
Santucci’s CME 305 Lecture
Notes1

Lecture 1: Global Min Cut
Intro Graphs are simply a way to reason about things connecting other

things.
G(V,E), E ⊆ V × V, n = |V |,m = |E|

Cut A non-empty set of nodes (a subset) S ⊆ V .

Cut Size The sum of the weights from S to V \S
Global Min-Cut A subset of nodes such that the cut has smallest
size.

When do min-cuts appear? Computer networks, water networks,
traffic networks.

Failed Approach What if we tried to find the min-cut through simulation
of all possible cuts? To create/realize a cut S, we could flip a coin
for each vertex for inclusion in S.

Realize that if we flip a coin for inclusion in S for each vertex, there
are 2n possible cuts we could realize. From this set we ignore the
empty set and its complement, since these do not partition the set of
vertices into two non-empty subsets.

Where does our approach fail? First, we define a

Clique: a graph with all edges present. Drawn as a hairball.

Dumb-Bell Graph: Two cliques connected by a single edge.
Observe that there are only 2 ways with the dumb-bell graph that we
can realize the global min cut. Hence

Pr(Sis the global min cut) =
2

2n − 2
.

This is exponentially small. In expectation, we need to perform our
simulation exponentially many times before we get a min-cut
realization.

What if we use an edge-contraction?

A Better Idea

Algorithm 1: Karger’s Contraction Algorithm
1 while # nodes > 2 do
2 Pick edge e uniformly at random
3 Contract e

4 end

Each contraction reduces the number of vertices by 1.

We often introduce a multi-graph in the process.

Degree The number of outgoing edges.

What’s the probability of a single run realizing a global min-cut? Fix
some global min-cut C. Assume that it has k edges crossing the cut.

Pr(failure on step 1) =
k

|E|

Handshake Lemma
∑n
i=1 deg(i) = 2|E|.

We know that k ≤ mini deg(i) =⇒ 1
2

∑n
i=1 k ≤ |E| hence

nk/2 ≤ |E|.

Hence Pr(failure on step 1) = k
|E| ≤

k
nk/2

= 2
n

.

To realize a cut, we perform the contraction operation n− 2 times.
Let A denote the event that we succeed in realizing C, a min-cut, and
let αi denote the probability that we have “success” in contraction i
(that is, we avoid contracting an edge which leaves our cut).

p = Pr(A) = Pr(α1) · Pr(α2|α1) · . . . · Pr(αn−2|αn−3),

≥
(

1−
2

n

)(
1−

2

n− 1

)
· . . . ·

(
1−

2

4

)(
1−

2

3

)
=

(
n− 2

n

)(
n− 3

n− 1

)(
n− 4

n− 2

)
. . .

(
3

5

)(
2

4

)(
1

3

)

=
2

n(n− 1)
=

(
n

2

)−1

How many times do we have to repeat our algorithm? Suppose we
repeat t times. The chance of failing to find C each time is

Pr(NOT finding C) ≤ (1− p)t ≤ e−tp,
where the last inequality simply follows from examining the function

e−x and 1− x on the interval [0, x].

Set t large enough, e.g. t = 100
(
n
2

)
= O(n2), then

Pr(NOT finding C) ≤ e−tp = 1
e100 .

There are n− 2 contractions per Karger. If we run t iterations of
Karger, where each run of Karger can take O(m) time (MST), we see

that O(t(n− 2)m) = O(n3m) since t = O(n2).

Monte Carlo and Las Vegas This is an example of a Monte Carlo
algorithm. With Monte Carlo - run time deterministic but
probability of being correct is less than 1.

With Las Vegas algorithms, output always correct, but with some
small probability run-time is long.

Lecture 2: Ford-Fulkerson
Assumptions All graphs today will be directed and weighted.

s-t min-cut Suppose we want to disconnect the roadways between LA and
NY. What would be the most efficient way to “bomb” them such
that you can’t drive from LA to NY.

Directed Cut Size The # of edges which leave the subset of vertices.

We can make any un-directed graph directed by replacing each edge
with corresponding edges in each direction.

s-t flow Respecting edge capacity, route items from s to t.

(i) Directions matter (can only move in edge direction)

(ii) Flow in = Flow out (except source and target nodes)

If all outgoing edges from the source are used/saturated, there’s no
way to ship more stuff from s.

To find max-flow via Ford-Fulkerson, we find a flow which saturates
some directed cut (i.e. all edges which leave the cut are saturated),
thus certifying that what it has found is a Max-Flow.

Theorem 1. All s-t flows are less than (or equal to) all s-t directed
cut sizes.

The take-away is that every single s-t cut is an upper bound on s-t
flow.

Residual Graph Given a graph and some flow, we define fe as the flow on
an edge, ce as the capacity for an edge, and

Algorithm 2: Residual Graph
1 for each (u, v) ∈ E(G) do
2 if fe < ce then
3 Add (u, v) with capacity ce − fe // forward edge

4 end
5 if fe > 0 then
6 Add (v, u) with capacity fe // backward edge

7 end

8 end

Theorem 2. s-t paths in residual graph correspond to legal flow route
paths in G.

Algorithm 3: Ford-Fulkerson
1 fe ← 0 for all e ∈ E(G)
2 while ∃s-t path in Rf (G) do
3 Ship 1 unit of flow from s to t using path.
4 end

What’s the idea behind the proof of correctness? Ford-Fulkerson
finds a saturated cut, which is therefore an optimal max-flow.

Proof. When FF terminates, it creates some flow f∗. Let Z be the
subset of nodes reachable from s in Rf∗(G). We also consider the
nodes in the complement of Z. Examine the edges in the original
graph which correspond to this cut. Now, for all outgoing edges,
they will be saturated in the Rf∗(G). For all incoming edges, they
will have 0 flow from Z\V to Z.

From this, we know that f∗ value is equal to the cut-value of Z. We
now have an optimality certificate for f∗.

Note that since flows are bounded above by cuts, we now have an
optimality certificate for Z, i.e. Z is a min-cut.

Run-Time Suppose c is the size of the s-t min-cut. To find an s-t path in a
graph is O(m) via DFS.

O(mc) if we use any s-t path.

O(nm2) via shortest-paths and Edmunds-Karp.

O(nm) via a 2012 result.

Deterministic Min-Cut Note that we could consider all
(
n
2

)
s, t pairs and

find the max-flow for each, then taking the minimum we have found
our min-cut.

We can also realize there are n− 1 distinct values the max-flow can
take on (problem set #1).

Lecture 3: Matching, Edge-Disjoint
Paths, Probabalistic Method
Bipartite Graph A graph whose vertices are split into two sets A,B such

that all edges are between A and B and no edges are in A or B.
Bipartite graphs often make problems easier. Graphs here are
undirected, unweighted, and simple.

Matching A subset of edges m ⊆ E is a matching ⇐⇒ no two edges in m
are incident on the same vertex.

e.g. students and employers: each employer wants one employee, each
employee can work at most one job; monogamous marriage problem.

Note that it’s possible for an edge (u, v) 6∈ G; it’s also possible that
edge (u, v) ∈ G but (u, v) 6∈ H, our subgraph.

Perfect Matching Each person gets married. Note that a requirement for
this to happen is that |A| = |B|.
e.g. ICME Extend networking event.

Algorithm 4: Recipe: Max-Flow Min-Cut Probs.
1 Decide which of max or min to use.
2 Where to put source and target.
3 How to encode constraints into flows and cuts.
4 How to recover the solution.

Proposition 3. If capacities are integers, then the max-flow is integer.

Proof. Ford-Fulkerson saturates a cut. Each edge weight is an
integer, hence the sum of edge weights are integers.

Example: Maximal Matching Matching students to jobs. Each edge has
capacity 1 (from s to students, between students and jobs, and
between jobs and t). FF tells us which edges are saturated. That
gives us a cut.

Algorithm 5: Maximal Matching via Max-Flow
1 Run s-t max flow.
2 Get a legal matching.
3 Have the largest # edges selected.

Example: max-weight perfect matching.

Example: Edge Disjoint Paths A set of paths in which no edge is
repeated. Formally, a set of paths from a to b are edge disjoint ⇐⇒
they share no edges.

(Practical) Question: How many ways can we get from SF to LA if
no roads can be reused? I.e. how many edge disjoint paths are there
in a graph?

Answer: Set all capacities to 1. Find max-flow from a to b.

Proof. →) (≤) If there are k disjoint paths, then each of them may
be used to route 1 unit of flow from s to t.

←) (≥) Suppose there is a k-flow. This may be generated via FF.
Each time, we pump one unit of flow to yield an s-t path, which runs
for k iterations. Note that FF paths on the residual graph are edge
disjoint because of unit capacities; previous paths taken through RG
may be modified by future paths, but always in an edge-disjoint
manner because of (a) the fact that each edge has unit capacity and
(b) each iteration of FF strictly increases flow.

1Based on Reza Zadeh’s Winter 2016 course. Any typos are my own.

http://stanford.edu/~rezab/discrete/

To run FF on an undirected graph, for each edge we simply create
one forward directed edge (with capacity 1, if the graph was
unweighted) and one “backward” directed edge, also with capacity 1.

Probabalistic Method Consider the simplest eample. If

Pr(1 appears on a 6 sided die) =
1

6
> 0,

then there is a face of the die with a one.

Example: Cut Size Every graph has a cut of the nodes such that at least
m/2 edges appear in the cut.

Algorithm 6: Max-Cut (Random)

1 Input: A graph G(V,E) C ← {}.
2 for i = 1,2,. . . , n do
3 with probability 1/2: C ← C ∪ {vi}
4 end

Proof. Consider creating a cut C at random, by iterating over
vertices and for each, include it in the cut C with probability 1/2.
Notice that an edge is in a cut if and only if its incident vertices lie
in separate partitions of the graph. There are exactly two ways this
can happen, each with probability 1/4. Hence via this schema, each
edge is included in our graph with probability 1/2.

Let x =
∑m
i=1 1{edge i is cut}. Then,

E[x] =

m∑
i=1

E[1{edge i is cut}] =
m∑
i=1

Pr(edge i is cut) =
m∑
i=1

1

2
= m/2.

Hence the expected value of a cut is m/2.

Formally, we have found that E[cut] =
∑m
i=0 Pr(cut = i) · i = m/2.

Expectation is a weighted average of cut sizes. Hence we deduce that
our algorithm returns a cut of size at least m/2 with strictly positive
probability. If not, it would contradict the equality between E[·] and
our weighted average.

So, all probabilities for cut-values greater than m/2 cannot all be 0
simultaneously, because if they were it would contradict weighted
average equality.

Hence there exists a non-zero (strictly positive) probability which
emits a cut with value at least m/2.

Hence there exists a cut out there with size ≥ m/2. (There also
exists a cut with size ≤ m/2 using min-degree)

Ramsey Number Our class has at least 49 people. In our class, there
exists a group of 5 people such that either they all know each other
(fully connected) or they are all strangers (fully disconnected).

Proposition 4. Given r > 0. For sufficiently large n, all graphs on n
nodes contain either Kr or K̄r (a clique on r nodes, or a complement
of a clique on r nodes).

R(r) is the smallest n for which the above proposition is true.
R(3) = 6, R(4) = 18, R(5) ∈ (43, 49), R(6) ∈ (102, 165). In general,

c
√

2

e
r2
r/2 ≤ R(r) ≤ r− log r/ log log r · 22r

.

Review Global Min Cut has 1 value by definition. There are at most
(
n
2

)
possible cuts which realize this value (since Karger spits out a cut,

min-cut returned with probability
(
n
2

)−1
. If there were more than(

n
2

)
min-cuts, we would violate the union bound.

s-t Min Cut has n− 1 different values over choices of s, t. There are
an exponential number of them for fixed s, t in general (see
homework #2).

What about Max-Cuts? That’s a hard-problem.

Lecture 4: Ramsey Numbers, Trees and
MSTs
Ramsey Numbers For sufficiently large graphs on n nodes, there exists an

induced subgraph of Kr or K̄r (an independent set of size r).

2
r/2 ≤︸ ︷︷ ︸

via Prob
Method

R(r) ≤ 2
2r
.

(Upper bound is proved directly in Diestel) All graphs of size 22r

have this property. Graphs of size 2r/2 may not have this property.

Induced Subgraph An induced subgraph can be constructed by
deleting vertices (and with them all incident edges), but no more
edges. If additional edges are deleted, the subgraph is not induced

Erdos Renyi Random Graphs G(n, p): for n positive integer and
p ∈ (0, 1) is a probability. Each edge exists i.i.d. with probability p.

If p = lnn
n

, the graph is almost surely connected. This is a threshold.

Notice that

Pr(G(n, p) has a clique of size r) ≤
(
n

r

)
p

(
r
2

)
,

Pr(G(n, p) has an independent set of size r) ≤
(
n

r

)
(1− p)

(
r
2

)
.

Note that there are at most
(
n
r

)
possible cliques; for each, we require

all
(
r
2

)
edges be added with probability p.

They do overlap (i.e. not mutually exclusive), hence we apply Union
Bound:

So, if p = 1/2, then

Pr(G(n, 1/2)has either Kr or K̄r) ≤ 2

(
n

r

)(
1

2

)(r
2

)
.

If this probability is strictly less than one, then there exists graphs
which satisfy neither. The assertion is trivial when r = 1, hence
assume r ≥ 2,

Pr(A) ≤ 2

(
n

r

)(
1

2

)(r
2

)
< 2

(
nr

2r

)(
1

2

)(r
2

)
.

The strict inequality follows from the fact that r ≥ 2 and that

(
n

r

)
=

n!

r!(n− r)!
=

r terms︷ ︸︸ ︷
n(n− 1)(n− 2) . . . (n− r + 1)

r(r − 1)(r − 2) . . . (2)(1)︸ ︷︷ ︸
r terms

<
nr

2r

Let n = 2r/2. Then,

Pr(A) ≤ 2 ·
2r

2/2

2r
· 2−r(r−1)/2

= 2 · 2−r/2 < 1.

Since Pr(A) < 1, by the probabalistic method there exists a

subgraph of size 2r/2 which has neither Kr nor K̄r .

Cycle A path along edges such that the same vertex is visited twice.

A graph with no cycles is called a forest.

A connected forest is a tree.

A leaf is a node with degree 1.

Proposition 5. Every longest path in a forest must have vertices with
degree 1.

Proof. Look at one end. Assume toward contradiction it does not
have degree 1. If the node connects to any other node along the path,
we have a contradiction: no cycles. If the node connects to another
node off the path, then we have a contradiction: definition of longest
path.

Proposition 6. There are at least 2-leaves in a tree (n ≥ 2).

Proof. Start at any node. Pick an edge we haven’t seen before. At
some point, we must hit a node we can’t get past. This is a leaf of
degree 1. Repeat this process starting at this leaf to find the other
leaf.

Trees

Theorem 7. Any two of the three following statements implies the
other. This defines a Tree.

1. G connected.

2. G has no cycles.

3. G has n− 1 edges.

4. For u, v ∈ V (G), G has exactly one u, v-path.

Proof. 1: Connected, 2: acyclic, 3: n− 1 edges, 4: unique path.
(1,2 =⇒ 3) We use induction on n. Base case: n = 1. The acyclic
1-vertex graph has no edges. For n > 1, suppose the result true for
graphs with fewer than n− 1 vertices. Given any acyclic connected
graph G, we can find a leaf v where d(v) = 1. Notice that G′ = G− v
also acyclic and connected. By induction hypothesis, e(G′) = n− 2.
Since only one edge is incident to v, we have e(G) = n− 1.

(1,3 =⇒ 2) We are given a graph G which is connected with n− 1
edges. Suppose G contains at least a cycle. Delete edges from cycles
one at a time to yield G′, which is acyclic. A cut-edge is an edge
whose deletion increases the number of components. No edge of a
cycle is a cut-edge. Hence G′ connected. Now, preceding paragraph
implies e(G′) = n− 1, since it’s connected and acyclic. But we are
given e(G) = n− 1 by (3). Hence no edges were deleted. Hence
G′ = G and G is acyclic.

(2,3 =⇒ 1) Let G1, . . . , Gk be the components of G. Since every
vertex appears in one component,

∑
i n(Gi) = n. Since G has no

cycles, each component satisfies the property that (each component
is connected and each component has no cycles). Thus
e(Gi) = n(Gi)− 1, and e(G) =

∑
i e(Gi) =

∑
i [n(Gi)− 1] = n− k.

But we are given e(G) = n− 1. So k = 1. Hence G connected.

(1,2 =⇒ 4) Since G connected, each pair of vertices is connected
by a path. Suppose a pair connected by more than one. We choose
the shortest (total length) pair P,Q of distinct paths with the same
endpoints. By this extremal choice, no internal vertex of P or Q can
belong to the other path. Hence P ∪Q is a cycle, which contradicts
(1,2).

(4 =⇒ 1,2) If there is exactly one u, v-path for every u, v ∈ V (G),
then G connected. Assume toward contradiction G has a cycle, C.
Then G has two u, v-paths for u, v ∈ V (C), which is a contradiction.
Hence G acyclic.

Spanning Trees A spanning tree of G is a subgraph of G that is a tree and
has all nodes. The weight of a tree is the sum of the edges in the tree.

The Minimum Spanning Tree problem is to find the spanning tree of
G with minimum weight. “The backbone of the graph”.

Theorem 8 (Cut Property). The smallest edge leaving any cut must
be in all Minimum Spanning Trees (assuming all edges have
unique/distinct weights).

Proof. Take any cut S (of the 2n possible), and any minimal
spanning tree, T . Since T connected, it must contain one of the
edges of this cut.

Assume toward contradiction that an edge e is lowest weight but
e 6∈ T . Consider the u, v-path from u ∈ S to v ∈ V \S. At some
point, we must use an edge, call it t in order to “get across” the cut.
Suppose we remove t in favor of e. Call this tree T ′ = T ∪ {e}\{t}.
T ′ is another spanning tree. But then the weight of T ′ is less than
the weight of T , contradicting that T is a minimal spanning tree.

Kruskal’s Algorithm Order the weights from smallest to largest,
e1, . . . , em. While not all n nodes are in the tree, if adding the edge
ej does not introduce a cycle, add it.

Algorithm 7: Kruskal’s Algorithm
1 Order weights in increasing order.
2 T ← {}.
3 for e ∈ e1 ≤ e2 ≤ . . . ≤ em do
4 if T ∪ {e} does not create a cycle then
5 T ← T ∪ {e}.
6 end

7 end
8 Return T .

We run Kruskal, and get a result T . Each edge we add, we invoke
our theorem to get a certificate saying it must be the case that . . .

Consider when we added edge (u, v) = e ∈ E. Consider state F ,
when we’re in a forest, of Kruskal where e was added.

Let set S denote the set of nodes reachable from u ∈ F . Note that
v 6∈ S since if it were we would be introducing a cycle. Note that S
forms a tree by construction.

Adding any (or all) of these edges does not create a cycle. Since we
are considering them for the first time, they have the lowest weight.
Hence e is the first edge from S that is being considered for
inclusion. Hence e is the lowest weight candidate edge. Hence e ∈ T .

Removing Unique Weights Assumption To remove the assumption that
edge weights must be unique, we may perturb each weight by a small
amount. This leaves the MST value almost unchanged, but
effectively breaks ties.

Lecture 5: Cycles, Circuits, Commute
Times
Hamiltonian Cycle A simple cycle (i.e. no node is repeated, starts and

ends at same node) which visits all nodes exactly once. NP Complete
problem. Not all graphs have Hamiltonian cycle; e.g. trees.

Theorem 9. If all degrees of the graph at least n/2, there exists a
Hamiltonian Cycle.

For a proof, see problem set #1. The idea is to start with a longest
path of length k, show the neighbors of endpoints must lie in path,
and that there then exists a path which traverses all nodes.

One consequence of this is that there exists a Perfect Matching. To
see this, we simply walk along the Hamiltonian Cycle and alternate
labeling vertices “red” and “blue”. We ignore the last edge. Hence
we get a perfect matching.

Eularian Circuit A cycle which visits all edges exactly once (not simple,
nodes can be visited more than once). In polynomial time, we can
determine whether a graph has an Eularian Circuit and in addition
find one in particular.

Theorem 10. A connected graph has a Eularian Circuit ⇐⇒ all
degrees even.

Proof. →) Suppose there exists a node with odd degree. An
Eularian Circuit requires that we use each node exactly once. But we
can’t do this without re-using edges, since each time we visit a node
we also must be able to leave it. Hence we require the neighborhood
size of each node to be even.

←) Suppose we have all even degrees. We greedily start using edges
from the graph. We may realize a cycle. The remaining nodes not
yet visited all have even degree. Since G connected, there exists an
untaken edge which connects the first cycle to the rest of the graph
which has not yet been visited. Start with this edge, generate
another cycle. We repeat, always looking for edges in an ever
expanding Eularian Circuit which lead to untraversed edges. We
continue to expand until all nodes have been visited / all cycles
stitched together.

We know there exists a cycle since it’s connected and for each node
you visit, it has another unused outgoing edge.

Random Walk We use the uniform random walk (a Drunken Traveler): at
each node, choose an outgoing edge uniformly at random.

Hitting Time from vi to vj : the time it takes to arrive at node vj for
the first time, starting from node vi.

hij = E[time it takes RW to traverse from i to j] 6= hji.

Commute Time cij = hij + hji = cji.

Cover Time of G from node u,

Cu(G) = E[# steps to visit all nodes in G starting from u].

We define the cover time for a graph to be

C(G) = max
u

Cu(G).

Cover Time of Complete Graph At first step, we see a new node with
probability 1. At second step, there are n− 2 nodes yet visited. We
realize we have a sum of geometric Random Variables (how many
times must we flip before getting heads)

A = Geom

(
n− 1

n− 1

)
+Geom

(
n− 2

n− 1

)
+Geom

(
n− 3

n− 1

)
+. . .+Geom

(
1

n− 1

)
.

Note that we use (n− 1) in the denominator because there are no
self-loops in the graph G, hence there are only n− 1 possible options
at each drunken step. Then,

E[A] =

n−1∑
i=1

E

[
Geom

(
n− i
n− 1

)]
=

n−1∑
i=1

n− 1

n− i
= (n− 1)

n−1∑
i=1

1

n− i

= (n− 1)

n−1∑
i=1

1

i
= (n− 1)Hn−1 = (n− 1)Θ(logn) = Θ(n logn).

Effective Resistances
Effective Resistances What about general graphs. Can we get decent

bounds on them? Yes! a resistive electrical network is an undirected
graph; each edge has associated with it a positive real branch
resistance (for us, this value is always 1, since we use 1 ohm
resistors?).

If a current of one amp were injected into node b and removed from
node c, using Kirchoff’s Law and Ohm’s Law yields the following:
half an amp flows along branch bc, and the other half through branch
ba and onto ac. The voltage difference between c and b is one volt,
while the voltage difference between c and a (and between a and b) is
half a volt.

We look at n,m and the effective resistance of the graph. (Formally,
the effective resistance between two nodes u and v is the voltage
difference between u and v when one ampere is injected into u and
removed from v.) In our figure, the effective resistance between b and
c is 1, whereas the branch resistance is 2.

Calculating Effective Resistance between two nodes
Series Rule: Consider a series circuit, e.g. a path of 5 resistors, the
resistance is 5. In general, the Series Rule suggests the resistance
between two nodes is the path length between them.

Parallel Circuits: We can also have a parallel circuit which has
multiple paths from a to b. Let Pab denote the set of paths from
node a to node b. Then,

Rab =
1∑# ab paths

i=1 1/length of path
.

Shorting and Cutting
When we Short two nodes together, electrical resistance can’t
increase. Hence we realize a lower bound on effective resistance this
way.

When we Cut an edge, i.e. take a 1-ohm resistor and replace it with
an infinite capacity resistor, electrical resistances can’t decrease.
Hence we realize a upper bound.

(If we add an edge we realize a lower bound.)

Bounding Effective Resistances If there is an (a, b) edge then Rab ≤ 1.

Notice that Rab can be large if a, b not directly connected.

The effective resistance between a and b is at most the length of the
shortest path between them in G (bound is tight; chain graph).

Theorem 11. For any two vertices u and v in G, the commute
time Cuv = hij + hji = 2mRuv .

Proof. We are given an undirected simple graph (unweighted). We
turn each node into a 1 ohm resistor.

For a vertex x ∈ G, let Γ(x) denote the set of vertices in V adjacent
to x, and let d(x) denote its degree, |Γ(x)|.
We create Circuit 1. Let φuv denote the voltage at u in N (G) with
respect to v, if d(x) amps of current are injected into each node
x ∈ V , and 2m amps are removed from node v (fixed node v). We
first prove that for all u ∈ V ,

huv = φuv.

Using Kirchoff’s Law (current in = current out) and Ohm’s Law
(v = ir), we obtain that for all u ∈ V \{v}, and the fact that each
edge has 1 ohm resistance (so r = 1 disappears as a coefficient),

d(u)︸ ︷︷ ︸
current in

=
∑

w∈Γ(u)

(φuv − φwv)

︸ ︷︷ ︸
current out

(1)

= d(u)φuv −
∑

w∈Γ(u)

φwv

Hence we may rearrange to see that

φuv =
∑

w∈Γ(u)

1

d(u)
[1 + φwv]

where we note that φvv = 0 using Kirchoff’s Law.

By definition of expectation, for all u ∈ V \{v},

huv =
∑

w∈Γ(u)

1

d(u)
(1 + hwv) , (2)

where we note that hvv = 0.

Hence we have that huv = φuv .

Circuit 2. Realize that hvu is the voltage φvu at v in N (G)
measured with respect to u, when currents are injected into all nodes
and removed from u. To see this, first extract d(x) amps from all
nodes, then inject 2m amps at node u. Then we see that

φ
circuit 2
uv = hvu.

Changing signs, φvu is now the voltage at u relative to v when
current is injected at u, and removed from all other nodes.

Since resistive networs are linear, we can determine Cuv by
super-imposing (being careful with the sign) the networks on which
φuv and φvu are measured.

Let C1 and C2 denote our circuit 1 and circuit 2 respectively. Then,

φ
C1+C2
uv = huv + hvu = cuv.

Hence Cuv being the voltage between u and v when∑
w∈V d(w) = 2m amps are injected into u and removed from v,

which yields the theorem by Ohm’s Law since currents at all nodes
except u and v cancel.

Notice that Cab = 2(n− 1) · 3 since the tree
has n− 1 edges and Rab = 3.

Proposition 12. In any n vertex graph, and for all vertices
u, v,

Cuv < n
3
.

Proof. Notice that Ruv is at most the length of the shortest path
between them in G. There are only n nodes in the graph. Hence the
longest path starting at u ending at v can only visit n− 2 other
nodes before arriving at v (otherwise we visit a node more than once,
and it’s no longer a shortest path). Hence the shortest uv path is at
most n− 1. Hence in any n-vertex graph,
Cuv = 2mRuv ≤ 2m(n− 1) = O(n3).

So regardless of where we start, commute time is bounded above by
2m(n− 1) = O(n3). For a tree, the commute time is O(n2) since
m = n− 1.

Notice that O(n3) is a tight bound. Consider a lollipop graph as an
example. We have a clique of size n/2 and a chain of size n/2. We
prove this cover time in the next lecture.

Cover Times We consider more scenarios.

Corollary 13. If two nodes u, v that are directly connected, then

Cuv ≤ 2m.

Proof. Since they are directly connected, there is at least one edge
from u to v with resistance 1. Hence Ruv ≤ 1. Hence Cuv ≤ 2m.

Can we use commute times to upper bound cover times? Notice that
Rij can be large if i, j not directly connected.

Theorem 14. In any n-vertex graph, C(G) ≤ 2m(n− 1).

http://www.cs.berkeley.edu/~sinclair/cs271/n23.pdf

Proof. Start with any connected graph G. It has a spanning tree, by
definition of being connected. By previous theorem, for any two
adjacent nodes, u, v, Cuv ≤ 2m. Notice that if we use post-order
traversal to visit each node in our tree, the expected time it takes to
do this is at least as long as the expected time it takes to visit each
node in the tree (not necessarily in order). Hence

Cover Time(u) ≤ hab+hbc+hcd+hdc+hce+hec+. . .+hfb+hba+hai+hia.

Hence,

Cover Time(u) ≤
∑
i,j

hij .

Notice that hcd + hdc = Ccd. So replace all “pairs” with commute
times. Hence

Cover Time(u) ≤ Cab + Cbc + Ccd + . . . + Cai

≤ 2m + 2m + 2m + . . . + 2m

= (n− 1)2m

Lecture 6: Cover Times and Effective
Resistances
Background Recall the following definitions.

Asymptotic Upper Bound: we say that T (n) is O(f(n)) if there
exists constants c > 0 and n0 ≥ 0 such that for all n ≥ n0, we have
T (n) ≤ c · f(n).

Asymptotic Lower Bound: we say that T (n) is Ω(f(n)) if there exist
constants ε > 0 and n0 ≥ 0 such that for all n ≥ n0, we have
T (n) ≥ ε · f(n). Note that ε is a fixed constant, independent of n.

Asymptotically Tight Bound: If a function T (n) is both O(f(n)) and
Ω(f(n)), we say that T (n) is Θ(f(n))

And in total abuse of notation, we see that o(·) is asymptotic <, and
w(·) is asymptotically >.

What if we use our bound C(G) ≤ 2m(n− 1) for a complete graph.

We get a bound of O(n3), but we showed earlier that in fact the
cover time is Θ(n logn). This is a bad bound.

For trees, we use C(G) ≤ 2m(n− 1) = 2(n− 1)(n− 1) = O(n2),
which is correct.

Are there better upper/lower bounds?

Effective Resistance of a Graph Define, effective resistance for an entire
graph by

R(G) = max
u,v

Ruv.

It can be shown that

mR(G) ≤ C(G) ≤ e32m ln(n)R(G) + n

is within a logn factor of the exact cover time.

Show the bound is tight For example, consider a complete graph on n
vertices, Kn. Consider a subset of edges as pictured below.

We have n vertices total, so n− 2 vertices in the middle layer. There
are n− 2 paths each with resistance 2. Hence, when we consider
these paths in addition to the direct (i, j) edge, we see that our
effective resistance is bounded above by

Rij ≤
1

1 + (n− 2)(1
2

)
=

2

n
= O

(
1

n

)
.

To be clear, by examining only a subset of edges of the complete
graph, we are leaving out additional terms from the denominator
which are positive. Hence the first inequality.

Plugging this into our upper bound at the start of the section, we see
that we get a O(n logn) cover time, which is tight.

Cover Time not monotone w.r.t. edges Notice that there is no clear
relation between cover time and |E|.
Start with a chain on n/2 vertices. We know that

C(G) ≤ 2m(n/2− 1) = O(n2). We also know that mR(G) ≤ C(G).
For a chain, R(G) = (n− 1). Hence mR(G) = (n− 1)(n− 1), and we

see that the cover time of a chain is Θ(n2).

Now consider the lollipop graph with a clique of size n/2 joined to

chain of size n/2. Notice that C(G) ≤ 2m(n− 1) = O(n3). Now
consider mR(G) ≤ C(G). Notice that because Rab upper bounded
by the length of the shortest path between them, and the longest
shortest path in lollipop is n/2, then we see that

mR(G) = O(n2) · O(n) = O(n3) ≤ C(G). Hence C(G) = Ω(n3), and

C(G) = Θ(n3).

If you know max flow between u and v, you can compute
effective resistances. Using these you get a bound on cover
times.

Theorem 15. Cover time is bounded below by number of edges
times effective resistance of a graph.

mR(G) ≤ C(G).

Proof. Find i, j which maximize Rij . We know that
Cij = hij + hji = 2mRij = 2mR(G). Hence at least one of hij or
hji is at least 1/2 of 2mR(G) (if not, the sum is less than 2mR(G),
and we get a contradiction). Hence (without loss of generality) we
suppose hij ≥ mR(G) for some i, j, which we now fix. But clearly

C(G) ≥ hij for any i, j. Hence C(G) ≥ hij ≥ mR(G).

Markov Inequality To prove the upper bound, we need more machinery.
Turn to Markov’s Inequality. For all random variables X which are
non-negative,

Pr(X ≥ a) ≤
E[X]

a
.

Useful when E[X] small.

Proof. Define a new random variable 1{x ≥ a} · a (trivially,
1{x ≥ a} · a ≤ X). Note that since it’s an indicator,
E[indicator variable] = Pr(event). Hence,

E[1{x ≥ a} · a] ≤ E[X],

which implies that Pr(X ≥ a) ≤ E[X]/a.

Example Suppose Xuv is the number of steps it takes to go from node u to
node v. Clearly, E[Xuv] = huv . Then,

Pr(X ≥ 10huv) ≤
huv

10huv
=

1

10
.

Theorem 16.

C(G) ≤ e3m ln(n)R(G) + n.

Proof. Consider a random walk which is split into lnn = loge n

blocks, each of size 2e3mR(G). Each block is an epoch.

Fix some node v. What’s the probability that we don’t visit v in an
Epoch? Each epoch starts at some node u. Note that regardless of u,
the time it takes to get from u to v is bounded
huv ≤ 2mR(G) = Cuv = huv + hvu.

Let Xuv denote the number of steps from u to v.

Pr(v not visited in a particular epoch)

= Pr(Xuv ≥ 2me
3
R(G))

≤ Pr(Xuv ≥ e3huv) since huv ≤ 2mR(G).

≤
huv

e3huv
by Markov

=
1

e3

Now, since we have loge(n) epochs, for fixed v,

Pr(v not visited in any epoch) ≤
(

1

e3

)lnn

=
1

n3
.

Note that this follows from the fact that if we don’t know where we
started in an epoch, knowing whether we visited v in the current
epoch does not tell us about where we will hit v in any other epoch.
Hence we have independence of the events.

Now, we use the Union Bound to pin down
Pr(v1 not visited ∪ . . . ∪ vn not visited),

Pr(∃v not visited in any epoch) ≤
n

n3
=

1

n2
.

So, run a walk of length 2e3mR(G) loge n.

If we haven’t visited all nodes yet, run for further n3 time.

E[total cover time] ≤ 2e
3
mR(G) lnn +

1

n2
· n3︸ ︷︷ ︸

=n

.

Boolean Formula Satisfiability We have a set of variables
X1, X2, . . . , Xn which take values from the set {true, false}. Recall
the ∧,∨,¬ denote the and, or, and not operators respectively.

SAT: Given a formula on v variables, can X1, X2, . . . , Xn be
assigned such that the formula evaluates true.

In general, no poly-time solution. It’s NP-Hard. For k = 1 or k = 2
we may solve the problem in polynomial time using a Monte Carlo
algorithm.

AND – conjunction, OR – disjunction, NOT – negation. A formula is in
conjunctive normal form if it is a conjunction of clauses (or a single
clause).

Using laws of Boolean Algebra, we may transform every
propositional logic formula into an equivalent conjunctive normal
form. However, it may be exponentially longer.

2-SAT, Monte-Carlo Consider the set of formulas that are a conjunction
of unions with each clause having exactly 2-literals.

e.g. (X1 ∨X3) ∧ (X3 ∨ ¬X2) ∧ (6 X37∨ 6 X1). X1 and ¬X1 are called
literals.

Algorithm 8: 2-Sat
1 Initialize B = {X1, X2, . . . , Xn} randomly.
2 while there exists an unsatisfied clause do
3 Fix attention to an arbitrary unsatisfied clause.
4 Pick one of two literals uniformly at random.
5 Complement the value of the chosen literal.

6 end

How long does it take for us to find a satisfying assignment if one
exists?

Assume that formula is satisfiable with an assignment A. Refer to
the assigned by A to be the “correct values”. Let n be the number of
variables in an instance. The progress of this algorithm can be
represented by particle moving along the integers {0, 1, 2, . . . , n}.
The position indicates how many variables in the current solution
have the correct values. At each iteration, we complement the
current value of one of the literals of some unsatisfied clause.

Hence the particles position must change by 1 at each step. A
particle at position i, for 0 < i < n, can only move to i− 1 or i + 1.
A particle at 0 can only move to 1. The process terminates when the
particle reaches position n. It may also terminate at some other
position with a satisfying assignment other than A.

Observation In an unsatisfied clause, at least one of the two literals
has an incorrect value relative to our optimal solution A. Hence with
probability at least 1/2, we increase (by one) the number of variables
having their correct values. The motion of the particle is thus a
random walk on the line.

Notice that the cover time of this graph is O(n2), since

C(G) ≤ 2m(n− 1) = 2(n− 1)(n− 1) = O(n2). Hence the expected

time it takes to traverse from 0 to n is n2 steps. If you find yourself
running the above algorithm O(n3) times without finding a solution,
the formula is probably not satisfiable.

For example, Pr(X ≥ 3n2) ≤ 1
3n

and so with very small probability
we may be wrong if we go ahead and exit the algorithm and conclude
the problem is not satisfiable.

Maximum Satisfiability From Ch 5, MR. Suppose we simply want to
maximize the number of satisfied clauses (rather than decide whether
there exists an assignment which satisfies the problem).

Theorem 17. For any set of m clauses, there is a truth assignment
for the variables that satisfies at least m/2 of the clauses.

Proof. Each variable is set to true or false independently and with
probability 1/2. For 1 ≤ i ≤ m, let Zi = 1 if the ith clause is
satisfied and 0 otherwise. For any clause containing k literals, the

probability that it is not satisfied by this random assignment is 2−k,
since this event takes place if and only if each literal gets a specific
value, and the (distinct) literals in a clause are assigned independent
values. This implies the probability that a clause with k literals is

satisfied is 1− 2−k ≥ 1/2. Hence E[Zi] ≥ 1/2 for all i. Hence in
expectation, we satisfy

∑m
i=1 E[Zi] ≥ m/2 clauses by this random

assignment. Thus, there exists at least one assignment of values to
the variables for which

∑m
i=1 Zi ≥ m/2, by a fundamental theorem

of the probabalistic method.

Lecture 7: NP Hard Problems,
Reductions
Problems are NOT Algorithms There can be many algorithms which

solve one problem.

Problem: An (infinite) listing of input→ answer (of the problem).
i.e. a problem is defined by its answers.

For example the global min cut problem is an infinite listing of
answers, where for each graph we have an answer.

Algorithm: A finite sequence of operations on a computer.

Solve: An algorithm solves a problem if the algorithm can find the
problem answer to any input.

Decision Problem: A problem with only “yes” or “no” answers.

Almost everything can be written as a decision problem. e.g. does
this graph have a min-cut of size k? Does it have a Hamiltonian
cycle?

Verify: Verifying answer a to an input x means checking that an
answer to problem input x is a (for us, here a is a “yes” or “no”
problem). This is different from solving the problem. We simply
verify for fixed x and a. Whereas the algorithm must solve for all x
and a.

A verifier is a program to verify an answer.

Verifier (Algorithm) for problem x. Takes as input x and a candidate
answer a (a yes or a no). Checks if the problem answer to x is indeed
a.

A verifier can take some time; i.e. it has run-time. It performs some
number of steps and determines if you are right.

Certified Verifier A verifier which in addition to x and a also takes a
certificate c to verify if a is the answer to x.

E.g. Hamiltonian Cycle in the graph? The certificate could be the
cycle itself (if one exists).

Notice this is asymmetric. We can only have a certified verifier for
decision problems which have yes answers.

A certificate is just bits, 0’s and 1’s. It is not an algorithm.

Verifiers are algorithms. Certificates just take space. We’d like for
these to be polynomial.

NP Problems: Decision problems which have certified verifiers with
poly run-time (the verifier runs itself runs in poly-time), and
polynomial certificate size.

That is, we only require that we can “check” your answer in
polynomial time.

A decision problem is in NP ⇐⇒ its “yes” answer can be
verified in poly-time with poly-sized certificate.

Max-Cut Problem Input, G(V,E) and a threshold t. Decision: Is there a
cut with size at least t in G? Certified Verifier: certificate - a cut
S ⊆ V , and a verifier algorithm - computes cut(S) and determines
how it compares with t.

Any optimization problem whose objective and constraints can be
evaluated in poly-time is in NP. This also requires poly-number of
variables.

Any optimization problem is therefore in NP.

Some problems are not in NP. These are really theoretical problems.

The existence of a certificate implies most real life decision problems
are in NP.

Reductions What does it mean for a problem to be “harder” than another
problem?

Black Box: An algorithm which solves the problem. We don’t know
its run-time.

A problem A is easier than B ⇐⇒ a black-box for B could be
called at most polynomial number of times to solve A. B itself may
or may not take poly-time.

We say that A is polynomial-reducible to B, or that “A poly-time
reduces to B”,

A ≤P B.

Proposition 18. Polynomials are closed under multiplication and
composition.

Listing of NP Problems
“Easy” Problems (poly) “Hard Problems”(NP Complete)

MST Degree Bounded MST2

2-SAT 3-SAT
Eularian Circuit Hamiltonian Cycle
Min Cut Max Cut

The vertical divider represents the poly-time boundary.

Theorem 19. If problem X in NP , then X ≤P SAT . (Cook)

i.e. SAT is the hardest problem in NP. The proof uses Turing
Machines.

If SAT ≤P X (i.e. SAT can be poly-reduced to X) and X ∈ NP, then
X is NP Complete.

Hamiltonian Cycles, Max Cut are NP Complete.

Is SAT in NP? If so, then P=NP.

Lecture 8: Reductions
Transforming Optimization Problem to Decision Problem Suppose

we want to maximize a function f(x). We ask: is there an x such
that f(x) ≥ t?
Suppose we want to minimize a function f(x). We ask: is there an x
such that f(x) ≤ t?
Once answered, we perform a binary search to find the optimal value.
This takes logarithmic time with respect to the discretized unit of
value.

Reductions They are transitive.

If A ≤P B and B ≤P C, then A ≤P C.

This follows from polynomials form a closed set regardless of
combinations.

NP-Complete For all X ∈ NP , X ≤P SAT .

Recall, 2-SAT. e.g. (X1 ∨X5) ∧ (X3 ∨ ¬X4) ∧ . . . with 2-literals per
clause.

3-SAT has three literals per clause:

(X1 ∨X2 ∧X7) ∧ (· · ·) . . .

NP-Hard Problems for which having a black box for them could allow us
to solve SAT.

NP-Complete X ∈ NP and X is NP-Hard.

Problems can be not in NP but still be NP-Hard.

We talk about NP-Hard for non-decision problems.

If asked to show that a problem is NP-Hard, show that it can
be used to solve SAT or any other NP-Complete problem

SAT has an arbitrary number of literals and clauses. We can
transform any problem into 3-SAT such that the storage requirement
is not exponentially large.

We now show that 3-SAT ≤P Max-Independent Set.

Theorem 20. 3-SAT ≤P Max-Independent Set.

We are given a black-box for Max-Independent Set (i.e. we know how
large an independent set the graph has).

Example input: (X1 ∨ ¬X2 ∨X7) ∧ (¬X7 ∨X2 ∨X1).

Each variable is either T or F. Our black box either picks a node or it
doesn’t. How can we relate variables to nodes? Can I make it such
that no node requires a variable to be both T and F?

For each clause, we make a triangle called a Gadget. We have
k-clauses and k-gadgets.

Proposition 21. Any independent set cannot have more than k
clauses.

(If more than k, we have a contradiction, since each one must come
from a gadget, of which there are ...)

If Max Ind. Set returns us a node, we toggle it’s value “on”/“off”.
To make sure that Max Ind. Set does not pick Xi and ¬Xi to both
be “on”, we simply add an edge between Xi and ¬Xi (for
i = 1, 2, . . . , n) such that they can never be returned by our
independent set. (i.e. each variable may correspond to several nodes
in our graph)

If we find an Ind. Set of size K (i.e. we can find one node from each
gadget) that would satisfy a node from every clause ...

The structure of the graph forces nodes to picked from different
gadgets.

Proposition 22. A satisfying 3-SAT assignment implies there exists
an independent set of size K.

Proposition 23. In the graph with negations connected, there exists
an independent set of size k ⇐⇒ the formula is satisfiable.

Proof. Proposition 22 and 21 yield the above claim.

If we could use cliques instead of triangles, we could solve arbitrary
K-SAT.

From Cook, we know that Ind Set ≤p SAT. Hence 3-SAT ≤p Ind. Set
≤ SAT . Hence Ind. Set =p SAT. Hence independent set NP hard.

Vertex Cover “Where to put guards on nodes such that they can view all
roads (edges)”.

Given a graph G(V,E), a vertex cover is a set S ⊆ V such that all
edges are incident to at least one node in S.

A trivial vertex cover is always possible using all nodes.

Minimum Vertex Cover What is the size of the smallest vertex cover?
(rather, does there exist a smallest vertex cover of size k) This is
NP-Hard.

Proposition 24. Minimum Vertex Cover is NP Hard.

Proposition 25. Max Independent Set ≤p Minimum Vertex Cover.

Theorem 26. For any graph G, S ⊆ V is an independent set
⇐⇒ V − S is a vertex cover.

Proof. −→) If S is an independent set, no edges are in S. Hence any
edges of G must be in V − S or connected to at least one node in
V − S.

←−) Given we have a vertex cover, V − S. If there exists an edge
strictly in S, then V − S is not a vertex cover. Hence no edge
contains two points in S. Hence S independent set.

Assume that we have a black-box algorithm for Minimum Vertex
Cover. Then the largest Independent Set is trivially the complement.

Hence Maximum Independent Set ≤p Minimum Vertex Cover.

Now, assume that we have a black box for Maximum Independent
Set. From that, we take the complement to find the Minimum Vertex
Cover.

Hence Max Independent Set ≥p Minimum Vertex Cover.

Whence, Max Independent Set =p Minimum Vertex Cover.

Further, Maximum Independent Set is NP-Complete because we
related it to SAT. So we see that Minimum Vertex Cover is also NP
Hard.

Lecture 9: Approximation Algorithms
Overview Now we move toward Approximation Algorithms. They relate to

optimization problems which are NP-Hard. However, we can get a
polynomial time algorithm to within ε of OPT.

• Turn optimization problems into decision problems to prove a
problem is NP-Hard.

• Call optimum value for optimization problem “OPT” (OPT
∈ R since we’re solving a max/min problem).

• The ratio between what approx. algorithm returns and OPT
is called the “Approximation Ratio”.

For Maximization problems, ratio < 1.

For Minimization problems, ratio > 1.

Randomized Max-Cut Approx for Max Cut, we can place each vertex in
a cut by flipping a coin, whence E[Cut] = m/2; further we know that
OPT ≤ m. Then, we can say that E[cut/OPT] ≥ 1/2. Hence we
have a 1/2 approximation to an NP Hard problem.

Deterministic Max-Cut Approx Start with any cut. Check through all
the nodes and ask, “does removing or adding this vertex to the cut
increase cut size?” When this terminates, we realize a local
maximum.

Algorithm 9: Max-Cut Approx (Deterministic)

1 Choose S ⊆ V arbitrarily (can start with ∅)
2 while there exists a vertex which can be swapped into (out of) our cut

to achieve a higher-cut value do
3 Swap v to the “other side” of our cut S.
4 end

Proposition 27. The algorithm terminates in polynomial time.

Proof. Each “swap” increases the size of the cut by at least 1. The
size of the cut is at most |E|. To check if there is a vertex which
could be swapped to increase the Cut Size, we check O(n) vertices
hence each check terminates in finite time. Hence we have
polynomial work being done inside a loop which has at most a
polynomial number of iterations.

Proposition 28. Approximation ratio is 1/2.

Proof. Note that OPT ≤ m. Let C denote the output of our
algorithm. Note that at least 1/2 the edges leaving each vertex must
go across the cut (if not, we could move the vertex into (out of) the
cut to get a larger cut size). i.e. for all nodes v, at least half the
edges incident to v are cut. Hence,

C ≥
1

2
·
n∑
i=1

deg(vi)

2
=

1

4

n∑
i=1

deg(vi) =
2m

4
= m/2.

Hence C
OPT

≥ m/2
m

= 1
2

.

It’s interesting to note that the best approximation algorithm for
Max-Cut was m/2 for 45 years. In ’95, Gomens and Williamson
found a 0.878 approximation algorithm. We also know that if we can
approximate Max-Cut better than 0.94, then P = NP . This is under
the Unique Games Conjecture.

Vertex Cover Want to find the smallest subset of nodes such that all edges
are covered.

Greedy Approach: take node with the highest degree. Remove this
node and all incident edges. Approximation ratio is O(logn), which
is un-boundedly bad since it grows with n.

Linear Program Approach: Let Xi ∈ {0, 1}i=1,2,...,n denote whether
node i has been selected in the cover. The objective function is an
affine function of indicators. We seek to solve

OPT = min
n∑
i=1

Xi such that ∀(i, j) ∈ E xi ∨ xj︸ ︷︷ ︸
i.e.xi+xj≥1

xi ∈ {0, 1} for all i = 1, 2, . . . , n.

Realize that in this set-up, we want xi + xj ≥ 1. Notice that the
constraint xi ∈ {0, 1} for all i = 1, 2, . . . , n is not linear. It’s an NP
hard problem.

But this is an exact problem. Let’s relax our set-up.

We instead replace the constraint that Xi ∈ {0, 1} for i = 1, 2, . . . n
with the relaxation that xi ∈ [0, 1] for all i = 1, 2, . . . , n.

Note that this solution, call it LP, is a relaxation of our original
problem. Hence LP ≤ OPT .

Algorithm 10: Minimum Vertex Cover
1 Solve LP specified above.
2 if x∗i ≥ 1/2 then
3 xi ← 1
4 end
5 else if x∗i < 1/2 then
6 xi ← 0.
7 end

Proposition 29. After rounding, we still have a vertex cover.

Proof. When we solve LP, we still respect that xi + xj ≥ 1 for all
(i, j) ∈ E. Hence at least one of xi or xj is at least 1/2. So when we

do this rounding, we keep at least one node.

We started with LP ≤ OPT. But with rounding, we’ve got a worse
solution. How does it compare with OPT?

Proposition 30. Our Approx Ratio is at most 2.

Proof. We know that
∑n
i=1 X

∗
i = LP ≤ OPT . In the worst case, all

x∗i ’s are 1/2. Hence all xi’s are 1.

Realize that xi ≤ 2x∗i , since if x∗i ∈ [0, 0.5) then xi = 0 < x∗i . If
x∗i ∈ [0.5, 1], then xi = 1 ≤ 2x∗i . Hence

Size of our Cover =

n∑
i=1

Xi ≤ 2

n∑
i=1

X
∗
i ≤ 2OPT.

So, our approximation ratio is at most 2.

Under Unique Games Conjecture, 2 is optimal. Without it, 1.36
optimal.

Bin Packing “You are only allowed to bring 2 suitcases. How much can we
pack?”

Given n items, a1, a2, . . . , an ∈ (0, 1]. Find the minimum # of unit
size bins to pack all ai’s.

This (as a decision problem) is NP hard. It’s also very practical. E.g.
we want to minimize the number of machines such that all jobs
complete in under 1 minute.

Algorithm 11: Any Fit
1 for each ai do
2 if ai fits in any bin then
3 Place it there.
4 end
5 else
6 open new bin.
7 place ai in it.

8 end

9 end

We claim this is a 2-approximation.

OPT ≥
n∑
i=1

ai, (3)

with equality if we could perfectly pack each unit bin to full capacity.

We have a Loop Invariant When we’re done, there cannot be more
than 1 bin which is 1/2 full. If this were true, we get a contradiction,
since then our algorithm could have combined them into 1 bin.

“All bins are more than 1/2 full (except for at most 1 bin)”. We
prove this via induction. The base case is trivial.

Proof. If ai > 1/2. It doesn’t matter if we open a new bin, because
if we do open a new bin, it will be more than 1/2 full.

If ai ≤ 1/2. There may or may not be an existing “shallow” bin
(whose more than 1/2 free). If there is, we put ai in it. Hence we
end up with no shallow bins (loop invariant holds). If there isn’t a
shallow bin, we’re allowed to open a new bin without violating the
loop invariant. In all cases, the loop invariant holds.

Let B denote the # of bins our Any-Fit algorithm returns.

Realize that the sum of the weights of the items must equal the sum
of the loads of the bins (since we have to place each item

somewhere). Hence,
∑B
k=1 Lk =

∑n
i=1 αi ≤ OPT. By our above

claim, B has at most 1 bin which is less than 1/2 full, hence

B − 1

2
<
B − 1

2
+ LB︸︷︷︸
>0

≤
B−1∑
k=1

Lk︸︷︷︸
≥1/2

+LB ≤ OPT

If we have B bins, B − 1 are full. Hence
∑n
i=1 ai >

(B−1)
n

. Using
this fact and 3 we see that B − 1 < 2OPT.

Note that B and OPT are integers. Given strict inequality, adding 1
may make it an equality. Hence B ≤ 2OPT.

Lecture: TSP, Dynamic Programming

Topics Covered TSP, Dynamic Programming (Fibonacci numbers, max
window, exact exponential time TSP).

DP ≈ “Careful brute force”
DP ≈ guessing + recursion + memoization
DP ≈ shortest paths in some DAG

time = #subproblems× time per subproblem︸ ︷︷ ︸
treating recursive calls as Θ(1)

.

Knapsack You’re going camping. You can only afford to bring 1 giant
back-pack. Suppose the size of the pack is the only thing that
matters (can reformulate as weight). We can’t bring everything
(although that might be nice).

We have a list of items. Each with a size si ∈ Z and a value vi. We
have a knapsack total size S. We want to choose a sub-set of the
times (all if possible) whose total size is less than or equal to S such
that we maximize sum of values.

(1) Sub-problems. Suffixes of items, s[i :]. So, starting with the ith
item, we decide: do we include item i? We also track remaining
capacity X ≤ S, for some integer X. Number of sub-problems is
number of items times S, i.e. Θ(n · S).

(2) Guessing. We guess whether i is in our subset or not. There are
only two choices.

(3) Recurse

DP(i, X) = max{DP(i + 1, X),DP(i + 1, X − si) + vi}.

(4) There is a topological order. We need constant time to evaluate
each call to DP(,). Time is Θ(n · S). This is not polynomial time in
its current form. But S usually small. Hence this is
pseudo-polynomial.

Symmetric Traveling Salesman Problem Given a weighted graph G
with positive weights, find a Hamiltonian Cycle of minimum weight.

Even deciding if a Hamiltonian Cycle exists is NP Hard. Hence TSP
(the full optimization problem) is also NP hard.

We cannot approximate this. So, suppose G complete with
(
n
2

)
vertices. Hence any permutation of nodes is a Hamiltonian Cycle.

Even with a complete graph G, this is also NP hard. (For missing
edges, we could just add them in with almost infinite weight, and
translate any graph into a “complete” graph by which we run TSP)

Metric TSP We start with the assumption that all edge-weights satisfy
cij + cjk ≥ cik, ∀i, j, k, where cij = cji because this is symmetric
traveling salesman problem. This prohibits adding infinite weight
edges.

In order to satisfy this condition, all edges must be present, i.e. we
have a complete graph. This is Metric TSP. We can approximate
OPT to within 1.5x.

Naive Solution: Consider all permutations of nodes, each time
realizing a Hamiltonian Cycle. Output the smallest weight cycle.
Run time: (n!) = Θ(nn).

Dynamic Programming: Exact solution in O(n22n. This is possible
for n ≈ 20, e.g. when an Amazon robot is fetching items in the
warehouse for your order. This is the problem we solve everyday
when running errands.

https://www.cs.ucsb.edu/~suri/cs130b/BinPacking.txt

Dynamic Programming “While you write down a table, you figure out
what you’re going to write down next.”

Fibonacci: f0 = f1 = 1; fn = fn−1 + fn−2.

Algorithm 12: Naive Fibonacci
1 if n == 0 or 1 then
2 return 1
3 end
4 else
5 return fib(n-1) + fib(n-2)
6 end

This has exponential run-time. Why?

fib(n)

fib(n-1)

fib(n-2) fib(n-3)

fib(n-2)

fib(n-3) fib(n-4)

We end up re-computing fib(x) over and over for each particular x.
Hence we use memoization: we cache function values to avoid
unnecessary recursion.

Algorithm 13: Fibonacci: Memoized
1 if n = 0 or 1 then
2 return 1
3 end
4 if computed(n) then
5 return cached(n)
6 end
7 newval ← fib(n-1) + fib(n-2)
8 cached(n) = newval
9 computed(n) = true

10 return newval

Now we simply wrap this function,

Algorithm 14: Fibonacci: memoized (wrapper)

1 Input: n, a non-negative integer.
2 cached(n) = array(n)
3 computed(n) = array(n) // all false

4 fib(n)

Here, we avoid recomputation. Specifically, we only call fib(·) at
most n times. Hence the run-time is O(n). The storage requirement
is also O(n).

This is the essence of dynamic programming: we take a problem,
make it into a smaller sub-problem, and then remember (memoize)
the values as we go.

Tangent: We can actually compute fib(·) even faster. Let,

A =

[
1 1
1 0

]
, then A

k
[
fn−1
fn−2

]
=

[
fn
fn−1

]
We can diagonalize A and compute higher fib(·) in logarithmic time.

Max Sum Window Given an array, find the window of maximum sum.
e.g. [

3 −5 98 −37 2 38 3 1 50
]

Naively, we iterate through all O(n2) valid start and end indices and

for each, compute sum in O(n) time. Hence O(n3).

Let’s reframe this via DP. Let best(i) = the size of the largest-sum
window ending at i. That is,

best(i) = max{ai, best(i− 1) + ai}.

The original problem’s solution is then maxi best(i). The total
run-time is simply 2n, since calculating best(n) requires n operations
(and in the process, we memoize and compute best(n-1), etc), and
then we take the max over all i = 1, 2, . . . , n.

Boilerplate
Analysis - How much possible work is done inside each recursive call?
How many times do we have to call the function?

Backtracking - Our algorithm only returns the value, not where the
index starts. To do this, we simply carry around another array and
at each step, we track our maximizing (or minimizing) decision path.

TSP Given a graph with positive weights, we label the nodes arbitrarily
1, 2, . . . , n. Without loss of generality, start at node 1 (it’s a cycle,
so we can start anywhere). We have n− 1 options of which node to
visit next.

Algorithm 15: Dynamic Programming TSP
1 Input: S, a subset of vertices, and i, a node label.

/* S ⊆ V , 1 6∈ S,i 6∈ S */

/* Shortest path from 1 to i, using exactly each node in S. */

2 TSP: mini{DPTSP(V/{1, i}) + w(ei1)}.

That is, we recurse through all neighbors i of node 1, each time
picking the best way to form a (low-cost) cycle which starts at node i
and uses all yet to be used nodes.

Hence,

DPTSP(S, j) = min
dij
{DPTSP(S\{i}, i) + dij}.

Note that j is an argument to the function, hence constant over the
minimization mindij

. We make O(n) recurrence calls since we

minimize over all i. Each call is assumed to take constant time, since
we memoize.

This takes exponential time. This solution doesn’t require metric
inequality to be satisfied; we don’t even need symmetry.

What’s the run-time?

2
n−2︸ ︷︷ ︸

all possible S

· (n− 1)︸ ︷︷ ︸
all possible j

except 1

· O(n)︸ ︷︷ ︸
minimize over i

= O(2
n
n

2
)

The space requirement is also O(2nn2).

This is tolerable for about n ≈ 20.

SAT How much time does naive SAT take? We are given n literals. The
trivial solution is to toggle each literal, costing O(2n).

We’ve found O(1.3n) for SAT problem. This is exponentially faster
than 2n, and yet still exponentially slow.

Midterm Review
Basic Graph Theory

Trees and their characterizations. In particular, the proof that
m = n− 1. That style of induction (via picking out the leaves).

Minimal Spanning Tree. Know Kruskal’s algorithm and proof of
correctness.

Matchings. No node incident on more than one edge. Perfect if every
node matched exactly 1x.

Independent Set/Clique ↔ Vertex Cover. The problems go hand in
hand, since every time you yield a cover, we get a bound on the size
of the matching. Recall the proof that minimum vertex cover is NP
Complete.

Hamiltonian Cycles, Eularian Tours.

Diameter, radius, shortest paths.

Cuts Global Min-Cut: 1 value,
(
n
2

)
cuts which realize this value. s-t

Min Cuts: for fixed s and t, there is one minimum cut-value. For all
s and t, there are only n− 1 distinct values. For fixed s and t, there
may be exponentially many cuts which realize the minimum cut
value.

The Max Cut problem is NP Hard. Randomized algorithm and
Deterministic algorithm: 1/2.

Min-Cut/Max-Flow Applications Integer capacities imply integer
max flows. Hence if the capacity is 1, the flow is either “on” or “off”,
hence we can do things like edge disjoint paths.

Recipe.
(1) Is it a maximization or minimization problem? i.e. a flow or a
cut.

(2) What graph to use? i.e. how to code up the constraints.
Generally, there is 1 node per inequality. We use an upper bound on
out-capacity.

(3) How to recover the solution? Usually the max-flow or min-cut
value. Sometimes, the paths in the residual graph i.e. which edges
are saturated.

Cover Times
cij = 2mRij .

From that, using a spanning tree and effective resistances between a
single edge being at most 1 ohm, we see that

C(G) ≤ 2m(n− 1).

This is useful when the graph is sparse. If the true cover time is less
than O(n2), this bound isn’t useful, e.g. for a connected graph.

(C) ≤ 2me
3

lnnR(G) + n = O(m lnnR(G)).

Cover times trivially give a bound on commute and hitting time,
since

mR(G) ≤ C(G).

We have series circuits, whose effective resistances are given by the
a-b path length,

a b

and parallel circuits, whose effective resistance is given by

Rab =
1∑

a-bpaths
1

path length

,

a

R1

R2

R3

b

When asked to calculate C(G), i.e. Θ(C(G)), need to show that
C(G) ≤ · and · ≤ C(G).

To figure out how many paths there are between a and b and if they
are saturated, hence we use Max Flow and Min Cut.

Adding an Edge cannot increase R(G) To see this, . . .

Adding an edge doesn’t tell us anything about Cover Time. Consider
. . .

Probabalistic Method Union Bound, Ramsey Theorem, Markov
Inequality, Basic Counting, Expectations of Indicator Variables.

Showing Pr(x) > 0 =⇒ x exists.

NP-Hard Problems If a problem is in NP and it is NP-complete, it is
NP-Hard. If we are given a new problem, and it can be used to solve
an NP-Hard problem, then it’s NP-Hard.

Integer Programs. LP with 0-1 constraints. Integer programs are
NP-Complete.

Minimum Vertex Cover (2-approximation via LP)

Bin Packing (2-approx)

Maximum Independent Set

Maximum Cut (1/2 approximation, deterministic and randomized)

Traveling Salesman (often assume Metric Inequality)

SAT (and 3-SAT)

Know how to form optimization problem into a decision problem,
and then talk about whether it’s NP-Hard. I.e. to prove that
optimization problem NP-Hard, we first turn the problem into a
decision problem (often by adding a threshold to the problem
definition); use that as a black-box algorithm to solve our
NP-Complete problem.

Dynamic Programming Exponential time solution to TSP. Fibonacci
Numbers, Maximum Window.

Last Years Midterm
#1) Every tree on n nodes has a vertex cover of size at most⌈

n− 1

2

⌉
.

Failed attempt: there are n-1 edges, pick one side of every edge to be
in the vertex cover. This doesn’t work. To see this, consider the
following graph:

Define the layers in this graph `i, for i = 1, 2, 3. Start at the root
node. Our algorithm traverses through a list of all edges. It has two
options: for each edge, use the parent node for the vertex cover. Or,
for each edge, use the child node for the vertex cover. The former
yields vertex cover of size 3 (we choose nodes at `1, `2), Whereas
yields cover of size 6 (we choose nodes at `2, `3). OPT here is to use
only white nodes, for cover size 2. Hence even in this toy algorithm,
we can end up using n− 1 nodes, which is larger than the required
d(n− 1)/2e.
A better solution: Notice that every tree is a bi-partite graph. We
just start from the root, use BFS or DFS to explore nodes, and color
vertices red or blue according to the parity of the “layer” in the tree
(i.e., path length from node to the root of the tree). By definition,
there are 2-sides in a bi-partite graph. There are two cases to
consider, depending on n even or odd. In either case, min-vertex

cover given by min{|L|, |R|} =
⌊
n
2

⌋
=
⌈
n−1

2

⌉
.

If n even, n/2 a number hence floor/ceiling operator nil-potent. If n
odd (including colored node) n/2 fractional, hence taking floor
operator we round down. This is identical to taking the ceiling of
(n− 1)/2 = n/2− 1/2.

Finally, note that in any bi-partite graph, each side is a vertex cover.

The max-cut in a bi-partite graph is m since we can cut all edges.

#2) Prove that every tree has at most 1 perfect matching.

Proof. Induct on the number of nodes on the tree. For n = 1, no
matching exists. For n = 2, exactly one perfect matching exists.
Assume that for all trees with ≤ k nodes, at most one perfect
matching exists. Consider a tree on k + 1 nodes. There exists some
leaf node l, which in any perfect matching must be attached with its
parent node (because that is the only edge incident to l). Delete l,
its parent, and all incident edges to those nodes from the tree. We
are left with a forest, in which every tree has ≤ k − 1 nodes. We
know by the inductive hypothesis that each of these trees has at
most one perfec matching, so the original tree has at most one
perfect matching. This follows from the unique perfect matching of
each tree in the forest and the edge connecting l to its parent.

We note that any tree with an odd # of nodes can’t have a perfect
matching. Even if there is an even number of edges, there is not
always going to be a perfect matching, e.g.

Approximation Algorithms

Overview The class now becomes focused on approximation algorithms
which leads us to cutting-edge research. We focus on the Metric TSP,
finding a 2-approximation using MST’s and a 1.5 approximation
which is state of the art. We also get a logn approximation to ATSP.

Metric TSP - 2 Approximation
We first need to get a handle on OPT. To do this, we use a MST.
Examine a tour of the graph (a cycle). If we delete an edge, we get a
spanning tree. Notice that the MST is the lowest weight tree. Hence
MST ≤ OPT, since OPT is a spanning tree plus a non-negative
weight edge to complete the tour.

Suppose we have an MST which looks as follows.

Notice that some vertices have odd degree, hence there does not exist
an Eularian circuit.

Step #1 Turn the graph into a multi-graph. That is, we double each
edge of the MST, to yield a graph

a

b

c
d e

f

Since we doubled each edge, we double the weight of the MST.

Step #2 Find an Eularian Tour greedily. We do this by starting at
an arbitrary node and greedily choosing unexplored edges to traverse
next. We may realize a cycle, but then we simply backtrack to the
first node with a not-yet-traversed outgoing edge. Such an edge must
exist since the graph connected (it is a spanning tree, and then we
added edges). Notice that in this Eularian Tour, some nodes are
repeated. This prevents us from returning this as our output of a
Hamiltonian Cycle.

How can we fix this issue of re-visiting nodes? Suppose our Eularian
Tour is of the form

a→ b→ c→ b→ d→ f → d→ e→ d→ b→ a.

Step #3. Notice that our original graph is complete. Hence we can
simply apply a “shortcutting” method, where we take the above
Eularian Tour, follow it in order until we are about to revisit a node
for the first time. Instead of visiting the node for a second time, we
simply take the direct edge to the following node which has yet to be
visited. Such an edge exists since the graph is complete, and we
incur no additional cost by the metric inequality. Our Hamiltonian
Cycle then becomes

a→ b→ c→ �Cb→ d→ f → �Cd→ e→ �Cd→ �Cb→ a.

Hence ALG ≤ 2· MST ≤ 2· OPT. Hence we have a 2-approximation.

Metric TSP - 1.5 Approximation Now notice that in our previous
algorithm, we doubled each edge in our MST regardless of its degree.
What if we only add edges for odd-degree nodes as needed? This
could be more efficient.

Notice that by the Handshake Lemma,
∑n
i=1 deg(vi) = 2m. Hence

the number of odd-degree nodes must be even (for any graph). To
see this, realize that the number of edges in the graph is given by
m = 1

2

∑n
i=1 deg(vi), hence since m a non-negative integer,

∑
v d(v)

is an even number. From this sum, discard all vertices with even
degree. If there are no vertices left, we’re done. Otherwise, we have
odd-degree vertices left. But since we started with an even number,
and subtracted all vertices with even degree (i.e. subtracted another
even number) we are left with an even number. Hence if we try to
assert that there is only an odd-number of odd-degree vertices, we
get a contradiction, since odd · odd 6= even.

Suppose we are given an instance of OPT, where the hollow nodes
denote odd-degree vertices.

a b

c

d

ef

g

OPT

where the previous graph has 2-perfect matchings among odd-degree
nodes (one in dashed edges, one with solid bent edges).

If we wish to improve on our 2-approximation, we can’t just start
adding edges to odd-degree nodes since this just propogates the
problem. For example, consider the spanning tree.

where again the vertices with odd-degree are in white-squares, and
vertices of even-degree are in black-circles.

We seek to obtain a perfect-matching among odd-degree nodes.
Intuitively, we want to add in edges cheaply from our original
(complete) graph.

Blossom Algorithm: A generalization of the Residual Graph. It’s a
poly-time algorithm to compute min-weight perfect matching on any
graph.

Algorithm 16: Christofedes 1.5x (Metric) TSP

1 Compute MST
2 Compute min-weight matching between odd-degree nodes (Blossom)
3 Compute Eularian Tour
4 Shortcut nodes to achieve Hamiltonian Path.

When we compute the min-weight matching between odd-degree
nodes, we add exactly 1 degree to each odd-degree vertex. After
which, all nodes have even degree, hence an Eularian tour exists.

Consider again our instance of OPT shown below. We now move
directly between odd-degree nodes. Between each, we “skip”
even-degree nodes (i.e. we shortcut). Notice that the cost of the
resulting cycle we get is bounded above by OPT since we applied
shortcutting. Further, the resulting cycle is even length since there
are an even # of odd-degree nodes.

Now, we take every other edges in this resulting cycle, which yields a
matching. We take a look at the other (unused) edges. This results
in another perfect matching. Hence we have an ordering by weight:

OPT =

a b

c

d

ef

g

≥

g b

ed ≥ 2· MM

where MM denotes the Maximum Matching.

If M a min-cost perfect matching on V ′ ⊆ V such that |V ′| is even,
then cost(M) ≤ OPT/2. Consider an optimal TSP tour of G, call it
τ . Let τ ′ be the tour obtained by short-cutting τ . By metric
inequality, cost(τ ′) ≤ cost(τ). Realize that τ ′ is the union of two
perfect matchings on V ′, each consisting of alternating edges of τ .
The cheaper of these matchings has cost ≤ cost(τ ′)/2 ≤ OPT/2.
Hence optimal matching also has cost at most OPT/2. Hence MM

≤ 1
2

OPT.

By our first argument in the 2-approximation, we also have that
MST ≤ OPT.

Hence Christofedes Algorithm ≤ 3
2

OPT.

Metric Asymmetric TSP Notice that with for our Symmetric TSP
problem, we assumed we could duplicate edges in an MST in effort to
find an Eularian Tour (which we then shortcut). Now we’re in a
directed graph. We no longer have spanning trees (these aren’t
defined in a di-graph).

We still have a complete graph, and we still have the metric
inequality, i.e. ∀i, j, k cij + cjk ≥ cik. However, we are in a directed
graph. Taversing one way is much more expensive.

Example: Construct a graph G with the following distances. Let δij
denote the shortest-path between i and j in some auxiliary graph H,
which is unweighted. By definition shortest-paths, the δij ’s must

satisfy the triangle-inequality (i.e. they are metric). H has the same
nodes as G. We want to construct δij very different from δji.

Take an undirected path from i to j, and add a directed edge from j
to i.

i
. . .

j

Hence δij = 1 and δji = n− 1.

More generally, we consider a directed cycle containing all nodes.

Cycle Covers: Given any (un)directed graph, a cycle cover is a
collection of cycles which cover all nodes.

This may not exist, e.g. a tree, or a lollipop.

Is there a cycle cover in a graph?

Algorithm 17: Detect Cycle Cover
1 Turn directed graph into bi-partite graph with 2× # nodes.
2 There is a cycle cover ⇐⇒ a perfect matching exists in bi-partite

graph.

For example, given a graph G,

a

b

c

d

we construct a graph G′

a

b

c

d

a’

b’

c’

d’

So, our cycle cover exists in G ⇐⇒ a perfect matching exists in G′.
We will never re-use nodes since a perfect matching ensures each
node is incident to exactly one edge in the matching.

We take the following theorem for granted.

Theorem 31. There exists a perfect matching in G′ ⇐⇒ there
exists a cycle cover in G.

Now, we apply the Blossom Algorithm to get the minimum weight
perfect matching. Hence,

In directed graphs, we can compute minimum cycle covers.

That is, relaxing the problem of finding a Hamiltonian Cycle (i.e. a
cycle cover consisting of only 1 cycle) to finding a cycle cover (more
than one cycle) makes the problem tractable.

Let the ATSP optimum be denoted as OPT. The weight of the
Min-Cycle Cover (MCC) is at least as small as Hamiltonian Cycle
since Hamiltonian Cycle is a special case of Cycle Cover. Hence
MCC ≤ OPT.

Intuitively, we seek to massage the MCC into a Hamiltonian Cycle
without increasing the weight too much.

Suppose OPT and MCC look like

OPT MCC

How do we connect the cycles without adding too much weight? We
use another cycle cover! In an MCC, the # connected components is
≤ n/2. To see this, notice that each node connected to at least one
other node.

Algorithm 18: ATSP log n Approximation
1 Compute Cycle Cover.
2 Pick one node (representative node) from each cycle.

// This reduces the # CC’s by at least 1/2. We may have not-simple

cycles in the result.

3 Compute MCC among representative nodes.
// Resulting MCC is on a subset of nodes of G, hence we can shortcut

it a cycle cover, and recurse.

4 Resulting graph has all even-degree. Construct an Eularian Circuit,
and shortcut it.

5 Recurse.

a

b

c

d

g

h

f

e

So, we have an Eularian Tour

a→ b→ c→ d→ e→ f → g → h→ e→ d→ a

which we shortcut to yield a simple cycle (this is where triangle
inequality important),

a→ b→ c→ d→ e→ f → g → h→ �Ce→ �Cd→ a

We repeat our algorithm for O(logn) iterations, since each time we
half the number of connected components.

The output of the algorithm is a simple cycle. The total cost is

MCC1 + MCC2 + MCC3 . . . + MCClogn ≤ lognMCC ≤ lognOPT.

Hence our approximation ratio is lgn.

Arboresence: Starting from 1 node, can you get to any other node?

Max Cut We note that Linear Programs are convex. Semi-definite
programs are also convex. The general idea is that we start with our
problem, then relax it until we can solve a convex program. From
there, we then massage the output to be feasible.

Semi-definite Program Here we write Max-Cut as a semi-definite
program.

max
xij

n∑
i=1

n∑
j=i+1

cijxij

subject to
[
xij
]
� 0.

where � denotes that our matrix of xij entries is positive
semi-definite, i.e. the eigenvalues are non-negative. Here X must be
symmetric positive semi-definite.

Max Cut We start with a non-solvable program. Given G(V,E)
unweighted, we create one variable per node indicating whether it is
“in the cut”. That is, let

yi ∈ {−1, 1}, i = 1, 2, . . . , n.

To see if two variables are on different sides of the cut, we simply
multiply the two corresponding variables. If nodes i and j are both
in the cut, or both not in the cut, then yi · yj = (±1)2 = 1. If i and
j are on different sides of the cut, then yi · yj = −1. With this in
mind, we express our program as follows,

max
yi

∑
(i,j)∈E

1− yiyj
2

subject to y
2
i = 1, yi ∈ R

Our summation now counts counts, since yi ∈ {−1, 1} and the
expression

1− yiyj
2

=

{
1 if (i, j) is in the cut

0 if nodes are on same side of cut.

Hence our above program is a legitimate Max Cut using n variables.
We now must apply a relaxation to turn our problem into a
semi-definite program. Following Goemans and Williamson.

Relaxation: Allow each yi to be in Rn, call the resulting vector vi.

Now, the number of variables is n2. Now, our program is

max
yi

∑
(i,j)∈E

1− vTi vj

subject to ‖vi‖
2
2 = v

T
i vi = 1, vi ∈ Rn.

Let us rename vTi vj to xij , i.e. we store all inner products vi, vj
into a symmetric matrix X. Now, we have SDOPT.

max
(i,j)∈E

∑
(i,j)∈E

1− xij
2

subject to xii = 1, ∀i = 1, 2, . . . , n,[
x
]
ij
� 0.

(4)

From Linear Algebra, we know that

Theorem 32.
[
x
]
ij
� 0 ⇐⇒ xij = vTi vj .

Clearly SDOPT ≥ OPT. This follows directly from the fact that our
relaxation increases the feasible region (i.e. the possible set of
inputs). At worst, we could achieve OPT.

Theorem 33. A matrix A is symmetric positive definite ⇐⇒ there

exists B such that A = BTB, i.e. a Cholesky Decomposition exists.

Further, for a symmetric n× n matrix, the following are equivalent,

1. There exists an m× n matrix V such that V T V = A,

2. For all x ∈ Rn, xTAx ≥ 0, and

3. All eigenvalues of A are non-negative.

We now present the Fully Polynomial Time Approximation Solution
(FPTAS).

Algorithm 19: Goemans-Williamson FPTAS (95)

1 Solve SDP.

2 Take output X, perform Cholesky to yield XV T V .
// Now, each node has associated with it a unit vector in Rn.

3 Take a random hyper-plane through the origin.

When we take a random hyper-plan through the origin, notice that

Pr(hyper-plane separates two vectors) = 2 ·
angle between vectors

360
.

Recall that
v
T
1 v2 = ‖v1‖2‖v2‖2 cos θ.

Hence
θ = cos

−1
(v
T
1 v2) = cos

−1
(x12).

That is, Pr(edge(1, 2)cut) =
cos−1(x12)

π
.

Now,

E[cut] =
∑

(i,j)∈E
Pr [(i, j) is in the cut] =

∑
(i,j)∈E

cos
−1

(xij)/π.

Recall that since SDOPT ≥ OPT (since SDOPT a relaxation) our
approximation ratio is given by,

http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

Approx. Ratio =
E[cut]

OPT
≥
E[cut]

SDOPT
=

∑
(i,j)∈E cos−1(xij)/π∑

(i,j)∈E
(1−xij)

2

≥ min
−1≤x≤1

cos−1(x)
π

1−x
2

= 0.878.

To get to the last step, we minimize via calculus to get a lower
bound.

Concentration Inequalities
Overview Today, we review Held-Karp LP for TSp. We discuss

Concentration Inequalities. We also start Sparsification and
matrix-graph connections.

TSP LP We wish to turn the TSP into one of selecting an ordering of edge
weights.

Objective: minimize the tour’s length.

We create a 0-1 variable for each edge, which allows us to write

min
∑

(i,j)∈E
xij · cij

subject to xij ∈ {0, 1},∑
j:(i,j)∈E

xij = 1 ⇐⇒
{

out-degree(i) = 1

in-degree(i) = 1,

∀S ⊆ V, out-degree(S) ≥ 1.

(5)

We require each node to be visited, i.e. the out-degree and the
in-degree of each node must be 1. Hence we impose our second
constraint. At this point, we get a Min-Cycle Cover. To ensure
connectivity, we require that for each cut S ⊆ V , there is at least an
outgoing edge.

Now we have an LP for an NP-Hard problem.

Relaxation:

min
∑

(i,j)∈E
xij · cij

subject to xij ∈ [0, 1]︸ ︷︷ ︸
relaxation

.

The problem with this is that we have exponentially many constraints.

Karp-Dimitron: Linear Programs with exponentially many
constraints can be solved in Poly-time as long as there exists an
Oracle for finding violated constrains in a poly-type.

To do this, we find the Global Min Cut.

If the value of the Cut < 1, the graph is disconnected. Hence we
have violated a constraint.

If the value of the cut ≥ 1, the constraints are satisfied.

1. Solve HK-LP.

2. Saberi et al, approximation factor is logn/ log logn.

Sparsification
Graph/Matrix Connections We define an adjacency matrix

A =
[
aij
]
, aij = 1{(i, j) ∈ E}.

Proposition 34. A has the property that we can use it to calculate
the # of paths of a certain length. That is,[

Ak
]
ij

= # of paths of length exactly k between i and j,

where the paths are not simple (i.e. they are allowed to revisit nodes).

Proof.

[
A2
]
ij

=

n∑
k=1

AikAkj = 1 for each path length of 2,

i.e. we are counting paths. That’s really the inductive step. The
base case is A2.

Random Walk Matrix Suppose W is a transition matrix of probabilities,
i.e. a Stochastic Matrix.

W = D
−1
A,

D = matrix of degrees =


degV1

degV2

.
.
.

degVn


This assumes we have a connected graph, i.e. δ(G) ≥ 1. To get
around this, we may add in self-loops (recall from Stats 217, making
a Markov Chain lazy).

[
Wk

]
ij

= probability of landing at j starting from i in exactly k steps

Recall that multiplying on the left by a diagonal matrix scales the
rows of A according to the entries of D. Hence each row of W sums
to 1, i.e. for each node it’s a probability distribution among outgoing
edges.

Laplacian Matrix We deal with simple, undirected, unweighted, connected
graphs. For a symmetrix matrix, i.e. an undirected graph

Definition 1:
L = D − A n× n matrix.

We can now count cuts with L.

Definition 2: Take an undirected graph G and arbitrarily orient the
edges (i.e. we add exactly one arrow to each edge). We construct B,
an m× n matrix where

Bev =


1 if vertex v is head of e

−1 if vertex v is tail of e

0 otherwise.

Then, L = BTB is an n× n matrix.

The spectrum of the Laplacian lets us understand how cuts are
structured in our graph.

Let xS be an indicator vector for the cut S ⊆ V , i.e. xS ∈ {0, 1}n
where entry i takes on value 1 if node i ∈ S and zero otherwise.

Theorem 35. xTSLxS = cut(S).

Proof.

x
T
Lx = x

T
B
T
Bx = ‖Bx‖22

Each entry i above is calculated by BTi x, where BTi has a single 1
where the head of the edge is and a single 1 where the tail of the
edge is. Hence, for each entry Bx ∈ Rm,

‖Bx‖22 =
∑

(i,j)∈E
(xi − xj)

2︸ ︷︷ ︸
where

(xi − xj)
2

=

{
1 if xi − xj ∈ {−1, 1}
0 if xi − xj = 0.

Hence for each edge, we count: if xixj spans the cut, we get a -1 or a

1, squared → 1, hence we count cuts.

Theorem 36.
L1 = 0.

Proof.

L1 = (D − A)1 = D1︸︷︷︸
degree of each node

− A1︸︷︷︸
degree of each node

= 0.

It immediately follows that 1 is an eigen-vector with corresponding
eigenvalue 0. Since for any matrix C, det(C) =

∏
i λC(i), we see

that det(L) = 0 and hence L singular.

Cuts and Spectral Sparsification Problem: Given an undirected,
unweighted, simple, connected graph G with m edges, find weighted
(undirected, simple, connected) H with few edges such that ∀S ⊆ V
(all cuts),

Relative Error =
|fG(S)− fH (S)|

fG(S)
< ε.

Here fG(·) is an unweighted cut function (i.e. it simply counts #
edges in the cut) and fH (S) is a weighted cut function (i.e. it sums
the edge weights in the cut) with H having

O

(
n logn

ε2

)
edges.

We do this via effective resistances. This is a 2009 result. Batson,

Spielman, and Srivistava further brought this down to O
(
n
ε2

)
in

2011.

We first try something simple.

Algorithm 20: Naive Sparsification
1 for each edge e ∈ G do
2 Flip a biased coin c. /* With probability p, coin lands heads. */

3 if Heads then
4 Include e in H with weight 1/p.
5 end

6 end

Proposition 37. fH (S) unbiased.

Proof. For any S ⊆ V , consider

E [fH (S)] =
∑
e∈E:

e leaving S in G

[Pr(edge e selected) · w(e)]

=
∑
e∈E:

e leaving S in G

p ·
1

p
=

∑
e∈E:

e leaving S in G

1 = fG(S).

Hence, in expectation our graph H is unbiased for cut-sizes.

Notice that as p→ 1, we are more likely to have fG(S) = fH (S).
But of course as p→ 1 we get more edges. We want to set p small,
but if we do the results become very volatile.

Recall the Markov Inequality. If X is a non-negative Random
Variable, then

a·1{x ≥ a} ≤ x =⇒ a·E[1{x ≥ a}] ≤ E[x] =⇒ Pr(X ≥ α) ≤
E[X]

α
.

Hence for x ≥ 0,

Pr(x ≥ αE[x]) ≤
E[x]

αE[x]
=

1

α
.

We want something kind of like this. We are interested specifically in
Concentration Inequality, hence we turn to the Chernoff Bound.

Chernoff Bound - Sum of indicator random variables which may or
may not occur with the same probability. Let X =

∑n
i=1 xi, where

xi ∈ {0, 1}, xiBern(pi), and µ = E[X] =
∑n
i=1 E[xi]. Then,

Pr(X ≥ (1 + δ)µ) ≤ exp
[
−δ2µ/2

]
Pr(X ≤ (1− δ)µ) ≤ exp

[
−δ2µ/3

]
.

Using a Union Bound,

Pr(|X−µ| ≥ δµ) ≤ exp
[
−δ2µ/2

]
+exp

[
−δ2µ/3

]
≤ 2 exp

[
−δ2µ/3

]
.

Notice that for µ larger, we get more concentration around the mean.

E.g. Given n fair coins, toss them. We expect n/2 heads. As n
grows, the probability of being δ-close to µ grows exponentially fast
toward 1.

For cuts with more edges, the our naive procedure is not too volatile.
But for cuts with very small number of edges, our approach is very
volatile, since it depends on the outcome of a small number of
coin-flips.

For fixed S ⊆ V , suppose fG(S) = c. We have that (two steps
needed?)

Pr

∣∣∣∣fH (S)− c
∣∣∣∣ ≥ εc︸︷︷︸

=δµ

 ≤ 2 exp

[
−ε2pc

3

]
,

where fH (S) is the random variable. (how did we insert p above?)

This is the probability that we achieve our guarantee for
sparsification.

The probability is small when ε2 dominates.

If p large, the probability of deviation small. How large do we need
to set p?

If fG(S) large, probability of deviation also small. This is not
something we get to choose, however. It’s also possible that p ≤ 1
and fG(S) = 1.

Suppose

p =
3 logn

ε2 · c
,

where c denotes the global minimum cut. Then,

Pr

(∣∣∣∣fH (S)− fG(S)

∣∣∣∣ ≥ εfG(S)

)
≤ 2 exp [− logn] ≤

2

n
.

If c ≥ logn, we get nice results. But if c� logn, this scheme fails.
Consider a bar-bell graph, for example.

1

2

34

5

1

2

34

5

In this example, the edge connecting the two cliques is a 1 ohm
resistor; it must be left in the graph in order for us to measure any
cut-size correctly. So c = 1 in this example; Hence for the bar-bell
graph p = logn/ε2 > 1, which is not even a probability.

We abort our old attempt in favor of effective resistances, which get
us the notion of how important an edge is for a cut.

Algorithm 21: Sparsification, Spielman-Srivastava
(09)

1 Let q = O
(
n logn

ε2

)
.

2 for i = 1, 2, . . . , q do

3 Sample edge e with probability Re
n−1

.

4 H+ = e with weight 1/Re.

5 end

where the normalizing constant for Re is the sum of the effective
resistances (which we show is equal to n− 1, for any graph).

This defines a distribution over edges. For each of the q rounds, we
choose an edge from a distribution based on the edge’s effective
resistance in a graph. If H doesn’t yet contain edge e, we add it with
weight 1/Re. If H does already contain e, we increase the weight of
e in H by 1/Re, i.e. we “fatten” the edge.

We now compute Effective Resistances via Linear Algebra and the

Laplacian. Recall B is an incidence matrix ∈ Rm×n, where

Be,v :=


1 if v is head of e

−1 if v is tail of e

0 otherwise.

We define L = BTB, where L†. We further define

Π = BL
†
B
T
, where Πee = Re.

Proposition 38. We claim that span{1} = kernel(L) = kernel(B).

Proof. Recall kernel(L) is the set of vectors which gets killed by L.
It’s clear that if x ∈ Rn such that Bx = 0, then

Lx = BTBx = BT (0) = 0, hence kernel(B) ⊆ kernel(L).

What about the other way? Notice that

Lx = 0 =⇒ x
T
Lx = 0 ⇐⇒ x

T
B
T
Bx = 0

⇐⇒ ‖Bx‖22 = 0

⇐⇒ Bx = 0

⇐⇒
∑

(i,j)∈E
(xi − xj)

2
= 0

⇐⇒ xi = xj∀(i, j) ∈ E.

Lastly, note that since G connected,

∀(i, j) ∈ E ⇐⇒ X ∈ span{1}.

Also, recall that L = (D − A)1. Hence via an eigen-value
decomposition

L =
∑
i=1

λiviv
T
i

L
†

=
∑
λi 6=0

1

λi
viv

T
i ,

where we note that exactly only 1 of the λi are zero since the span is
n− 1.

LL† is a projection onto the space spanned by the vi’s.

(1) Orient the edges of G arbitrarily.

(2) Let i : m× 1 vector of current going across edges.

(3) Let v : n× 1 vector of voltages at each node.

(4) Let iext : n× 1 denote the current being forced into and forced
out of each node.

Realize that

current in = current out

iext = B
T
i,

and also Ohm’s Law
Imi = Bv.

where on the left hand side we have Im denoting the identity
on m entries and i being used with reference to v = ir.

Using both laws, we see that

iext = B
T
Bv = Lv.

So, we take iext and set it such that

iextxi − xj
and measure vi − vj = Re for edge e = (i, j).

We can use xi’s to pick out the ith entry such that

V = L
†
(xi − xj).

We then get that

Re = (xi − xj)
T
L
†
(xi − xj) = (BL

†
B
T

)(e,e) = Πe,e,

where Π is our matrix with effective resistances on the diagonal.

Cut Sparsification Given G, we want H such that ∀S ⊆ V ,∣∣∣∣fG(S)− fH (S)

∣∣∣∣
fG(S)

≤ ε.

This is the same as: ∀x ∈ {0, 1}n, and ∀S ⊆ V ,∣∣∣∣xTSLGxS − xTSLHxS ∣∣∣∣
xT
S
LGxS

≤ ε.

Spectral Sparsification (=⇒ Cut Sparsification)

∀x ∈ Rn, ∀S ⊆ V,

∣∣∣∣xTSLGxS − xTSLHxS ∣∣∣∣
xT
S
LGxS

≤ ε.

Algorithm 22: SROQ

1 Let q = O
(
n logn

ε2

)
.

2 for i = 1:q do
// Re effective resistance between nodes incident to e.

3 Sample edge e with probability pe = Re/(n− 1).

4 H+ = e adding weight 1
qpe

.

5 end

where Π ∈ Rm×m and

Π = BL
†
G
B
T
, Πee = Re

kernel(B) = kernel(L) = span{1}.

Recall that L†L is a projector onto the sub-space of eigenvectors
corresponding to non-zero eigenvalues, since

L
†

=
∑
λi 6=0

1

λi
viv

T
i .

Properties of Π matrix

Theorem 39. Π is a projector, i.e. Π2 = Π.

Proof. BL† BTB︸ ︷︷ ︸
=L

L†BT = BL†BT .

Theorem 40. im(Π) = im(B).

Proof. We first recognize that since Π = BL†BT , then clearly
whatever Π maps onto, so can B, hence im(Π) ⊆ im(B).

We seek to show that im(B) ⊆ im(Π).

There exists x ⊥ kernel(B) = span{1}. Let Bx = y. Then,

Πy = ΠBx = BL
†
B
T
B︸ ︷︷ ︸

=L

x = BL
†
Lx.

Note that L†L is a projector onto span{1n}⊥.

Hence Πy = BL†Lx = Bx = y. So Πy = y, i.e. y ∈ im(Π).

Theorem 41. tr(Π) = n− 1.

Proof. Since π a projector matrix, it’s eigenvalues are 0 or 1.
Further,

dim(im(B)) = dim(im(Π)) = dim(n− Kernel(B)) = n− 1.

Hence for any graph, now matter how large m,

tr(Π) =
∑
e∈E

Re = n− 1.

This is why we sample each edge with probability pe = Re/(n− 1).

Now, consider the output of our algorithm. Let’s look at the
laplacian of the output, for a weighted and undirected H. Let

de = # times edge e is sampled×
1

qpe
.

Then E[de] = 1, since we have q trials, where in each independent

trial we have probability pe of adding weight 1
qpe

.

Let S denote a diagonal m×m matrix of the de terms,

S =


d1

d2

.
. .

dm

 .
Then realize that

E[S] = Im, hence LH = B
T
SB

where the last statement follows from the definition of the Laplacian
for a weighted graph.

Hence E[LH] = LG.

WE note that B could have zero entries, i.e. edges which did not get
sampled at all. Hence entries of S could be zero, although they are 1
in expectation.

It remains to apply the concentration inequality. Let ‖ · ‖2 denote
the operator norm for matrices, i.e. the largest singular value. We
have a Concentration Inequality for Rank-1 Updates.

Theorem 42. Rudelson-Vershynin Concentration Inequality (2003).
Suppose y ∈ Rm is randomly picked such that ‖y‖2 ≤ M and

‖E[yyT]‖2 ≤ 1, i.e. E[yT y] = E[‖y‖22] ≤ 1.

Let q samples be drawn from Y , i.e. y1, y2, . . . , yq i.i.d.

Then,

E

[
‖

1

q

q∑
i=1

yiy
T
i − E[yy

T
]‖2

]
≤ Cm

√
log q

q
,

for some defined constant C (whose precise value is not important to
us).

In the above inequality, as q ↑, the difference goes closer to 0 in
expectation. The game is now how small we can set q in order to
guarantee sparsification.

Our q is the same as the q above. For us, let us now define which
distribution we use to generate the y’s. We use columns of Π scaled
down by

1
√
pe
,

i.e. we draw columns of Π (q of them) and scale them each the
corresponding values. With or without replacement?

Each column of Π gets drawn with probability pe. For the column
we drew from Π, after its scaled by 1/

√
pe, call it y. Then,

‖y‖2 =
1
√
pe
· ‖Π(·, e)‖2

where since Π2 = Π, we have (ΠTΠ)ee = the column norm contained
in the diagonal entry e. Hence

‖y‖2 =
1
√
pe
‖Π(e, e)‖2 =

1√
Re
n−1

·
√
R2 =

√
n− 1 = M, (6)

where we actually set our M in the last equality.

Now, we check

E[yy
T

] = ΠΠ
T

= ΠΠ︸︷︷︸
(1)setting

.

Further, setting

ΠSΠ =
1

q

q∑
i=1

yiy
T
i

and also q large enough to get that

CM

√
log q

q
≤
ε

2
.

We now have that

E [‖ΠSΠ− ΠΠ‖2] ≤
ε

2
,

which is an Absolute Error Bound on our Π matrix. We turn this
into relative error below.

By Markov, with probability ≥ 1/2,

‖ΠSΠ− ΠΠ‖2 ≤ ε.

By definition of ‖ · ‖2 for matrices (using Rayleigh Quotient),

⇐⇒ ∀y ∈ Rm,

∣∣∣∣yT π(S − I)Πy
∣∣∣∣

yT y
≤ ε.

=⇒ ∀y ∈ im(B), this result holds. But Πy = y, hence∣∣∣∣yT (S − I)y
∣∣∣∣

yT y
≤ ε

=⇒ ∀y = Bx s.t. x ⊥ 1(i.e.1
T
x = 0)

we have that

∣∣∣∣(Bx)T π(S − I)ΠBx
∣∣∣∣

(Bx)T (Bx)
≤ ε

⇐⇒

∣∣∣∣xTLHx− xTLGx∣∣∣∣
xTLGx

≤ ε ∀x ⊥ 1n.

Here, we have a sparsification guarantee for all x 6∈ kernel(L). Notice
that if x ∈ kernel(L), we get sparsification for free since Bx = 0.
Hence we have sparisfication for all x ∈ Rn.

Matroids and Submodularity
Overview Today is a capstone lecture. We generalize Minimum Spanning

Trees and the notion of linear independence between vectors via
Matroids. We also generalize Cuts via Submodularity.

Matroids Let E be a finite universe of items (a Ground Set). Let I ⊆ 2E

be a collection of all subsets of E (i.e. the power-set of E). The pair
(E, I) is a Matroid ⇐⇒
(1) If A ∈ I, then ∀B ⊆ A, B ∈ I. (if some subset of vectors is
independent, of course a subset of these is also independent)

(2) If A,B ∈ I and |A| > |B|, then ∃v ∈ A, v 6∈ B such that
B ∪ {v} ∈ I. (we can add an independent vector not included in our
original subset of independent vectors, and the resulting set still
independent).

Vector-space Matroid E.g. Let E denote a set of 1-million arbitrary
vectors in R3. Let I denote the set of linearly independent subsets.
We verify that (E, I) a matroid. (1) satisfied by properties of
independent vectors. For (2): the space spanned by A larger than
the space spanned by B, i.e. dimspan(A) > dimspan(B) since
|A| > |B| and they both belong to I. Hence we can add an element
to b and still retain its membership to I.

Cardinality k-matroid E.g. For any ground-set E. Let I be the set of all
subsets of E with size ≤ k. This is called a “Cardinality k-matroid”.

Graphic Matroid E.g. “Graphic Matroid”. Let E be the set of edges of a
graph G(V,E). Let I = {acyclic sub-graphs}, i.e. the set of forests
(they don’t have to be connected). Then,

(1) Realize that a sub-graph of a forest is still a forest (i.e. acyclic).
That is, if some set of edges has no cycle, then any subset of these
edges also has no cycle.

(2) Let A,B be forests with |A| > |B|, i.e. A has more edges than B.
A and B are edge sets such that when installed on V of G, they do
not introduce any cycles.

To add an edge to a forest, without introducing a cycle, we must add
an edge between two different connected components. We seek to
add an edge from A to B without introducing a cycle.

We know that #CC(A) < #CC(B). To see this, realize that we start
with n nodes, i.e. n-connected components. We then added edges to
nodes without introducing cycles, hence we know that if |A| > |B|,
then the number of connected components in A must be less than in
B. Hence there exist u, v disconnected in B but connected in A.

Then, for all u, v that are disconnected in B but connected in A (not
necessarily directly connected in A), look at the u, v path in A.
Eventually, we must find an edge in the path not in B (since u, v not
connected in B). Hence such an edge spans the two components A
and B.

Profit Functions Define a profit function per element in the universe. E.g.
for a graphic-matroid we give each edge a profit, e.g. for vectors,
each vector gets a profit.

Given a matroid (E, I) and a profit function P (E), we wish to solve

max
S∈I

∑
e∈S

P (e) (s.t. |S| ≥ k.)

where I denotes our set of feasible points.

As an example, MST would have P (e) = −1 · edge weight. Setting
k = n− 1, we get the MST.

Algorithm 23: Maximizing Profits via Matroids
1 Order the edges according to profit, i.e.

P (e1) ≥ P (e2) ≥ . . . ≥ P (em).
2 S0 ← {}.
3 k ← 0.
4 for j = 1, 2, . . . ,m do
5 if Sk + ej ∈ I then
6 k+ = 1.
7 Sk = Sk−1 + ej .

8 end

9 end
10 Output S0, S1, . . . , Sk.

This algorithm is reminiscent of Kruskal’s MST algorithm, in which
we greedily search through our edges (in ascending order of weight,
since we want the minimum weight spanning tree) and, if it’s
possible to add an edge without introducing a cycle, we do so.

Theorem 43. Sk is the largest profit independent-set of size k.

Proof. Suppose toward contradiction that Sk not the largest profit
independent-set of size k. I.e. there exists T ∈ I, where
T = {t1, t2, . . . , tk}, which is more profitable than Sk.

Without loss of generality, order elements of T such that

p(t1) ≥ p(t2) ≥ . . . ≥ p(tk).

Again WLOG, we order our set S = {s1, s2, . . . , sk} ∈ I such that

p(s1) ≥ p(sn) ≥ . . . ≥ p(sk).

We examine the first index p such that p(tp) > p(sp). Such a p must
exist since if not, T would not be more profitable than S. Now, let

A = {t1, t2, . . . , tp},
B = {s1, s2, . . . , sp−1},

so that |A| > |B|.
Hence by property (2) of Matroids, there exists ti ∈ A, where ti 6∈ B
such that B ∪ {ti} ∈ I. We further know that p(ti) ≥ p(tp) by the
ordering above, since i ≤ p.
Further, p(tp) > p(sp), since we looked at the first index such that
p(tp) > p(sp). Hence,

p(ti) ≥︸︷︷︸
i≤p

p(tp) ≥︸︷︷︸
first index p

p(sp).

Hence at some point before when constructing B, we must have
considered ti for inclusion in B. In such case, we would have added
ti to set B. But then we get a contradiction, since.

Submodularity Suppose we have two sets, A and B. We have familiar
operations, such as

A ∩ B,A ∪ B,
|A|, |B|,

|A ∩ B|, |A ∪ B|.
We know that |A ∩ B| + |A ∪ B| = |A| + |B|.
Submodular Function: Given a ground set E, where f : 2E → R. If

f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B),

then f is sub-modular.

E.g. let f(S) = |S|. Then f(A ∩ B) + f(A ∪ B) = f(A) + f(B). IF
this holds with equality, the function said to be modular.

Symmetry: implies f(S) = f(E\S), e.g. cut-size.

Monotonicity: If A ⊆ B, then f(A) ⊆ f(B).

Note that the cut function is not monotone. This can be seen since
adding nodes to a cut doesn’t always increase the cut size.

No Constraints Symmetric Constr. Monotone
&Matroid

Min Poly-time Poly-time Poly-time

Max
Generalization

of max-cut.
1/2 Approx

. 1/2 Approx
via greedy alg.

(1− 1
e

) approx.

E.g. Coverage Functions are submodular. If your ground set made
up of some profits. The universe is a set of sets, {V1, V2, . . . , Vn}
and f(S) = | ∪v∈S V |. This is a coverage function, since each vector
v ∈ S covers some proportion of the population.

For example, E may be a set of celebrities and we want to pay them
to advertise for us. vi’s are how much reach each celebrity has (vi is
a set of people or fans). We wish to pick k celebrities with our
budget, such that we minimize the overlap to cover the most people.

	Lecture 1: Global Min Cut
	Lecture 2: Ford-Fulkerson
	Lecture 3: Matching, Edge-Disjoint Paths, Probabalistic Method
	Lecture 4: Ramsey Numbers, Trees and MSTs
	Lecture 5: Cycles, Circuits, Commute Times
	Effective Resistances
	Lecture 6: Cover Times and Effective Resistances
	Lecture 7: NP Hard Problems, Reductions
	Lecture 8: Reductions
	Lecture 9: Approximation Algorithms
	Lecture: TSP, Dynamic Programming
	Midterm Review
	Approximation Algorithms
	Concentration Inequalities
	Sparsification
	Matroids and Submodularity

