class
of utility functions, the appearznce is deceptive. In fact, no utility
function can meet all of these conditions, as shown in the following

Theorem (Debreu-Koopmans)

& utility function meceting postulates I, II, and IV has a
constant rate of impatience; further, the only function meeting them is
the Ramsey utility function. |

proos:

This is a direct consequence of a2 result of Debreu (2) cited in
thic connzetion dy Yoopwmans (3, Sec. 14). An alternative proof for the

differentiable cnse is useful and is given here.
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Consider the first three periods, with coansumptions c¢;, ¢z, and cs.

The integrability conditions on the marginal rate of substitution between

¢y and ¢» and between ¢, and Cq (See, e.g., Samuelson, (6)) require that
c

55(c1,¢5)  8y(cy5¢5)

s(cl,sz) s(c2,c3)'

(3 -

s

for all ¢, cp, and Cqe Since the left side is independent of ¢,;, a

simple argument shows that
c(cy,c2) = ale)blez) .

Substituting in (3), we find that

'(e) _ b'(c)
(“) ORI TO N
Now

\’:(C) = s(c,¢)

a(c)b(e), so

a'(e)b(e) + a(c)b'(e)

' () =
= 0 from equation (4).
Now let d(c) = a(i) and observe that

d'(e) _bi(c)
d(c) b(c)

Then by tazking logs and integrating, we get

d(e) = (1 + )ble) ,

where ¢ is an arbitrary constant greater than -1, Define a function u(c) by
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5
u'(c) = d(c) . Then
& s(cy,c2) = (1 + (’)'1 l:.:_%%z%_ ,

exactly and uniquely the marginal rate of substitution for the Ramsey

utility function
(6) U=z (L+0) Tute) .
t

The mein point of this theorem is that the assumption of independence,
which makes possible the characterization of general equilibrium in terms
of trajectories in a phase plane, implies that the utility function has
the restrictive Ramsey form. Three alternatives present themselves at
this point. First, following Koopmans, we might abandon the hypothesis
of indepcendence at the cost of additional effort in characterizing the
intertemporal demand function. Conversely, we might interpret this theorem
as showing that a fixed rate of impatience is in a sense more general than
we had thought previously, and therefore continue to postulzate the Ramsey
utility function,

A third alternative, pursued in the remainder of this essay, is
to take the radical step of abandoning the notion that individuals,
families, or societies have consistent preference orderings among all
consumption vectors, This assumption appeared above in the requirement
of integrability. But demand functions can be dexived directly from the
difference equation (2), without any reference to a utility function,

‘This procedure is of course subject to all the criticism vhich has been

directed at the Cassel-Hicks-Allen approach (in particular by Samuelson
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in (7)). However, it has somewhat greater plausibility in intertemporal
cases than in atemporal ones, since it can be portrayed as a kind of
myopia with regard to the future. If individuals choose between this
period's consumption and next period's by maximizing a utility function
defined over just the two, and if their concern for future consumption
is limited to taking care to leave enough wealth to insure that this
process can be continued forever, then the present hypothesis is appro-

priate. This ides is discussed in (3).

2. Diminishing marginal rate of substitution

This section is devoted to showing that a variable rate of impa-
tience is consistent with diminishing marginal rate of substitution in
the absence of integrability. One of the important conclusions of this
investigation is that there is no restriction on the sign of *'(c) --
the rate of impatience may either rise or fallnwith an increasing con-
sumption level., The curious and coﬁnterintuitive result of Beals and
Koopmans (1) and Uzawa (8) -~ that the rate of impatience must rise with
increasing consumption -~ does not carry over to this model. The only
restriction found here is that the absolute value of f '(c) must be less
than some positive critical value.

If Rt is the mafginal rate of substitution between consumption in
period one and consumption in period t, it shqws general declining marginal
rate of substitution if the rate of substitqtibn between consumption in
period one and any linear combination of future consumptions declines with
additional amounts of the linear combination, provided the linear combi-

nation lies in the tangent'hyperplane definad by {Ft,t=1,...,£} (this will
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be the tangent to the indifference curve with integrability). This

definition was first stated by Hicks and Allen (4). It requires that

SR
t
(7 I3 a,a. <0 whenever Ja R, = 0.
£t t LSCT t tt

The discussion of the possibility of a variable rate of impatience
will be carried out under the special assumption that the rate of substi-
tution between adjacent consumptions can be factored into two functions

of one variable each:
!
v'(c
(8) s(c ,C ) =__..§_..t‘i]_‘_)_ .
£ tl u (ct)
This corresponds to the assumption that the two-period utility function

mentioned above has the special additive form
(%) U(ct,ct+1) = u(ct) + V(Ct+1)'

We assume u" € 0, v"' ¢ 0, and 5—',1 <-/9 for somaz positive constant ‘ﬁ’.
There is no apparent obstacle to generaiizing the results for.any two-~
period utility function.

Further, in cases where we consider the limit as the horizon T goes
to infinitely long constptioh trajectories we require diminishing rate of
substitution only on trajectories which approach limits. This is a rea-
sonable step since the competitive equilibrium in an economy in which
consumption decisions are made in this way always involves consumption

trajectories with limits,
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Now the first period rates of substitution are given by

v'(c2) v'(c3) .ee v'(ct) .
(10) Rt = u'(cy) u'(ca) oee u'(ct_l) ! X1

“e

R1=1 .

The values of —t are as follows:
Bcl

oR
(11) t o _ulcy)
é_‘3_1. u'(cy) Rt *
aRt
(12) — =0 if Yy t.
BCT

aRt vt (ct)
(13) act = v'(ct) Re -

_ oR v"(cq) u"(Cﬁ)
e ST Ve TRy e

A

for 2 s T=t.

The crucial step in relating this to the rate of impatience is to
observe that

e =521, s
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(15) ("(C) = U'(C)V" (C) - V'(C)u” (C)
[u'(e)]?

vi(e) v'"(c) u''(c)

"o Ko T e !

[L+P ()] BrlSd - Berled ]

Thus equation (14) has the more revealing form

R e'(c)
t T
(16) - = R .
Bct 14+ (c) t

The diminishing marginal rate of substitution requirement is

T T ant
(17) 21 121 A 53; <0 , or

" T T v'! (C )
s{ea) 3 aR, + 2 £

21 () t22 R

2
2o 3¢ v'(ct) t

T t-1 @' (e

*eZ3 AR 222 T £ (&) <o,

T
whenever tél ath =0
Now from the tangent plane restriction,

T

81 = - Iy 3R o

so the first term of the inequality (17) can be written
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u''! (¢ T

(18) T [y ARI2

which is negative by hypothesis, Similarly, the second term is also
negative. It remains to show that there is a restriction on

f'gcz
1+ ¢(c)

which will guarantee that the third term cannot be large enough to make
the vhole expression zero or positive, For a particular choice of the
horizon T, it is easy to find such a restriction, since the ratio of the
last term in (17) to the sum of its first two terms is bounded; if € is

the reciprocal of this bound, we can require

(19) leol o

1+ ¢Cc)

Such a bound can be derived by considering the problem of maximizing

T t-1
a

20 t23 2Re nZ2 24

subject to any arbitrary normalization of the a_'s; it is easiest to take

t

T
(21) t§2 a

Now let 3 be less than or equal to the smallest value attainable by

. Then the second term,

v'' {c
53
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is less than - 4, by the normalization, Finally, since (21) bounds
every a., end Rt is bounded, the double sum (20) is bounded -~ there
exists a B(T) such that

T t-1

(22) 3 3R oI, 8 <B(D .

Thus, the condition

(23) | )] o 2
T+0(0) B(D

guarantees that the marginal rate of substitution is always declining.

The interesting and important question, however, is whether or not
there is a positive bound on @'(c) which is independent of the horizon
T. To show that there is such a bound requires a stronger argument than
the one presented above, since nothing so far rules out the undesirable
possibility

(24) lim  B(T) =

T —>

This might prevent flexible impatience for the case of an infinitely dis-
tant horizon,
It is possible to show that the basic expression (17) is negative

both for the case of persistent impatience, 1lim Rt = 0, and for the
t—320

alternative cases 1lim R_ >0 or R_ unbounded. In view of the conclu-
t—3 t t

sions of (3), however, only the case of persistent impatience will be con-
sidered., We will show that under conditions of persistent impatience there

is a bound on
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T t-1
(25) (23 2y o Ty A

vhich is independent of T; in other words, the expression (25) cannot be
made indefinitely large by choosing a large enough T.

The problem of maximizing (25) subject to the constraint (21)
can be stated as one of finding a stationary point of the Langrangean

expression

T t-1

(26) L= 23 &R 42y 2y

T
+4 (1 3

t=2

NP

2
ag Rt] .

Setting the first dexivative of L with respect to each a equal to zero,

we have
T s-1
27 AP‘s'ﬂs - tés—{-l ath + Ry 7_-2;2 &y -

Now we let

1 T
o = e
(28) X R_ tés ath and
s-1
(29) Ys = Téz ay -

Then the conditions for the maximum can be written as a system of three

linecar difference equations:

R R
1 s-1 s~1
(30) 8 "X+ 1 [a - R, dag_y * R, X1 T Vg 1]
R R
: s-1 s-1
(31) X = "R % TR %ea
s 5
(34 Yo T %1V Vsa1 2
for s = 3; ap = %2 and yp = 0 ,
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The maximum trajectory is found by locating an x» which meets the boundary
condition Xp = 0 and a ) such that the constraint Zai Rt = 1 is met,

As T becomes large, the coefficients of the system (30), (31), and (32)

. -1 ' . -
approach constants, since = S(ct-l’ct) and 1lim s(ct_l,ct) =1+ £(c),

t
Rt t—>o

vhere ¢ = lim Cpe Then for large s, the solution approaches the solution
to a linear system with constant coefficients; from the properties of such

solutions, we know that

a
(33) lim -=HL

5§32 g

exists if the characteristic roots of the system are real and positive,
It is straightforward but tedious to show that if the roots of this system
are not real and positive, then expression (25) .is uniformly bounded.

Thus we may assume

a
(34) lim St

§—rcO S

= ol o

Now from the constraint, (21), we can see that

xa
1TFp

uA

(35) 1,

since otherwise (21) would diverge; we conclude that

ot S_1
YRC yTy e

and finally

<1,
1+¢ .
Nexf we rewrite the maximand as

T T
24 i,y @ % .
(36 82 2ok AR
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New the inner suscrition is eventually close to a convergent geometric
series, and ath > 0 for all'*l, so that there exists a constant K such

that
T

(37 3 a R

£
e 2B TR AR

t T°

But then by multiplying by a and surming, we have

T T

Z R

T
" < 2
(38) vl2 P el AR T K B ER

. < . L .
Thus B(7T) = K, and a uniform restriction on (c) can be written

(39) ¢! (_c_)_l___< V2

14 ¢(c) K

The results of this section may be stated in a

Theorem on veriable rates of impatience

There exists a function s(ct,ct+l) giving the marginal rate of
substitution between . and sl for which the implied rate of substitution
between ¢ ; and . has a general diminishing marginal rate of substitution

and for which the rate of impatience is not a constant. Furthermore,

there is no restriction on the sign of £'(c).
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Chapter 3

THE DYNAMIC EFFECTS OF FISCAL POLICY

IN A SIMPLE ECONOIIY
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Recent experience with the manipulation of fiscal iﬁstruments
for the purpose of stabilizing the economy suggests that economists'
understanding of the dynamic effects of fiscal changes is somevhat limited,
In particular, economic models have failed to take account of the ways
by which the economy anticipates policy changes which are announced some
time before they take effect, The case in point is the recent temporary
lSuSpension of the investment tax credit: the expectation that the credit
would be restored, either as scheduled or earlier (as apparently will be
the case), may have strongly inhibited investment in equipment during the
period of the suspension., None of the estimates prepared in September
1966 by applying econometric models took account of this problem; this
includes (5), although it was the most bearish.

The purposc of this essay is not to attempt the difficult task of
formulating a model which would give better answers to the questions of
fiscal policy mekers. Rather, it examines some dynamic fiscal problems in
a siwple, unrealistic economic model whose distinguishing feature is
that all the participants in the economy are assumed to make plans by
looking into the future, The value of this exercise, I think, is that it
reveals the important differences between the behavior of a model in vhich
consumers and investors correctly predict and take acéount of the future
and that of models in which expectations are based only on past experience
and behavior is determined by arbitrary rules which do not look into the

future. Since these differences are so large, it appears that the old

“-1 -
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models used for fiscal policy based on naive or adaptive expectations may
need to be revised in a fundamental way. Furthermore, fiscal policy
changes seem to be the most natural source of large perturbations in a

competitive equilibrium model.

Consequently, a careful analysis of fiscal problems
is one of the best ways to demonstrate the properties of this kind of
" competitive economy. Among the most important of these properties are
stability and fulfillment of all expectations even when there are large
discontinuous changes in the external forces acting on the economy.

The model which T propose to consider is described in (2) and

is similar in some ways to ones employed by Phelps in connection with
problems of static fiscal policy and by Sidrauski in connection with mone-
tary theory (6,7); its formal properties are very much the same as those
of the popular one sector model of optimal economic growth. Essentially
it assumes that consumers decide on today's.conSumption by formulating a
future consumption plan bpth for themselves and their heirs, knowing future
interest rates and wages., Investors always equate the net marginal pro-
duct of capitzl to the interest rate and pay wage earners their marginal
prodﬁct. There is a unique competitive equilibrium in which these two
rules are consistent -~ this essay describes first the changes in the
steady state and then thé full dynamic equilibrium for several kinds of

changes in fiscal policy.
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1, Steadv-stete Tax Effects

The steady state in this model is féund at the intersection of
the impatience curve, (*(c) and the net output curve y(r) (¢ is consump-
tion per person and r is the interest rate; the single output of the
economy is taken.as num€raire)., This is illustrated in Figure 1, At
the steady state point (r*,c*) consumption is constant because the in-
terest rate equals the rate of impatience. The capital stock is constant
beczuse all net output is devoted to consumption; hence the interest rate
is also constant,

I will examine the effects of five kinds of taxes in this economy: ‘
a fixed levy or recurring lump-sum tax, an interest tax, an income tax, a
consumption tax, and an investment tax credit or negative tax on invest-
ment. By assuming that all government expenditures are purely wasteful I
vill avoid the important question of the influence of government expendi-
tures on production or consumption,

First, a fixed levy, paid once a year, simply reduces the net out-
put available for cOnsumption at a given interest rate, as shown in Figure 2,
If @(c) is constant ccasumption after the tax is less than consumption
before the tax by the amount of the tax -- gross output is unchanged.

Second, we consider the more complicated case of an interest tax,
The tax changes the relation bétween the interest rate and the capital
stock (interest rates will always be measured after taxes). As a concrete
example, one might think of a corporate income tax in an economy where
all production.is carried out by corporations which borrow only by selling
sharas; the interest rate r would be measured by adding dividends to

capital gains and dividing by the share price.
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The steady state
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FIGURE 2

Fixed levy
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Before the tax is imposed r is related to capital, k, by
(1) r=f'(%) - S.

If the tax laws provide for true economic depreciatidn deductions, the

interest rate when a tax at rate ¢ is imposed is

(2) r=(-DEE® -§) .

The analysis could easily be extended along the lines of (4) if deprecia-
tion deductions are allowed at a rate which is faster or slower than the
true rate,

Equations (1) and (2) show that the new net output curve yo(r)
lies to the left of the old curve y;(r). The steady state consumption

curve co(r) is yo(r) less the tax yileld:

3 ca(r) = yo(x) - Trxk ,

as shown in Figure 3. Note that the interest tax reduces net output before
taxes: cz is less than c: by an amount larger than the tax yield. A
sizeable element of de;dweight loss results from an interest tax.
This diagram answers the important question of the 10ng Tun shiftiﬁg
' of the corporate income tax in this kind of economy: if € (c) is constant,
the tax is shifted 100 per cent (the rate of profit is unaffected by im-
ds

posing a tax on profit); if Eé:? 0, shifting is between O and 100 per cent,

and if g—g <0, shifting is greater than 100 per cent.
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fhird, an income tax is a combination of the interest tax just
discussed and a wage tax. Since labor is supplied inelastically in this
model, a wage tax is non-distorting in the same way as a fixed levy., The
net output curve yo(r) is pushed to the left by the interest tax while
the consumption curve cy(r) lies below yo(r) by the total amount of the

tax:
(4) c2(r) = (1 - T)y=(x)

This is shown in Figure 4,

- Fourth, we consider a consumption tax. 1In a comparison of alterna-
tive steady states a consumption tax is very much like a fixed levy or a
wage tax, The net output curve y(r) is unchanged; this is illustrated in
Figure 5,

'Finally, an investment credit of the kind in force in the United
States for 1962 and 1963 reduces the rent on capital in proportion to the

amount of the credit:

(6) £1(k) = (1L -W(E+8) ,

where v is the investment credit rate, .07 for 1962 and 1963, The effect
of the credit is to shift the net output curve in the following way:

y2(r) = y1((1 - v)r = v&). The consumption curve lies above yo(r) by

the amount of the credit for replacement investment:

™ ca(r) = ya(z) + vk .

These curves are shown in Figure 6. The investment credit raises steady-
state consumption by more than the amount of the ecredit, In its long-run
effects it is much the same as a negative 1nte£est tax, but as I shall
show, its short run effects around the time of announcement are quite

different.
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FIGURE &4

Income tax
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FIGURE 5

Consumption tax
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Investment tax credit
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FIGURE 7

General phase diagram
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2. Dynamic effects before and after tax changes

This section presents derivations of the competitive equilibrium
trajectories which would prevail in an economy during the transition be-
tween the steady state without any taxes and that with various of the
taxes discussed in the firgF section. 1In all cases ;he tax changes are
assumed to be instantaneous jumps to a positive rate which remains con-
stant for the rest of time. Further, except for the fixed levy, only
the differential effects of each kind of tax will be considered -- the
proceeds are assumed to be distributed as transfer payments., The method
of analysis could handle more complicated fiscal policies, but it would
be difficult to present the results as grapﬁs.

In all cases my method will be to reinterpret the graphs of the
first section as phase diagrams in the (r,c) space and to find the unique
trajectory which goes from the before-tax steady state (rt,ct) to the
after-tax steady state (rz,c:) . This trajecﬁory will trace out thg

competitive equilibrium of the economy from the infinite past to the
| infinite future.

The general phase diagram for this model has consumption decreasiné
over time if the interest rate is less than the rate of impatience (c)
and increasing otherwise. Similérly, if consumption is greater than net
output y(r), the interest rate is incréasing and vice versa. Thus the
diagram has the following form as shown in Figure 7. The two dashed arrows
are the unique infinitely long trajectofies goipg from any initial interest
rate to the steady state interest and consumption point (xr*,c*), The

" dotted arrows show the locus of points which the economy can reach after
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starting at (r*,¢*) in the infinite past; they correspond to the dashed
arrows of the same system with time reverséd. I will call the dashed
arrows the converging arms of the system and the dotted arrows the

emerging arms, The cqmpetitive equilibrium trajectory in an economy with
a tax imposed at time T follows the emerging arms of the before-tax system
before T and the converging arms of the after-tax system after T, 1In

some cases the trajectory is continuous at T while in-others the impqsition

of the tax causes a discontinuity in r or c.

a. Fixed levy.

The first case to consider once again is the fixed levy. 1In
Figure 8 I have redrawn Figure 2 to include the appropriate emerging and
converging arms. The economy follows the upper heavy arrow before the
time T in anticipation of the tax; toward the end of the period, consump-
tion begins to decline as the economy accumulates an extra buffer of
capital, When the tax is imposed, it is first paid entirely by drawing
down the buffer. However, consumption continues to fall until eventually
the economy comes indefinitely close to the new steady state (r:,c:).

The interest rate and consumption trajectories have the time profiles in
the period around T shown in Figure 9. Notice that the time path of con-
sumption is perfectly smooth -- investment rather than consumption absorbs
the shock of the imﬁosition of the tax. This is not the case with some

of the other taxes, however,

b. Interest tax

The discussion of the dynamic effects of an interest tax must begin

with a digression on the implications of the irreversibility of investment.



FIGURE 8

Trajectories for the fixed levy

FIGURE 9

Interest rzte and consumntion as functions of
time for the fived levy
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This is one realistic assumption which the model is capable of incorporating
and whose implications are in themselves fairly interesting.

The first step in understanding the operation of the economy when
investment is irreversible is to examine thé model with reveréible in-
vestment in the capital-consumption phase plane rather than the interest
rate-éonsumption phase plane. The change is purely formal since the

interest rate is a monotonic function of the capital stock:

(8) r=f£f"(k) -§ .

The new system is shown in Figure 10, The trajectories drawn with dots .
and dashes are the same as those shown in Figure 7.

Points in this plane above the production function curve £(k) in-
wlve negative gross investment., If these points are ruled out by the
hypothesis of irreversibility, all trajectories must lie on or below £(k).
In that case the infinitely long arms will have the form shown in Figure 11,
The parts of trajectories which are forced to lie on f(k) are called
blocked segments in Arrow's terminology (1l).

Although Figure 11 gives a correct portrayal of the behavior of
consumption and investment with irreversibility, it obscures the way that
the competitive system behaves in order to bring this about. In parti-
cular, it is not obvious that the kinked trajectories of Figure 1l can
be supported by a competitive equilibrium interest raﬁe. To see that they

can be supported it 1Is necessary to return to the (r,c) phase plane.
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The basic model in the (k,c) plane
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The old system

) S8 = g(esm)
r=f'"(k) -&
g{-- £(k) - (§+ )k - ¢

cannot possibly govern the economy if investment is irreversible, since
some of its trajectories enter the forbidden region where ¢ > £(k(r)).
wWhich equation fails on blocked segments? The aﬁswer is that if capital
cannot be consumed after it is installed, it is not necessarily a perfect
substitute for consumption goods; hence its price in terms of consump-
tion goods may be less than one during periods when gross investment is
zero. If the price of capital, p, is less than one, then the old rela-

tion between the interest rate and the capital stock,
(10) f' () =r+ 4,

becomes the more general equation of rent which takes account of capital

gains and losses:

(11) £'(k) = p(r +.¢$) - g% .

On blocked segments the price of capital i1s less than one because capital
~1is redundant., Trajectories which move toward a segment with positive
" investment have %% > 0 so that p = 1 exactly at the moment investment

resumes.
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On a blocked interval, the cépital stock declines‘exponentially

from its value when the interval was entered:
(12) CK(t) = koe‘(‘s‘*“)(t"o)

where ko = k(to), the initial capital stock. Consumption is the output

from this stock:

(13) c(t) = £(k(t)) .

The rate of change of consumption is

(14) | %2— = f'(k)g-‘g

e -f'(k)(n+ S)Hk .
But the rule for consumption behavior requires

(15) £oglen .

Thus in a blocked interval the interest rate is found by solving

(16) g(£(Kk),1) = -£'(K)(n + §)k.

Note that this restricts the blocked segments of all trajectories to a -
single line in the (r,c) phase plane -- this line is defined by equation

‘ %*
(16) and corresponds to the £(k) curve in Figure 1ll. Thus the (r,c) phase

diagram for the system with irreversible investment has the form shown in

*It is possible to sho;ﬂthat the blocked trajectory always passes to the
right of the intersection of the upper converging arm of the system and
the gross output curve.
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Figure 12. Along the blocked segment of a trajectory the price of
capital p(t) can be found by integratimg the rent equation (11) and
applying the boundary condition p(t) = 1 at the time that the trajectory
enters or leaves the segment of positive investment. While this price
does not play an important part in the analysis of a one-sector model,
it wéuld be critical in a model with several kinds of capital. See

(3) in this regard.

The upper converging arm in Figure 12 begins with redundant capital
with price p less than one. The price of capital rises along the blocked
segment, exactly compensating the owners of capital for the higher in-
terest rate caused by the blocking. Just as the price reaches one, the
interest rate jumps down to its free value, r = £'(k) - § . Similarly,
along the upper emerging arm consumption increases and investment gra-
dually decreases until it reaches zero just at the gross output curve
£(k(x)). Then the interest raée jumps down to compensate holders of
capital for the capital losses they sustain along the blocked trajecgory.
The end of the world must come just as the price of capitél becomes
zero -- otherwise this negative speculative boom could not be consistent
with competitive equilibrium,. The point on the blocked trajectory where
p = 0 will be above the horizontal axis; one of the properties of
economies with irreversible investment is that they will have a positive
capital stock with zero value at the end of the world.

With this preparation it is possible to discuss taxes which cause

serious jolts in the economy around the time of their introduction.
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FIGURE 12
The (r,c) phase plane with irreversible investment
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FIGURE 13

Interest tax, reversible investment
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The first of these is the interest tax, whose immediate effect is to reduce
the interest rate in proportion to ;he tax., In an economy with reversible
investment, the locus of (r,c) pointé at which the economy could find

" itself just after the imposition of an interest tax is a line propor-
tionally to the left of the emerging arms of the pre-tax system. If the
function defined by the emerging arms is r = h(c), then the locus is

r = (1 -T)h(c). The point where this locus crosses the upper converging
arm of the after-tax system is the point where the competitive equilibrium
trajectory joins the converging arm at time T. This trajectory is shown
in Figure 13, Before the tax is imposed, consumption increases, drawing
down the capital stock, After the tax the interest rate drops and the
trend of consumption referses abruptly, gradually converging to the new
lower steady state,

If investment is irreversible, the kind of trajectory described
above may still hold, particularly if the new tax is small; if the tra-
jectory for the reversible case never enters the region of negative gross
investment, it is also the‘competitive equilibrium trajectory for the
irreversible case. On the other hand, for a sufficiently large tax in-
crease, the irreversibility'copstraint willlbe effective, as shown in
Figure 14. In this case, investment reaches zero before the tax is
imposed, and the interest rate drops discontinuously to its blocked value
sometime before T. The tax increase occurs while investment is blocked
and has no 1mpediate effect -- in a blocked interval c#pital 1s a fixed

factor so that a tax on it is like a tax on land.
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FIGURE 14

Interest tax, irreversible investment

C : P(c)

FIGURE 15

Consumption tax increase
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Some time after the tax, investment resumes and the interest rate

drops again. Finally the economy moves gradually to its new steady state.

c. Consumption tax

A consumption tax has no long-run substitution effect, since as
long as the rate is constant, it is equivalent to a fixed levy. However,
at the time the tax rate is changed it has a very important substitution
effect. With a consumption tax, the consumer's effective discount func-
tion is |

e-R(O,t) ]

1 -7()°
the optimal consumption trajectory has marginal utility proportional to
this function at each point in time., A discontinuous increase in T(t)
causes a discontinuous decrease in consumption., The effect of the tax
change is the same as that of an infinitely short period of time with an
interest rate of minus infinity. Accorqingly, the phase diagram will have
a8 discontinuity in the (r,c) trajectory at the moment of the tax increase
as shown in Figure 15.

It is possible that the desire to consume in anticipation of the
tax increase might be so strohg that the economy would enter the blocked
state with zero investment, Then the price of caélt#l would begin a down-
ward speculative movement which would be ended just as investment resumed
at time T. In this region there would be a diécontinuous increase in
the price of capital p(t) at time T which would cause a compensating down-

-R(0,t)

ward jump in the discount function e , since the equation of rent
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fequired the present value of caﬁital, p(t)e-R(o’t), be continuous.
Then the jump in

e-R(O,t)

1 -7(t)
would be smaller, and in turn, the downward jump in the consumption tra-
jectory would be smaller. Thus the limitation on consumption imposed by
the irreversibility of investment causes the price system to cushion the

shock in consumption. These events are shown in Figure 16,

d. Investment tax credit

The immediate effect of an investment tax credit is a discontinuous
drop in the price of capital from 1 to l-v, where v denotes the invest-
ment credit rate., In a partial equilibrium analysis in which the interest
rate is assumed exogenous and finite, a finite capital gain or loss is
not consistent with the equation of rent. The result 1is that investment
£ blocked for a period sufficiently long for the speculative decline in
the price of capital to eliminate the cabital loss exactly. For example,
if an inveétment credit were allowed on one kind of machine in an economy
with many kinds of capital, no investment in that kind of machine would .
take place for a few months or years before the credit took effect (or
resumed), because it would be profitable to postpone investment until the
credit was available, The same is not always true for the economy as a
whole., Price adjustments may absorb some of tﬂe shock caused by an in-
vestment ;redit. First, a drop in the price of,capital-is consistent

with competitive equilibrium with positive investment if it is accompanied



FIGURE 16

Consumption tax with irreversible investment

¢ | . C(c)

FIGURE 17

Investment tax credit without blocking
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by an upward jump in the discount functién (that is, a negative impulse
in the interest rate). Second, the relation between the gapital stock'
_and the interest rate is altered by the investment credit in the.way
given in equation (6) -- this causes an upward jump in ;he interest rate.
Figure 17 shows a competitive equilibrium trajectory which does not have
a blocked segment. In this case investment begins before the tax credit
is allowed, in anticipation of the larger capital stock which will be
optimal after time T. It is also possible that the competitive equili-
brium trajectory might follow the upper emerging arm of the pre-tax
system, depending on the relative magnitudes of the jumps in consumption’
and the interest rate. The second kind of trajectory may have a blocked
segment whose properties are similar to those discussed in connection

with the consumption tax.

3. Conclusions

Once again I emphasizé that I do not consider these results directly
vrelevant to the kind of analysis of fiséal problems required, say, by the
Treasury Department, The accOmplishmegg of this essay, I think, is to
introduce to fiscal economies the notion that the participants in an
economy are concerned about the future;‘the defect of my method is that I
am required to assume that everyone in the economy knows the future with
certainty. Clearly the next step is a model in which while pedple‘care
about the future, they do not know exactly;whaﬁ will happen to them then.

But progress in this direction is unlikely to come very easily.
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In order to make the point of this essay most forcefully it would be
useful to compare the behavior of the economy described here to that of
# similar economy-which did not use‘information about the-future in de-
termining today's equilibrium. A natural initial choice for comparison
would be Solow's one-sector model of economic growth, which assumes the
same technology coupled with a simple Keynesian savings hypothesis., For
the case of a fixed levy the comparison is instructive -- in Solow's model
capital and consumption would remain at their steady-state values right up
to the time of the tax. The decline in private GNP caused by the tax would
be absorbed by investment and consumption in proportion to the savings
ratio., With less investment the economy would decline further to a new
steady state, In the model of this essay; investment rises before the
tax so that the whole decline in private GNP is absorbed by it.

Unfortunately the comparison is less interesting for the more com-
plicated differential effects discussed later in the éséay. The diffi-
culty is that there are no differential.effects at all in an economy with

a constant savings ratio; the ccmpetitivé equilibrium is always given by

%—‘5= sE(k) - (S+ )k

and none of these variables can be affected by a program of taxes and equal
transfer payments. Tax rates are reflected only in the relation between
the capital stock and the interest rate, but the interest rate does not
affect the real quantities ¢ and k. Dynamic models with constant savings

ratios are unable to distinguish between alternative fiscal policies.
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SPECULATION IN ASSETS WHICH LAST FOREVER'
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Assets which last forever present a special problem to the economy
in determining their prices, The problem arises because there may be
competitive prices which are uniquely associated with infinite time in
tﬁe sense that they cannot be found as the limit as the time horizon
goesito infinity'of the equilibrium prices in an economy with a finite
horizon., For example, suppose that the yield from tulip bulbs is zero.
Then in any economy with aAfinite horizon, no matter how far distant, the
price of tulip bulbs must be zero. On the other hand, if the price is
always expected to rise just enough to meet the interest cost of holding
bulbs with a positive price, the price can rise in a self-fulfilling,
never-ending upward speculative boom, Nothing in the ordinary notions
about the equilibrium in an asset market can rule out this behavior. Fﬁr
tulip bulbs, this observation is hardly more than a curiosity. Recently,
however, it has been suggested that there may be speculative booms in
reproducible physical assets which may affect the allocation of investment
in these assets. The basic result of this study is a Non-Speculation
Theorem which shows that this‘is not the case for at least one kind of
economy with heterogeneous capital goods., If we take as the,b;sicvequili-
brium condition in the market for these assets the requirement that there
be no profit in holding a unit of ‘an asset for any period of length T,

we obtain the following
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Zero Profit Condition:#*

) T
@ e = J

o

e'R(t’t+'r)y(c +1)d  + e-R(t’t+T)p(t +T) ,

for all t and all T >0; p(t) is thé price of the asset and y(t) is its
‘yield,
Let

w ¥
2) oty = | eRETH Dy ynya
[o]

if this integral converges.

Nothing so far guarantées that the price in a market ruled by (1)
is that given in (2); that is, p(t) is not necessarily equal to IYOOR
This gives rise to the following

Definition of Speculation

Speculation is said to exist whenever p(t) # P(t) ; the speculative

component of the price is

(3) ' s(t) = p(t) - p(t) .

The speculative component of an asset's price is the part of the price
which can be explained by the expectation of future price increases;
its form is given in the

Characterization of Speculation

The only speculative component consistent with the zero-profit

-

condition (1) is

*Alternatively and equivalently, we could posit the equation of yield:
y(t) = r(t)p(t) - p(t) . ' '
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(%) s(t) = soeR(o’t)

where 5o is any constant, positive or negative.

Proof:

From (1), (2), and (3),

-t

e = | RO Dy(ryar + RO
o]

p(t)

{2
- e RO My (nya
(]

- _oR(O,E)= -R(0, t)

p(t) + e p(t)

- e-R(o,t)s(t)

Let o = s(0); then
R(O,t)

s(t) = 558
The speculative component either rises or falls as the inverse of the
discounting function.
The speculative component 1s further restricted by the

No-Negative-Speculation Theorem

If p(0) < P(O) then there is a T for which p(t) ¢ O for t > T.
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3 4
proof:
From (1),
R o
pet) = RO oy - 7 RO Dymyary
o -

There are two cases to consider. Pirst, if ;{0) is finite, there
exists a T such that

t _r¢o, 1)

J e RO Dycayar > poy

o

R(O,t)

for all t > T. But then since e is positive, p(t) < 0 for all
t DT.

If p(0) is infinitely large, then the inequality p(0) < p(0)

means that p(0) is finite., But

A |
J e RO Dyayag

[}

can be made arbitrarily lérge: there exists a T for any p(0) such that

t
[ e®ODyrars po)
[+

for all t > T. But then p(t) € O for these t's,

This theorem has two important implicatibns. First, if negative
asset prices afe ruled out by free disposability, it shoﬁs that ﬁhe
speculative component of a price cannot be negative; Second, it shows
that if there is a market-clearing price p(0) then the integral for
: ;(O) must converge. The convergence of this integral is the basis of the
probf of the Non-Speculation Theorem. In preparation for it, I demonstrate
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Lemma on Prices and Rents

Consider a profit-maximizing economy with m factors of production
whose supply is fixed and n factors which can be produced. Gross output
of the reproducible factors is given by a set of constant returns to

scale production functions

1,1 i i ~
£ (XI, seey xn‘l"'l’ IXXE) xm*_n) for 1 =mi'1, eeey MmN

Each factor has a rent or wage 9y i=1,...,mn, and a price Py Then
the prices of the reproducible factors are limited by the rents of all
factors in the following way: There exists a constant, v, such that

min
z .
MEE IS

nA

Py

Proof

Consider setting each factor input in each industry at the
unit level, Then since the price Py is a2lways less than or equal to the
cost of production, and the cost of production at the brofit maximizing

factor ratios is less than or equal to the cost at the unit level

mn
<__ 89y
Py 7%
£(1, ..., 1)

The fequired v is given by

1

min £5¢1, ..., 1)
. 1

v =
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Non-Speculation Theorem

With the technology of the previous lemma and with no deterioration
of reproducible assets, there is no speculation in reproducible assets;

that is, s , = 0 for i = m#l, ..., mn ,

oi

Proof:
Since Ei(O) is finite for all assets, there exists a t for

any s . » 0 such that

mn soi

¢~R(0,t) PAERORES N

Then by the lemma,

s
e'R(o’t)p(t) £ -%i .

Recall that

sy = e MO (1) - eROBF ()

so
4]
804 $ ¢R(0,1) ty .
Thus,
: s
oi
801 2

a contradiction, so 5,1 £ 0. But from the No-Negative-Speculation theorem,

>

8 .'= 0. Therefore So1 = 0 and there is no speculation in reproducible

oi

assets,
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The assumption that all factors of production are treated as assets
is eritically important in the previous theorem. If there is labor it must
Se supplied by slaves, 1If there is a factor such as free labor which 1is
not required to have a finite asset price, then speculation in reproducible
assets can take place, What is required to allow speculation is that the
marginal product of capital become small relative to the wage, so that

e-R(O’t)w(t) does not go to zero (w(t) is the wage). Then the present

value of the price, ¢ "R(0,1)

pi(t) need not go to zero and p; may have a
speculative component.

An example of the possibility is the simple economy with labor and
capital producing a single output with constant factor proportions. If
the economy is in a steady state with redundant capital, then the interest
rate will be zero and ;£ will also be zero, But it is perfectly con-
sistent and reasonable for Py to equal 1 -- capital provides a way to
store wealth, This steady state might be generated by a Diamond-Cass
.=, Yaari model; it is worth noting thaf this equilibrium is inefficient
in the sense of Phelps and Koopmans. Phelps-Koopmans efficiency itself
is noﬁ quite strong enough to prevent speculation, but a stronger,
related efficiency property is sufficient. It guafantees that the present

value of the wage is finite. I am currently investigating this topic.
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Chapter 5

TECHNICAL CHANGE AND CAPITAL FROM THE

POINT OF VIEW OF THE DUAL



In the past-few years, it has become incr;asingly evident that
almost every interesting economic éroblem has an equally interesting
problem as its dual.. Although formally speaking the dual has exactly
the same properties as the primal, often examination of the dual can
yield new insights into the pr;blem which were not apparent in the primal.
This paper examines the problem of production with durable machines subject
to technical change from the point of view of the dual, and presents
several new results having to do with technical change and the value of
capitel goods.

The first section of the paper investigates the problem of the
existence of a proauci’:. functinn relating outpit. Jabor, and some
measure of capital. In the dual, the corresponding function, expressing
all the properties of the production function,. is the factor price func-
tion relating the wage to the f}ow price of machines' services, or rent.
Three basic notions of capital theory -- deterioration of capital, capital-
embodied technical change,l and disembodied technical change -~ are de-
veloped within a more general theoretical framework, in which it is showm
that the three do not constitute an unambiguous description of reality.

The second section investigates the relaéion between the'price of
machines and their rent. The relationship is expressed in the fundamental
equation setting the price of a used machine.equal to the present value
of the renﬁ which it will earn over the remaiﬁ&er-of its 1life. From this

equation explicit formulas for both the rent and the price of used machines

1ThroughOut this paper, technical change is assumed to be capital-aug-
menting.

-1-'



are derived as functions of tle exogenously determined interest rate and
price of new machines,

Finally, in the third section, the question of the operational
content of the neoclassical theory of technical change and capital is
examined, Two theorems on the.identification of technical cﬁange and
deterioration are stated; these show that the théory is in fact meaningful
in the sense that it involves refutable hypotheses. While this is a full
answer to the critics of neoclassical theory who might clﬁim that it is
formally empty, only an emp;rical application of the methods stated in the

theorems can determine if the assumptions of the theory are sufficiently

realistic to mane il = »eeful theory.

1. The vintage model and the parameters of technical change and

deterioration

In this paper §olow's vintage.model of production 1s assumed to
hold (11). 1In that model, at any instant in time machines of vintage v
have their own production function £(v,I(V),L(v)), where I(v) is investment
that.took place in year v and hence is the present gro#s capital stock of
vintage v, and L(v) is the amount of homogeneous labor applied to this
vintage; Total Ouéput is the sum of the output on all vintages. 1If thé
vintage production function has constant returns to scale, as it is as-
sumed to have throughout this paper, its dualifelation is Samuelson's
factor price function (10) giving the rent c(v)von machines of vintage v as

a function of the wage:

(1) c(v) = g(v,w)



A central problem in vintage models of production concerns the
existence of an aggregate capital stock, usually called J, which is one
of the arguments of an aggregate production function of the form:

’ t
F(J,L) =maxJ £0v,I(v),LV))dv

-

where the maximum is over all labor allocations L(v) such thét.fL(v)dv =L,
Recently a number of authors (see (3) for a bibliography) have shown that
a necéssary and sufficient condition for the existence of J is that the

vintage production function have the very special form:

2) f(§sI(V3,L(V)) = F(Z(V)I(V),i(V)) .

Yet another proof of the basic theorem can be obtained very easily by
reference to the dual; the proof is sketched here because it helps later

to illustrate the close_relation between the cﬁpital aggregation problem
and the problems which arisé in calculating the prices associated with used
machines:

Bi Leontief's theorem (8,9), the existence of a capital aggre-
gaté is equivalent to the condition that the ratio of the marginal physical
products of machines of different Qintages be independent of the amount of
labor., In termé of prices, this means that the ratio of the rents for
machines of different viptages should be independent of the wage, or that

the factor price function should have the form

c(v) = z(v)G(w) .



But if this is true, the proauction function has the form
£(v,I(v),L(V)) = F(z(MI(WV),L(V)) ,

and vice _v_e_g_s'ﬁ.z

This condition for aggregation is usually described in terms of
technical change -- in order to form the aggregate J,Aembodied technical
change must be capital-augmenting. More generaily, the vintage coeffi-
cient z(v) measures all differences in efficiency which distinguish
machines of different vintages -- that is, both technical change and
physical detefioration enter z(v). Only if condition (2) holds is it pos-
sible to separate the effects of fechnical change and deterioration and to
speak unambiguously of uults of capital services and the relative effi-
clency of old machines,

The basic theorem on capital aggregates makes no restriction on the
behavior of the function z(v) over calendar time. From one year to the

next, the pattern of efficiency as a function of vintage may change arbi-

trarily., That is, the efficiency function can be written more generally as
z(t,v); this gives the relative efficiency at time t éf one machine of
vintage v. In most cases, no distinction between technical change and
deterioration can be made in this formulation, because z cﬁanges completeiy
with time and no regular behavior which depends only on time or only on
age can be found. This formulation is so general as to be almost vacuous --

some restriction on the form of z(t,v) 1s needed.

2The last step follows by defining a new measure of capital I*(v) = z(Vv)I(Vv)
with corresponding rent c*(v) = c¢(v)/z(v). Then the new factor price func-
tion, G(w), is independent of the vintage, v, and so is its uniquely cor-
responding production function F(I*,L), which can be written in terms of

I as F(2(V)I(Vv),L(V)).



The simplest restriction which can be made is that z(t,v) is
stationary over time -- that is, that the efficiency of machines of a
particﬁlar age is independent of calendar time. This is the case of no

technical change; z has the form

z(t,v) = §(t-v) .

EE(tj gives the marginal physical produét of a machine aged T years as a
fraction of the marginal physical product of a new machine, and thus also

gives the corresponding ratio of the rents:

c(t,v

SR - B

Under the assumption ol rno technical change, the formula for J is
t
3= f Deviwmar ;
-0
this is a conventional formula for calculating capital stock.

Although § is often called the depreciation function, in this paper
it will be called the deterioration function iﬁ order to avoid confusion
with the definition of dépreciatiOn in terms of the price of used machines
which is used in the next section,

A more interesting :estriction of the form of z(t,v) can be obtained
by-relaxing éhe assumption of stationarity to the extent of allowing changes
‘over time and vintage which are independent of deterioration. Then z(t,v)

can be written as the product of a function of time, d(t), 2 function of

vintage, b(v), and the deterioration function iﬁ(t-v):

(3) z{t,v) = A(t)bW) S (t-v) .



-

Both of these new functions have familiar interpretations: d(t) is the
index of disembodiéd technical change and b(v) 1is the index of embodied
technical change, The assumption of independence expressed iﬂ the factori-
zation (3) means that neithef kind of technical change affects the pattern
of deterioration as a machine ages. With this parametrization of technical
change, the ratio of the rent on machines of vintage § at time t to the

rent on new machines at a base date to is

c(t,v |
% ci(-t-:;%-o—)- = d(E)b(VIE-v) .

The corresponding formula for J is-
t

(55 J(t) = d(t)j §(e-v)b(WIIMav
aQ

Examination of the parametrization of technical change, (3), reveals
that it has a mathematical property of considerable economic importance -- -
more than one triplet of functions d(t), b(v), and §(t-v) can have the same
product z(t,v). This is important because it is z(t,v) which is the basic
description of reality; two triplets of technical change and detérioration
functions cannot be distinguished by observation or experiment unless they
have different products. The parameters of technical change and deterio-
ration which are natural and customary are uﬁfortunately not unique. In
short, a problem of ident;ficatian arises in this model of technical change.

It is easy to characterize the class of tripléts of functions of
this form which have the samé product. Suppose d(t), b(v), and}i(t-v)
form one triplet. Since all of these functions are required to be positive,

any other triplet with the same product can be written eal(t)d(t), eaa(v)b(v)



a, (t-v) »
and e 3 I(t-v) with the condition that a;(t) + az(v) + a3(t-v) = 0,

.

Then for any period of time of length T,
a; (t+T) - a,(t) = -a3(£-v4T) + az(t-v) .

Reducing v by the same T, we have
az(v) - ag(v-T) = a3(t-v+T) - a3(t-v) .

Thus,

(6) 81(HHT) - ay(®) = ~(82(¥) - 220v-D)) ,

or the difference in a,(t) is independent of t and the difference in ap(v)

1s independent of v. The only functions with this property are linear:

al(t) = dl + ﬁlt and aa(V) = drg"l' pgv .

¢, and ol may be set equal to zero without loss of generality -- this
amounts to setting all equivalent indekes equal at time zero, Substitution
in (6) shows that ﬂl = -f= . PBecan be any number, positive or

negative, Finally.
a,(t-v) = ~(a(t) + a2(V))
= - B(t-v) .
Thus all members of a class of equivalent triplets have the form eﬁtd(t) ,
e'ﬁvb(v) and e'p<t'v)§(t-v), where d(t), b(v) and §(t-v) forﬁx an arbitrary
m.ember of the class. This means that given rates of embodied. and disem-
bodied technical change and a given deterioration function cannot be dis-

tinguished from a lower rate of embodied technical change, a higher rate

_of disembodied change, and a higher rate of deterioration.



In order to escape this ambiguity, some normalization rulé must fe
adopted so tﬁat each z(t,v) can be represented by at most one triplet
d(t), b(v) and §(t-v). With such a rule, the notions of embodied technical
change, disembodied technical change, and deterioration each have a well-
defined meaning and each can be measured from suitable observations. Without
it, serious confusion can develop in both theoretical and empirical work.

, A normalization rule may be applied to any one of the three functions
d(t), b(v) and!ﬁgt-v). For a period of observation t, £t gftl, con-
venient rules are provided by setting net technical change of one kind
_equal to zero over the period -- either b(t;) = b(to) or d(ty) = d(to).

- Alternatively, it is possible to require that no net deterioration take
place over the first ‘t’o years of the life oi a machine: I(‘t;) = I(O) =1,
although this is a less natural normalization, Each of these rules makes
it clear that disembodied technical change, embodied technical change, and
deterioration are three distinct phendmena only to the extent that they all
are different from exponential functions. For example, in his well-known
applications of the embodied technical change model (11 and 12), Solow
assumes Z |

d(t) =1

b(v) = ebv

I(t-v) = e~ St

This.corresponds to the normalization rule requiring that no disembodied
change take place over the period. The alternative form of the model for

no embodied change is



d(t) = et

b(v) =1
U(tv) = e (FHDI(ED)

Curiously enough, all of the empirical work in Solow's papers could have
been carried out without any reference to embodied technical change.

This is a consequence of his choice of functional forms for gechnical
change and deterioration -- it is incorrect to conclude that embodied and
disembodied tgchnical change can never be distinguished. Only the expo-

nential parts of these functions cannot be distinguished.

2, The price oi wallhires and the price of machines' services

The goal of this section is to derive an expression for the price
of a used machine, p(T,t), as a function of the age of the machine-and
calendar time. From this, the rent will be calculated by applying the
equation of yield. TheAanaiysis is carried out first for the case of no
technical change and then is generalized to.take account of téchnical
change.

Suppose that an interest rate r(t) prevails, so receipts in year u

are discounted to year t by the ratio

u
: ﬂj r(s)ds
e-R(t,u) -e t

Now let co(t) be the rent on a new machine of vintage t at time t. 1In

the absence of technical change, suppose that

e(t,v) = §(t-v)co(t) .
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From the proof of the basic theorem on capital aggregates, 6ne can see
that this will hold if and only if the conditions for forming a capital
aggregaée hold. fhis assumption results in a crucial simplification of the
theory of the determination of the-price p(Y,t). It is important to
emphasize that the assumption that there is a general rent for capital,
independent of vintage, is exactly as restrictive as the assumption that
there is an aggregate capital stock, |
The price of machines, p(?,t), is subject to the boundary condi-

tion that.the price of machines of age zero be equal to the exogenously
determined supply price: p{0,t) = po(t) . 7This assumption is extremely
imrortant in the derivation of the price function p(Y,t) ~-- its conseyucaces
will be discussed later. It is worth pointing out that the fact that the
rent for an old machine has a fixed relation to the rent for a new one
does not imply that the price of an old machine has a fixed relation to the
price of a new one.

The fundamental behavioral assumption which determines the price of
used machines is that firms buy and sell machines (invest and disinvest)
80 as to maximize the present value of the firm., From this assumption
Jorgenson (6) and Arrow (1) have derived a theory of optimal 1nvestﬁ§nt
by applying the calculus of variations. The rent appears as a byproduct
dual variable in their formulation; the price function could be deduced from
the rent, but this has never been done except'iﬁ the very simple case of

exponential deterioration,



11

The dual of the assumption of maximization of present value can
be expressed in the form of the following fundamental equation governing

the price and rent:

| A i
Q) p(7,0) = [ eREFe (n)Ber +u)du
o .
+ e R(EED 147 t4m) ,

for all t, all T’i 0, and al1 T 2 o0,

In words, the nvice at time t of a machiﬁe aged T years is equal to the
present value of the rent it will earn over the pe.lc’ Fvom t to t+T

plus the discounted resale value at the end of the period. This form of
the fundamental equation is essentially the same as the one proposed by
Hotelling (5) except that resale is allowed at any time and machines are

- assumed to have no scrap value, Hotelling differentiated an equation like
(7) to obtain an expression for co(t) in terms of p and its derivatives.
In the present case, we can differentiate with respect to T to obtain

0 = e'R(t’t”T)co(:+r)§(-z +T)

=R(t,t+T)

- r(t+Te p(’F+T,t+T)

+ e-R(t,t+T)(BT+ g%) .

Without loss of generality, we set T = 0, or

Q/

(8) WDy = r(op(T,) - -8 .
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This is the well-known equatisn of yield for the case of physical capital --
the rent for a machine aged 7 yearé is equal to the interest cost
r(t)p(7T,t) plus depreciation, - %%_, less capital gains, g% .« For new

machines, substitute the boundary condition, so that

©) eo(®) = T(B)p (t) - L L Fe®

Unfortunately the depreciation term - g% in (9) involves the yet-unde-~

T=o0
termined function p(T ,t), so this approach is not directly useful in

finding explicit formulas for p(T ,t) or co(t).
In fact, in order to find such formulas, it is necessary to make
an additional assumption about the behavior of the price:
(10) in e REED 7 vimy =0
T =
That is, the present value of the future price must tend to zero as the
future res=ale date tends to infinity. This assumption rules out speculation

in old machines.3 Under this assumption the possibility of resale can be

ignored by taking (7) to the limit as T—d oo:

. o
an p(T.t) = | e R(EstH)

co(t+u)§('c 4u)du .
[}

In order to solve for p(T,t) as a function of known variables,

first define the mortality function for machines:

(12) #(T) = - a-‘f-i-i(’t) ;

3Th£s condition arises as the transversality condition in the corresponding
optimal investment problem, For a discussion of the circumstances under -
which it holds in a competitive economy, see (4).
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¢(7) is the rate at which the machine is wearing away at age T .

Second define the replacement density function for used mac:hines:4
;

(13) Y(T,s = ;’20 v, (T,8)

where

VO( T,S) = $(s+ 1)

: s ’
and vj('I,’,s) = ‘l vj_l(’[,z)ﬁ(s-z)dz .

¥ (T,s) is the rate at which new machines must be bought to maintain a
stock equivalent to one machine which wos ~2~2 T years when it was bought
s y.ars ago.

Now by substituting the boundary condition in (11), we have

(14) P () = J e REE D (e Fluyan
o

By multiplying the two sides of (14) by Y (T ,s), taking the present value
of both sides and then adding (11), we obtain the following interesting

alternative form of the fundamental equation:

' = _R(t,t+s)
(15) p(T,0) + J e PO g ap (tisyds
. o

o .
=T f e'R(t’tw)co(tﬂ)du .
b .

(See the appendix for the details of this étep.)

4The importance of thz replacement demsity functicn in this application
=P

was suggested by Arrow's paper, (1).
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That is, the cost c;of a machiue today plus the present vaiue of the cost of
maintaining a stock equivalent fo t':hat machine forever is equal to the
present value of the rent from a stock equivalent to that machine, Their
. common value is the market value of a contract to provide §("c) units of
machine services forever. |

Substituting the boundary condition in (15), we find

(16) P, (t) + J c:.R(t’t+s)Y(O,s)po(t+s)ds |
(o]

= fme-R(F’tw)co(t+u)du .
o B

By multiplying (16) by ﬁ( T) and subtracting it from (15), we obtain the
solution
: ' © _R(t,t+s ;
an pCTL,8) = 8(TIp (t) - J eFET 1y (g 0) Fer) ¢ 0,5) Ip (t4s
o
The solution shows that the price of a used machine is the fraction of the .
services of a new machine which the old one provides times the price of a

new machine less an adjustment for the extent to which buying a used machine

rather than part of a new machine will require more replacement expenditures
in the future., It is possible to show that the second term is identically
zero if and only if the deterioration functioﬁ_ s expomential: (D = 8T .
Only in this special case is the price of machines today independent of the

future values of the interest rate and the price of new machines.
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By differentiating (17) with respect to T and integrating by

Vparts, we obtain the following formuia for depreciation:

1
'

(18) - -g-% = _o[ e R(EEHS) 0 (1 ,6) [x(t4s)p (t+s) - p (t+s)]ds .

Similarly, capital gains are given by

an &= PR - 2O BDR® - #(T.0)

+ fe‘R(t’”s)[\k(-;,s)-§(‘t‘)Y(O,S)][r(t+5)po(t+8) - po(t+s)1ds .
o

From (8), rent is given by

eot) = (T, - & - 8.

Substituting (18) and (19) and simplifying, we have

(20) e (t) = r(t)p () + J R g (0,5) [r(t4s)p (t45) - p(t+s)]ds
o

- By

co(t) is independent of T , as required. By comparing (29) to (9), we can
interpret the terms; the first is interest cost on new machines, the second
is depreciation on new machines, and the third is capital gains on new
machines,

Introducing technical change complicates the analysis only slightly.
A machine aged T ye2ars 1s equivalent to EK’L)ES%%é%l-new machihas at timg t.

The fundamental equation governing the market is
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m- '
-R(t,t+
Q) p(T.0) = f eR(ET (c+u>§(~:+u>;§;;i’d :
o

From this equation, the ambiguity in the parametrization of technical change
may be demonstrated again, although formally speaking this'is redundant.
More than one pair of functions §(1§) and b(t) lead to the same value

for :_6(T+u)§£(%;§)-)- . By very much the same argument as in section 2, the

ambiguity can be seen to take the form of an exponential function:

e r§("5) and e th(t) cannot be distinguished from B(T) and b(L).

Equation (21) can be written as

p(T,t) R(t,t+u) Solt™™
b(t-T) “F b<t+u) §(T+“)d“ ’

[}

This puts it in exactly the form of equation (11); the solution is obtained

by substituting for the appropriate variables in (17) and rearranging:

(22) P(T.0) = FDEEE (0

(<]

JT RO [y (4,0 - B P (0,9 128D (rrayas
Similarly, the rent is

(23) e (t) = x(t)p (t) + po(t)-}%

(<o)
N J e-n(t,:+s)'~vco,s)b—‘2{%) [r(t+s)p (t+s) -p (t+s) + ‘gi(%t-gp (t+s)ds

- p(t) . :
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The term po(t)g%é%-which is added to the depreciation component of the rent

may be interpreted as the cost of obsoiescence, but because of the identi-
fication problem, %%%% is known only down to the arbitrary additive con;
stant /9. That is, for exactly the same reason that embodied technical
change and deterioration cannot be distinguished unambiguously, the part of
the cost of machines' services associated with aging cannot be separated
unambiguously into depreciation and obsolescen;e. Thus, businessmen are
correct in entering depreciation plus obsolescence in their income state-
ments, without attempting to separate the two,

Some comment on the boundary condition equating the supply price
of machines and the nrice of machines of age zero is now in order. This
boundary condition ensures that the prices and rent for machines are
independent of the circumstances in which they are used in production --
the markets for machines and machinesﬂ services are driven by the supply
price and the interest rate. This assumption corresponds to the assumption
of no negative gross investment which Arr;w requires in hig treatment of
the optimal investment problem, On the other hand, if no new machines are
gold during an interval of time, as would occur if the supply price were
much higher than usual during the interval, the boundary condition does not
hold and the markets work in reverse - machines are in inelastic supply
and their rent is determined by the demand for the output pfoduced with t.hem.5
This point ﬁas considerable importance in eypiripal work on investment; it
suggests that the rent should be calculated from data from markets for used

machines, rather than from the prices quoted by the sellers of new machines.

5InAa more recent paper, (2), Arrow presents an algorithm for deternining
exactly when the boundary condition does not hold.
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3. Measuring technical change and deterioration

Some of the critics of the theory of embodied technical change
(notab%y Jorgenson (7)) have argue& that the théory ha; no operational
contené because technical change cannot be measured from the data usually
available to econometricians, or because the hypotheses of the theory are
irrefutable with the data available. This section will show that if data
on the prices of used machines and the interest rate are available, then
the index of embodied technical change and the deterioration}function can
in fact be calculated from these data. Further, with sufficient data,
they can be calculated in more than one way; if the results disagree, at
least one of the hypotheses of the theory is refuted -- technical chanee
is not capital augmenting or is not indepenaent of deterioration, the
market is not competitive, or foresight is not perfect. 1In other words,
calculation of the index of technical change and the deterioration function
does not always exhaust the degrees of freedom of the data, so the calcula-
tion can provide a test of the hypotheses underlying the theory. These

results are stated formally in:

Identification theorem I:

Given any price function p(‘T,t) and the interest rate r(t)
for a period of time O < t £ t and a range of ages O £ '85 t, there is
at most one deterioragion function §k‘r) and one index of embodied technical
change b(t) consistent with the price function and meeting the normaliza-

tion §(0) = 1 and b(0) = b(t)) =1 .
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Rroof:

Estimates can be derived by applying the equation of yield:

rep(T, -8 -8 - 2D Fiore® .

For convenience, we define the capital loss function

.

L(T »t) =‘§%'%’E

Dividing each side by its own value with T =0, we get an
equation in relative efficiencies:

H(0p(T.6) +L(T,0  bE=T) Fogy |
r()p (6) + L(O,t) prey - & .

Call the 1nc of the left side y(7T,t) and let
b*(t) = log b(t) and $+(T) = log §(T). Then

y(T,t) = be(t-T) + P(T) = bx(t).

The proof is constructive and consists in stating a formula
which can be used to calculate a new value of b¥* and a new
value of E%, given two values of b, b(t;) and b(tz). We
obtain the formula by solving the equation of yield for two
points: |

y(Totz) = b*(ty+T) + Pr(T) - b¥(t2)

y( T, ta+ ) = b¥(ty) + Px(T) - bR(t+T)
where T'= 52551 .

The solution is

BAT) = (T 6+ D) + 3(Tata) - bR(E) + be(ta)]

(e %) = ¥(T,t2) - BH(T) + bx(t2) .
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Since no division is involved, the new values are always unique. The
process can be started by setting-tl = 0 and tp = to' After the first step,
the new values of g% are each calculated more than once from independent
data, so the hypotheses of the theory are checked at each step. Values

of §+(7T) for l’) can be calculated from another application of the

equation of yield:

TH(to-ty) = y(ta-ty,tz) - bh(ty) + b¥(tz) .

An econometric problem of equal or perhaps greater importance
is to calculate the index of technical change, the deterioration.function.
and the interest raic¢ £=~m data on prices alone. This is a difficult
undertaking, particularly since the estimation equations are intrinsically
nonlinear, Before embarking on a study of this kind, we should verify
that the problem is identified, at least in the weak sense that the esti-
mation equations are not i&entically singular for all price data. Identi-
cal singularity would arise if there were a formal difficulty in the esti-
mation problem, as there would be, for example, in eseiﬁating technical
change without introducing the appropriate normalizacion., The following
theorem states that if an estimation procedure faile, it is because of
the particular characteristics of the price data and not because of an

inherent singularity, with one important exception:

Identification theorem II:

‘Estimation of the interest rate, the index of embodied technical
change, and the deterioration function is identically singular for all
prices if and only if both technical change and deterioration are exponen-

tial functions.
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proof:

The ﬁroof consists in showing that the analogue
:for this problem of the interpolation method of the
;proof of identification theorem I is not identically
singular except in the exponential case. More
precisely, we show that the Jacobian matrix of the
set of nonlinear equations for the problem is not
identically singular,

The simplest possible interpolation method 1is to
calculate 3 values of the interest rate, 4 values of
the deterioration function, and 5 values of the index
of technical change from 12 observations on p(T,t),
starting from two known values ¢Z l.. Index, b(t,) and
b(tz). Let T, = %‘(ta"tl)s Tz = ta-ty, T3 = ’g’(tZ"tl)
and ‘[4 = 2(to-t,). Then the unknowns in the problem
are r(tp), r(ti+T1), r(ta), OC Ty 1=lie0044,

b(t;,- Ti), i=1,...,4, and b(t;+ T;). The system of

equations is given by

. t.+t
1=1,...,4, 3=1,2,3, and t,= S1322 |

Taking logs as before, we have

log [r(t,)p(0,t,) + L(0,t)] =

i 3

b(t, - T,) + BT - bt

3
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The Jacobian matrix for this system has 12 rows
correspouding to the 12 observations on p(7 ,t) and 12 columns,
one for each unknown. Each row has exactly one term of the
}form
P(Ty,t,)
T(E)P(T 1,t) F LOT HE))

P(ottj)
r(tj)P(o3tj) + L(O,tj)' ’

and two zeroes in the first three columns; all of the

elements of the last 9 columns are zeroes, +l's, or -1's,
Since the last 9 columns are known to be linearly independent
from identification theorem I, any identical linear dependence

must arise £~ m the condition:

p(T,t) - p(0,t) -k
r()p(T,t)+L(%,t)  r(t)p(0,t)+L(0,t)

for all T,t. Now consider a sequence of ¢ 's converging
to zero, From the continuity of p(¢,t) and L(T,t)
(both of which may be represented as integrals), we can
see that k = 0; substituting this value, we find that the

terms involving r(t) cancel, leaving

p( yt) _ pO,t)
@8 fey "By for sl T.t.

From equations (18) and 19),

L( T,t) = Q(T) [L(O,t) + x(t)p (t)] - r(t)p(T,t).

Substituting in (24) and cross-multiplying, we have

PCT,L(0,8) = p (E)E(T) [L(O,t)+r(t)p ()]

'Po(t)r(t)P(T 't
oY

P(T,t) = p ()P(T) .
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From the discussion following equation (17), and from equation
(22), we can see that this is true if and only if both

91y = e 8F

for some constant, § , and
b(t) =1,

Appendix

We seek to show that the fundamental equation,

an (T = f RO (B audu
[+

and its corollary,

) e - of e B¢ (e4)G(w) du

imply the alternative form,

) pet,ey + f eTETDy (0 (s =
o .

B(T) fme'R(t’t"‘“)co(Hu)du .
[o]

We begin by multiplying both sides of equation (14) by e R(EEH) . (o o)

and integrating to get
@y [ ROy (g5 (t40)ds =
o

. )
j"’e-R(t,t'l‘S) V(T ,8) j e-R(t+s’t+s-|-u)c°(t+5+u)§_(u)du ds .
o) ° ' ‘



24

Next, on the right hand side, we chahge the limit of integration and
combine the discount terms to get

i
1

- |
(A2) ' RES = f f oi_fR(t’t"“)i(u-s)Y(t,s)co(t-:-u)du ds.

o 8

Now By changing the order of integration, we obtain a new form for

equation (Al):

[5=]
(A3) / e-R(t,t+S)Y<T »8)p (t+s)ds =

o

™~ u
f e-R(t’t+u)c°(t+u) J E(u-s) Y(’t ,S)ds du .
(<]

o
Next we add equation (11) to equation (A3) to obtain

@y (Tt + f e REE) yp g)p (tes)ds =
[}

o u
f e-R(t,t'F‘U)co(t,*_u) li(v[.l.u) +J Q‘I(T,s)ﬁ(u-s)ds] du .
[+]

(o]

Now

u - u 8 ’
@) | YCT.oF-sds = § [P(T,9) - ] YT ,9b(s-2)d2] 8s
(<]

© o

this can be shown by differentiating both sides with respect to u and ob-

sefving that when u = O both sides are equal., Further,

8 . . B o .
(A6) j Y(T ,2)$(s-2)dz = J jéo Vj("C ,2)$(s-2)dz
° °

= W(7T,s) - 8(s+¥) .
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Thus,

— u .
@) f HTefwess = [ ferprds = Be) - Beg )
'O [+ )

By substituting (A7) in (A4), we obtain the desired result:

sy p(T,0) + [ eREEDp(r oyp (easyas = TD) (RO (iyau
0

[<]
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