
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

Final Review Session – 03/20/17

1. LetG = (V,E) be an unweighted, undirected graph. Let λ1 be the maximum eigenvalue
of the adjacency matrix (A) of G. Suppose ∆ is the max degree of G and d̄ is the
average degree of G, then show the following:

d̄ ≤ λ1 ≤ ∆

Note that the above also holds for weighted graphs and weighted degrees, using pretty
much the same proof.

Solution: First we show the lower bound. By definition of the top eigenvector:

λ1 = max
x

xTAx

xTx
≥ 1TA1

1T1
=

∑
(u,v)∈E A(u, v)

n
=

∑
u

d(u)

n
= d̄

where 1 is the all-ones vector. For the upper bound, let v1 be the eigenvector corre-
sponding to λ1. Let v be the vertex on which it takes its maximum, i.e. v1(v) ≥ v1(u)
for all u ∈ V . We know v1(v) > 0 by Perron-Frobenius thm (see hint below). Therefore,
we have the following:

λ1 =
(Av1)(v)

v1(v)
=

∑
u:(u,v)∈E v1(u)

v1(v)
=

∑
u:(u,v)∈E

v1(u)

v1(v)
≤

∑
u:(u,v)∈E

1 ≤ ∆

2. What are the eigenvalues of the adjacency matrix and laplacian matrix for the complete
graph?

Solution: For the complete graph, we have Aij = 1 if i 6= j and 0 along the diagonal.
Therefore, A = O−I, where O is the all ones matrix. Because O is rank 1, it has n−1
0-eigenvalues and we know trace(A) =

∑
i λi = λ1 = n. Subtracting I decreases all

eigenvalues by 1, so A has one eigenvalue of n−1 and n−1 eigenvalues of -1. Note that
the Laplace matrix of the complete graph is given by L = nI −O, so all eigenvalues of
−O are scaled by n and L’s spectrum has one eigenvalue of 0 and n− 1 eigenvalues of
n.

3. What are the eigenvalues of the adjacency matrix for the star graph?

Hint: you may use the fact (without proof) that a connected graph G with maximum
eigenvalue (adjacency) λ1 is bipartite if and only if −λ1 is also an eigenvalue.

Solution: Without loss of generality label the central node of the star graph as node
1. Then the adjacency matrix of the star graph has the following form:

Aij =


1, if i = 1, j 6= 1.

1, if i 6= 1, j = 1.

0, otherwise.

Then as A has n − 1 identical columns (of e1), it is rank 2. It has n − 2 eigenvalues
of 0. Furthermore, the star graph is bipartite. We may show that the eigenvalues of
adjacency matrices of bipartite graphs are symmetric around 0 - we may just use this
fact as its given as hint (it’s not too hard to prove but we will omit those details).

Now consider a vector x such that x1 = 1 and xk = 1/
√
n− 1 for 2 ≤ k ≤ n. Then we

have Ax =
√
n− 1x and λ1 =

√
n− 1. Using the claim above and the fact that A is

rank 2, the spectrum of the star graph is: {
√
n− 1, 0, ..., 0,−

√
n− 1}.

4. Let G = (V,E) be a connected, undirected graph. Let H = (V,E ′) be a connected
subgraph of G.

(a) Show λ1(A(H)) ≤ λ1(A(G)), where λ1(A(G)) is the largest eigenvalue of the
adjacency matrix associated with G.

Hint: you may use the Perron-Frobenius thm, which says that a real square
matrix with positive entries has a unique largest real eigenvalue and that the
corresponding eigenvector can be chosen to have strictly positive components.

Solution: Let A and A′ be the adjacency matrices of G and H respectively. Let
x and x′ be the eigenvectors of A and A′ corresponding to eigenvalues λ1 and
λ′1, so we have Ax = λ1x and A′x′ = λ′1x

′. Because A and A′ are both non-
negative matrices, by the Perron-Frobenius theorem, we have that both x and x′

are non-negative as well.

If H is a subgraph of G on the same vertices but with some edges deleted, we
have:

λ′1 =
(x′)TA′x′

(x′)Tx′
=

∑
i,j x

′
ia
′
ijx
′
j

(x′)Tx′

≤
∑

i,j x
′
iaijx

′
j

(x′)Tx′
=

(x′)TAx′

(x′)Tx′

≤ supx 6=0

xTAx

xTx
= λ1

We get the first inequality above because x′ is non-negative and 0 ≤ a′ij ≤ aij for
every i and j.

(b) Show λn(L(H)) ≤ λn(L(G)), where λn(L(G)) is the largest eigenvalue of the
laplacian matrix associated with G.

Solution Again, let L and L′ be the laplacian matrices of G and H respectively.
Let x and x′ be the eigenvectors of these respective matrices with eigenvalues λn
and λ′n. We know E ′ ⊆ E, so we have the following:

λ′n =
(x′)TL′x′

(x′)Tx′
=

∑
(i,j)∈E′(x

′
i − x′j)2

(x′)Tx′

≤
∑

(i,j)∈E(x′i − x′j)2

(x′)Tx′

≤ supx 6=0

xTLx

xTx
= λn

2

5. Recall the knapsack problem: there are n items each with some value v1, . . . , vn > 0
and weight w1, . . . , wn > 0 and a capacity W > 0. Suppose W ≥ wi for all i and
now consider the version of knapsack where one one of each item exists. Consider
the following greedy algorithm: order all items in decreasing value/weight ratio (and
relabel) such that v1

w1
≥ v2

w2
≥ · · · ≥ vn

wn
, and take the first k items that fit in the

knapsack such that the next item (k + 1) does not.

(a) Show that this algorithm may be aribitrarily bad (unbounded approximation ra-
tio).

Solution: Consider the case with just two objects, {a1, a2} such that v1
w1

> v2
w2

,
but w2 = W . Then greedy will pick a1 and not have room for the second object.
But the ratio of v2 to v1 may be made to be arbitrarily bad.

(b) Consider the following modified algorithm: compute the greedy solution as before
and find the item of maximum value vi∗ . Output the maximum of the greedy
algorithm and vi∗ . Show that this new algorithm gives a 1

2
-approximation.

Solution: Let k be the index of the first item that is not accepted by our greedy
algorithm. Then we can show v1 + v2 + · · · + vk−1 + αvk ≥ OPT , where α =
W−(w1+···+wk−1

wk
, i.e. the fraction of the k− th item that we can fit into the sack to

completely fill it. To see this fact, we can write knapsack as an integer program
and relax it to an LP.

max
n∑

i=1

vixi

subject to
n∑

i=1

wixi ≤ W

0 ≤ xi ≤ 1, for all i

Then x1 = · · · = xk−1 = 1, xk = α, xj = 0 for j > k is feasible for the above LP
and in fact optimal (work out on own). So we know at least one of v1 + · · ·+ vk−1

and αvk must be greater that OPT/2. The first is our output from greedy and the
second can be bounded by the following αvk < vk ≤ vi∗ , so our simple modification
is a 1

2
-approximation.

6. The SETCOVER problem is as follows: Given a set E of elements and a collection
S1, . . . , Sn of subsets of E, what is the minimum number of these sets whose union
equals E?

Let f(e) be the number of sets in our collection of subsets that contain e ∈ E. Let
f = maxe∈E f(e). Give a f -approximation algorithm to this problem.

Note that you can also come up with a log n-approximation algorithm that does not
depend on f . If you’re interested, try doing that as well.

3

Solution: We will write the problem as an IP first:

min
n∑

i=1

xi

subject to
∑
j:e∈Sj

xj ≥ 1, ∀e ∈ E

xi ∈ {0, 1}, 1 ≤ i ≤ n

Notice that when f = 2, this is the same as vertex cover. That is, each set Sv is the
set of edges that v covers - and each edge is covered by exactly 2 nodes. Now we may
relax the integral constraint to give an LP – 0 ≤ xi ≤ 1 now – just as we did for the
approximation algorithm for vertex cover.

We know the min computed from the LP will be less than or equal to OPT because we
have just increased the feasible region by relaxing. Now we must round our solution.
Let x∗ be the LP solution and consider the following rounding:

yi =

{
1 if x∗i ≥ 1

f
,

0 otherwise.

First see that
∑

i yi ≤ f
∑

i x
∗
i ≤ f · OPT . Now we must show that our collection of

sets given by y covers all elements in E. Because each element of E is in at most f sets
from our collection, each constraint of the form

∑
j:e∈Sj

xj ≥ 1 has at most f terms in
the sum, so for each of these constraints, at least one of the x∗i in the sum is at least
1
f
. So for each constraint, we are rounding up at least one term. Therefore, for each

element in E, y must contain at least one set that covers it, and we are done.

Note that for the log n approximation algorithm, we can just use the greedy algorithm
- try doing this on your own.

7. You’re consulting for an e-commerce site that receives a large number of visitors each
day. For each visitor i, where i ∈ {1, 2, . . . , n}, the site has assigned a value vi,
representing the expected revenue that can be obtained from this customer.

Each visitor i is shown one of m possible ads A1, A2, . . . , Am as he or she enters the site.
The site wants a selection of one ad for each customer so that each ad is seen, overall,
by a set of customers of reasonably large total weight. Thus, given a selection of one
ad for each customer, we will define the spread of this selection to be the minimum,
over j = 1, 2, . . . ,m, of the total weight of all customers who were shown ad Aj.

Example: Suppose there are six customers with values 3, 4, 12, 2, 4, 6, and there are
m = 3 ads. Then, in this instance, one could achieve a spread of 9 by showing ad A1

to customers 1, 2, 4, ad A2 to customer 3, and ad A3 to customers 5 and 6.

The ultimate goal is to find a selection of an ad for each customer that maximizes the
spread. Unfortunately, this optimization problem is NP-hard (you don’t have to prove
this). So instead, we will try to approximate it.

4

(a) Give a polynomial-time algorithm that approximates the maximum spread to
within a factor 2. That is, if the maximum spread is s, then your algorithm
should produce a selection of one ad for each customer that has spread at least
s/2. In designing your algorithm, you may assume that no single customer has a
value that is significantly above the average; specifically, if v̄ =

∑n
i=1 vi denotes

the total value of all customers, then you may assume that no single customer
has a value exceeding v̄/(2m).

Solution: First we have the following bound on the optimal solution: OPT ≤ v̄
m

,
otherwise the sum of expected revenue assigned to adds would exceed the sum of
expected revenues of customers.

Consider the greedy algorithm. We arbitrarily order the customers, and for each
customer we assign him/her to the ad with the minimum weight currently assigned
to it (breaking ties arbitrarily).

At the end of the algorithm, there exists some ad Ak such that the weight of
Ak ≥ v̄

m
. Let w(Ak) denote the weight of customers shown ad Ak. Now consider

the last customer shown ad Ak, say vj without loss of generality. At this time,
the weight of Ak was minimum among all ads. The weight of Ak at this time was:

w(Ak)− vj ≤
v̄

m
− v̄

2m

=
v̄

2m

where we have used the facts that w(Ak) ≥ v̄
m

and vi ≤ v̄
2m

for all i. Therefore,
at this time, all ads have weight ≥ v̄

2m
, so output of algorithm is at least this as

well. And we have the following: ALG ≥ v̄
2m
≥ OPT/2.

Notice that this is very similar to the minimum makespan problem except now
instead of minimizing the max load we are maximizing the minimum load - the
analysis should be pretty familiar.

(b) Give an example of an instance on which the algorithm you designed in part (a)
does not find an optimal solution (that is, one of maximum spread). Say what
the optimal solution is in your sample instance, and what your algorithm finds.

Solution: Consider the simple choice of m = 2, n = 3 and the values of v
are v1 = 1, v2 = 1, v3 = 2. Suppose we considered the v’s in order, then
our assignment would be v1, v3 to A1 and v2 to A2 with spread 1. But optimal
achieves a spread of 2.

8. Consider the following problems. Show that each is NP-complete.

(a) HITTING SET: Given a family of sets {S1, S2, . . . , Sn} and an integer b, is there
a set H with b or fewer elements such that H intersects all sets in the family?

(b) LONGEST CYCLE: Given a graph and integer k, is there a cycle with no repeated
nodes of length at least k?

(c) MAX BISECTION: Given a graph G = (V,E) and integer k, does a bisection

exist (i.e. |S| = |V \ S| = |V |
2

) such that the cutsize of S is at least k?

5

(d) SUBGRAPH ISOMORPHISM: Given two undirected graphs G and H, is H a
subgraph of G? That is, if H has nodes v1, . . . , vn, can you find distinct nodes
u1, . . . , un in G such that (ui, uj) is an edge in G whenever (vi, vj) is an edge in
H?

Solution: Remember to show that a problem is NP-complete, we must show that it is
in NP and that it is NP-hard by reducing a known NP-hard problem to our problem.

For all the above problems, it’s not difficult to see that they can be checked (given a
yes certificate) in polynomial time - make sure you understand why. I will know give
hints for each reduction.

For HITTING SET, we reduce VERTEX COVER to this problem. Given an input
of VERTEX COVER, we create sets such that each set contains the two nodes for an
edge for each edge, then we want to find the k elements (nodes) that cover all the sets
(edges).

For LONGEST CYCLE, we use HAMILTONIAN CYCLE and k = |V |.
For MAX BISECTION, we solve MAX CUT using an algorithm for this problem.
Suppose G = (V,E) and k is an input to MAX CUT. Create a new graph G′ with |V |
new “dummy” nodes (isolated vertices), so MAX BISECTION on this new graph is
equivalent to MAX CUT on G.

For SUBGRAPH ISOMORPHISM, we can just reduce CLIQUE to this problem.
CLIQUE takes as input a graph G and integer k and asks if G contains a clique
of size K (note that this is NP-hard because it is exactly INDEPENDENT SET on
the compliment graph). We can easily use SUBGRAPH ISOMORPHISM to solve this
problem then.

6

