Discussion of “Credit Crises, Precautionary Savings, and the Liquidity Trap” by Veronica Guerrieri and Guido Lorenzoni

Discussion by Bob Hall

EF&G Research Meeting
NBER Summer Institute
July 16, 2011
Bewley model

Annual discount factor: 0.92
Bewley model

Annual discount factor: 0.92

Borrowing opportunities: $10 K on credit cards, any amount on payday loans at 200 percent per year
Bewley model

Annual discount factor: 0.92

Borrowing opportunities: $10 K on credit cards, any amount on payday loans at 200 percent per year

Realistic shocks
Annual discount factor: 0.92

Borrowing opportunities: $10 K on credit cards, any amount on payday loans at 200 percent per year

Realistic shocks

No labor supply response
THE HOUSEHOLD STORY

Original distribution of liquid assets

Original consumption

Consumption with tighter credit

Liquid assets, thousands of $

Consumption, $1000s per month
THE MACRO STORY

Euler equation: \(\Delta \log c(W) = \sigma (r(W) - \rho) + g(W) \)
The macro story

Euler equation: \(\Delta \log c(W) = \sigma (r(W) - \rho) + g(W) \)

After credit tightening, \(r \) is high for low \(W \) (payday loans) and \(g(W) \) is also high, because of increased volatility of future consumption and positive third derivative of utility.
THE MACRO STORY

Euler equation: $\Delta \log c(W) = \sigma(r(W) - \rho) + g(W)$

After credit tightening, r is high for low W (payday loans) and $g(W)$ is also high, because of increased volatility of future consumption and positive third derivative of utility

In endowment economy,

$$\int c(W)[\sigma(r(W) - \rho) + g(W)]dF(W) = 0$$

so higher interest rate for low W must result in lower interest rate for high W.
The macro story

Euler equation: $\Delta \log c(W) = \sigma(r(W) - \rho) + g(W)$

After credit tightening, r is high for low W (payday loans) and $g(W)$ is also high, because of increased volatility of future consumption and positive third derivative of utility.

In endowment economy,

$\int c(W)[\sigma(r(W) - \rho) + g(W)]dF(W) = 0$

so higher interest rate for low W must result in lower interest rate for high W.

But the zero lower bound may block that lower rate.
CASH FROM HOUSEHOLDS TO FINANCIAL INSTITUTIONS
SOMETHING TO CHECK

Compare cash from low-W households in the model to these numbers.
DISTRIBUTION OF LIQUID ASSETS, SURVEY OF CONSUMER FINANCES
Distribution of liquid assets in GL model

behind the concavity of the consumption function and the convexity of the labor supply functions in Figure 1.

We are now ready to put the pieces together. Let us do a mental experiment and suppose the interest rate jumps immediately to its new steady state value at date 0. If the wealth distribution was already at the new steady state, average bond accumulation would be zero. In other words, the integral of the dashed function in the top panel weighted by the dashed density in the bottom panel is equal to zero. This implies that the integral of the dashed function weighted by the solid density is a positive number, because the dashed function is (approximately) convex and F_0 is a mean-preserving spread of F_{00}. Therefore, at the conjectured interest rate path, households want, on average, to accumulate bonds. Since the bond supply is fixed, this means that the conjectured interest rate path is not the equilibrium one, as it leads to an excess demand of bonds. To equilibrate the bonds market, we need a lower interest rate in the initial periods.

The non-convexity at very low levels of b is due to the fact that at the new steady state, the labor supply for very low levels of b is very high for the low shocks and in that region it is less elastic (given our preferences).
Explaining the tight dispersion of liquid wealth

Both this paper and my own work on SCF data informed by a household DP model seem to find that the magnitude of shocks generates more dispersion in liquid asset holdings than is found in the data
Explaining the tight dispersion of liquid wealth

Both this paper and my own work on SCF data informed by a household DP model seem to find that the magnitude of shocks generates more dispersion in liquid asset holdings than is found in the data.

One explanation: Families have access to financial buffers apart from those reported in the SCF (Blundell, Pistaferri, and Preston AER 2008).
EXPLAINING THE TIGHT DISPERSION OF LIQUID WEALTH

Both this paper and my own work on SCF data informed by a household DP model seem to find that the magnitude of shocks generates more dispersion in liquid asset holdings than is found in the data.

One explanation: Families have access to financial buffers apart from those reported in the SCF (Blundell, Pistaferri, and Preston AER 2008).

Another possibility: “Neither a borrower nor a lender be.” (Hamlet, Act 1, Scene 3). Families follow the advice of Polonius more enthusiastically than our DP models recommend.
Heterogeneity

The paper makes progress in state heterogeneity: liquid wealth holdings, personal productivity, and durable holdings
Heterogeneity

The paper makes progress in state heterogeneity: liquid wealth holdings, personal productivity, and durable holdings.

The SCF makes it pretty clear that we should allow for heterogeneity in permanent characteristics as well: productivity and time preference.
Traditional simplification of the ideas of the paper

Some households have no meaningful financial buffer and simply consume their incomes—they are on the steep part of the $c(W)$ policy function
Some households have no meaningful financial buffer and simply consume their incomes—they are on the steep part of the $c(W)$ policy function.

The rest are well buffered and follow the life-cycle-permanent income principle—they are on the flat part of the policy function.
Potential dichotomy from the SCF

Define a family as liquidity-constrained if its holdings of net liquid assets are less than two months of income.
Potential dichotomy from the SCF

Define a family as liquidity-constrained if its holdings of net liquid assets are less than two months of income.

Net liquid assets are the difference between holdings in savings accounts and the like and borrowing from credit cards and other unsecured forms.
Define a family as liquidity-constrained if its holdings of net liquid assets are less than two months of income.

Net liquid assets are the difference between holdings in savings accounts and the like and borrowing from credit cards and other unsecured forms.

In the 2007 Survey of Consumer Finances, households illiquid by this standard earned 58 percent of all income.
Potential dichotomy from the SCF

Define a family as liquidity-constrained if its holdings of net liquid assets are less than two months of income.

Net liquid assets are the difference between holdings in savings accounts and the like and borrowing from credit cards and other unsecured forms.

In the 2007 Survey of Consumer Finances, households illiquid by this standard earned 58 percent of all income.

The fraction of households that were constrained—74 percent—is even higher because lower-income households are more likely to be constrained.
ZLB issues

A non-rigorous but almost completely reliable principle: When you add an equation to a model (such as $r_N = 0$), you need to remove an equation to retain equality of equations and variables.
A non-rigorous but almost completely reliable principle: When you add an equation to a model (such as $r_N = 0$), you need to remove an equation to retain equality of equations and variables.

In this model, the equation that is dropped, in effect, is on page 19:

$$w_t = \frac{\epsilon - 1}{\epsilon},$$

the labor “wedge”.
ZLB issues

A non-rigorous but almost completely reliable principle: When you add an equation to a model (such as $r_N = 0$), you need to remove an equation to retain equality of equations and variables.

In this model, the equation that is dropped, in effect, is on page 19:

$$w_t = \frac{\epsilon - 1}{\epsilon},$$

the labor “wedge”.

Instead, the “wedge adjusts endogenously so that a reduction in goods demand is translated into a reduction in labor inputs.” The wedge becomes a free variable only under the extreme assumption of fixed prices.
ZLB issues

A non-rigorous but almost completely reliable principle: When you add an equation to a model (such as $r_N = 0$), you need to remove an equation to retain equality of equations and variables.

In this model, the equation that is dropped, in effect, is on page 19:

$$w_t = \frac{\epsilon - 1}{\epsilon},$$

the labor “wedge”.

Instead, the “wedge adjusts endogenously so that a reduction in goods demand is translated into a reduction in labor inputs.” The wedge becomes a free variable only under the extreme assumption of fixed prices.
The standard New Keynesian model does not make the wedge a free variable—it relates the wedge to the rate of inflation.
The standard New Keynesian model does not make the wedge a free variable—it relates the wedge to the rate of inflation. The free variable is the rate of inflation.
The standard New Keynesian model does not make the wedge a free variable—it relates the wedge to the rate of inflation. The free variable is the rate of inflation. So the model would be overdetermined if the rate of inflation is also specified.
The standard New Keynesian model does not make the wedge a free variable—it relates the wedge to the rate of inflation. The free variable is the rate of inflation. So the model would be overdetermined if the rate of inflation is also specified. This is the clash mentioned in footnote 7.