
CME 305: Discrete Mathematics and Algorithms
TA: Andreas Santucci

Midterm Practice Problems – 02/14/17

Probabilistic Method

Let X be a non-negative random variable with expectation E[X] = µ ≥ 0 and variance σ2. Prove that
for all λ > 0,

Pr(X ≥ λ) ≤ λµ+ σ2

λ2 + σ2
.

We first recall Markov’s Inequality, that for non-negative RV X, Pr(X ≥ a) ≤ E[X]
a

.1 Then,

Pr(X ≥ λ) = Pr(λX ≥ λ2) = Pr(λX + σ2 ≥ λ2 + σ2).

Now, define random variable Y = λX + σ2. Then E[Y] = λµ + σ2 by linearity of expectation. We apply
Markov’s inequality, with a = λ2 + σ2, and we’re done.

Let F be a finite collection of binary strings of length at most k and assume no member of F is a prefix
of another one. Let Ni be the number of strings of length i in F . Prove that

k∑
i=1

Ni

2i
≤ 1.

Hint: consider generating a random binary string of length k.

Consider a random string of length exactly k, call it S. We generate each bit of S using a Bernoulli random
variable with success probability 1/2. We want to calculate Pr(S ∈ F). We know this probability at most
one.

Consider the prefix’s of S of length 1, 2, . . . , k, i.e. call S1 the prefix of S containing only the first bit, and
S2 the prefix of S containing only the first two bits, and continue in this fashion to define Sk to be the
prefix-string of length k (i.e. S itself).

Realize that because no member of F is a prefix of another one, that

Pr({Si ∈ F ∩ Sj ∈ F}) = 0

by the problem statement, and the fact that by construction Si a prefix of Sj for i < j. Hence using a
union bound (with non-overlapping events)

Pr(∃Si ∈ F) = Pr(∪ki=1(Si ∈ F)) =
k∑

i=1

Pr(Si ∈ F) =
k∑

i=1

Ni

2i
≤ 1,

1To show this, use the fact that E[·] a monotone operator and a ≥ 0:

1{x≥a}a ≤ x =⇒ Pr(X ≥ a) ≤ E[X]

a
.

1

where the last inequality follows from the fact that Pr(∃Si ∈ F) is a probability, hence must be at most
one. Notice that in general, union bound doesn’t necessarily give a bound less than or equal to unit value,
hence the argument for non-overlapping events is critical.

Imagine n cars, each of which travels at a different speed. Initially, the cars are queued in uniform
random order at the start of a semi-infinite, one-lane highway. Each car drives at the minimum of its
maximum speed and the speed at which the car in front of it is driving. The cars will form “clumps”.
What is the expected number of clumps?

We are given a permutation π[n]. Consider the last car in the sequence, call it car i. It forms a clump
⇐⇒ it is slower than all cars in front of it.2

Since the car speeds are uniformly distributed, the ith car will be slower than all other cars in front with
probability 1/i. Hence we have a recursive relation.

f(i+ 1) =
1

i+ 1
(1 + f(i))︸ ︷︷ ︸

car i + 1 forms a clump

+
i

i+ 1
(f(i))︸ ︷︷ ︸

does not form a clump

=
1

i+ 1
+ f(i).

Realize that in the base case where we consider π[1], the only car forms its own clump. Hence f(1) = 1.
Hence by unrolling our recursion, we see that

f(n) =
n∑

i=1

1

i
= Hn.

Alternate Solution Alternatively, we may consider the fastest car of the n-cars. Realize that it forms
its own clump if and only if it is in front of all other cars; otherwise, there exists a car slower in front of it,
and it gets absorbed in another clump. Since the speeds uniformly distributed, the fastest car is the first
car with probability 1/n. Having considered the fastest car, we now are left with n− 1 cars, and we have
our recursion.

Flow

At lunchtime it’s crucial for people to get to the food trucks as quickly as possible. The building is
represented by a graph G = (V,E) where each room, landing, or other location is represented by a
vertex and each corridor or stairway is represented by an edge. Each corridor has associated capacity
c, meaning that at most c people can pass through the corridor at once. Traversing a corridor from one
end to the other takes one timestep and people can decide to stay in a room for the entire timestep.

Suppose all people are initially in a single room s, and that the building has a single exit t. Give a
polynomial time algorithm to find the fastest way to get everyone out of the building.

2→) If the last car is traveling slower than all cars in front of it, then it will never catch up to any of the other cars. Hence
the last car will remain by itself, forming its own clump. ←) If the last car forms a clump, then by definition its the leader
of its own clump. Suppose it travels faster than a car in front of it. Then at some point, it must catch up to this car. But
in this case the last car is not responsible for forming its own clump, and we get a contradiction. Hence if the last car forms
a clump, it must be traveling slower than all other cars in front of it.

2

We solve this problem by modifying the input graph, then applying Ford Fulkerson’s max flow algorithm.3

We first fix a deadline time k, such that we need to empty the building by time k under the above
conditions. Once we design our algorithm, we solve our problem by increasing k by unit value until we
find the smallest such value where everybody can exit. Let the total number of people be P .

Constructing the Graph For each room r ∈ V , make k+ 1 copies of it r0, . . . , rk; each will correspond
to room r at a particular timestep. For each pair of rooms r and w with a hallway capacity of crw between
them, create directed edges with weight crw each: ri → wi+1 and wi → ri+1, for each time i = 0, 1, . . . , k−1.
For each room r, add directed edge ri → ri+1 with weight P for each time i = 0, 1, . . . , k − 1. Finally, add
single room t, and connect tk to t with edge capacity P . On this new graph, run FF with source s and
target t.

If a plan exists, above algorithm returns flow of size P or more If we route units of flow as we
route people in such a scheme, and then send all P units of flow from tk to t, we clearly obtain a flow
of size P . Since this flow feasible, and since FF finds a max flow, we know FF will find a flow with size
greater than or equal to P .

If FF finds flow of P or more, this corresponds to a valid plan Note the flow must have value
exactly P , since the cut defined by {t} has size P . We obtain a routing as follows. For each timestep
i = 1, 2, . . . , k, look for all pairs of rooms r, w such that people are moving from ri−1 → wi and from
wi−1 → ri. Notice that although each capacity constraint respected (i.e. no more than crw people are
crossing in either direction), the total number of people utilizing the hallway between r and w in both
directions may be greater than crw. To remedy this, for all rooms r and w and each time-step k: consider
the people “swapping” from r to w, suppose there are a of them; we leave them in place, and let the rest
cross the hallway as normal. This operation doesn’t change the number of people in every room after the
ith timestep. The operation also preserves integer-weighted, non-negative, feasible flow. Hence the flow
obtained after all swaps still has size P . We convert this into an evacuation plan by routing each person
as a distinct unit of flow in the algorithm.

Runtime FF runs on a graph with m edges and max-flow f in O(mf) work. If our original graph has
m edges, our modified graph has km edges. Since the max-flow of this graph at most P , the runtime of
FF on modified graph is O(kmP). To address overcrowding in hallways (from flow in either direction), we
consider m pairs of connected edges at each of the k time-steps and check if there is a swap between them.
This phase takes O(mk) time. Thus the algorithm upper-bounded by O(kmP). Via original observation,
increasing k one by one will give an algorithm running in poly time.

Trees

Let T be a tree. Let ∆(T) = d, i.e. max-degree is d. Show that T has at least d leaves.

Fix attention to the node of max-degree. If this node is the root of the tree, it has d children. If it’s
not the root of the tree, perform a Breadth First Search starting from said node to explore the graph, in

3Solution by Arun Jambulapati.

3

the process construct a BFS tree.4 Starting at the root, we traverse down the tree through each of the d
children. Since it’s a tree, the paths we proceed down must never intersect (if they do, we yield a cycle,
contradicting that T is a tree). Our tree T finite, so eventually we must get to d leaves.

A minimum bottleneck spanning tree of a weighted graph G is a spanning tree of G that minimizes
the maximum weight of any edge in the spanning tree. Prove that a minimum spanning tree is also
minimum bottleneck spanning tree, but that the converse is not true.

An MST is also an MBST, via cut property Notice that a MST respects the cut property, whence
it’s also an MBST. To see this, consider MST T , and MBST B. Let e = (i, j) denote the heaviest weight
edge used in T ; we show that e ∈ B as well, which shows that an MST also minimizes the max weight of
any edge in the spanning tree, i.e. an MST also an MBST.

Consider the cut defined by removing e from MST T . We are left with a forest with two trees, call them
L,R. By the cut property, each edge e′ crossing the cut has weight at least that of e. Examine the edges
of B which also cross the cut; they must too all have weight at least c(e).5 But we started with e as the
bottleneck edge in the MST T . Hence

weight(e) ≤ weight(e′) for each e′ ∈ cut defined by
removing e from T

But we know that B has minimum bottleneck cost among trees T ′, i.e. bottleneck(B) ≤ bottleneck(T ′),
whence T also a MBST.

Not every MBST is an MST, via counter example Consider a weighted triangle with two edges of
weight 2 and one edge of weight 1. The MST of this graph is any length two path containing the weight 1
edge, but the tree formed by weight 2 edges will have the same bottleneck cost (of 2) as any MST, but it
has strictly more cost.

Weighted Graph G

2

12

2

1

An MST T
with weight 3

2

2

An MBST B
with bottleneck 2 but cost 4

Basic Graph Theory and Definitions

In a village there are three schools with n students in each of them. Every student from any of the
schools is on speaking terms with at least n + 1 students from the other two schools. Show that we
can find three students, no two from the same school, who are on speaking terms with each other.

4This is equivalent to picking up the graph from said node and “dangling” it, i.e. we “arbitrarily” make said max-degree
node the root of the tree.

5If not, we get a contradiction that e is the smallest weight edge crossing the cut.

4

We have a tri-partite graph where we draw an undirected edge from node u in school A to node v in school
B ⇐⇒ u is on speaking terms with v. We do this for each possible relationship across school boundaries.

Consider a node u in school A which has exactly n+ 1−k neighbors in school B and k neighbors in school
C, where we have chosen u such that k as small as possible. Consider a neighbor of u in C, call it v. It
remains to show that v has a neighbor in B in common with one of u’s n + 1 − k neighbors in B. But
we started with selecting u for the sole reason that k as small as possible, hence v must have at least k
neighbors in B.

b

b

b

n+ 1− k edges.

k edges

≥ k edges
w

u

v

School A

School B

School C

One of those neighbors of v must also be a neighbor of u using Pigeonhole principle; if there were no overlap
between these two neighborhoods, it would imply that school B has more than n children, a contradiction.
Hence we have realized a triangle (u, v, w) wherein we have found three students (no two from the same
school) who are on speaking terms with each other.

A connected k-regular graph on n nodes is one in which all vertices have degree k. Prove that the
diameter of a connected k-regular graph is O(n/k).

Denote the diameter of the graph by d, and let u, v be two vertices satisfying that dist(u, v) = d. Perform
a BFS starting from node u, and let `i denote the set of vertices w such that dist(u,w) = i. Denote by P
the shortest-path from u to v.

Realize that since we started with a BFS tree rooted at u, and since dist(u, v) = d = diam(G) is the longest
shortest path, it must be the case that the BFS tree has exactly height d. Hence it must be the cast that

∪di=0`i = V

i.e. all n nodes of our graph contained in the first d layers of our BFS tree.6

Realize that `i∩P ⊆ (`i−1 ∪ `i+1), i.e. the neighbors of `i which are also in our path P must be found only
in the layer before and after.7 Consider any layer `i in our tree for 1 < i < d (i.e. we exclude the root node
in `0 and the last layer `d, itself containing v). Notice that since `i part of a BFS tree, that each node in
`i must be connected to (at least one) parent in `i−1. Each node in `i must also be connected to exactly k

6If this weren’t the case, and there existed some other node not in the first d layers, it means there is a shortest path of
length > d between u and said node, in which case we get a contradiction with the diameter of our graph being d.

7If not, we get a contradiction with P being a shortest path, since we can “shortcut” between layers, still traversing u v.

5

neighbors, since our graph k-regular; in general, these k neighbors could themselves be in `i−1, `i, `i+1 only.
8 Since we started with i < d, we know that there is also a “children layer” `i+1. We know that between
these three layers, there must be at least k nodes. I.e. we have d/3 “epochs” in our tree, each containing
at least k nodes. We know that d

3
· k ≤ n ⇐⇒ d ≤ 3n

k
=⇒ d = O(n/k).

Show that every graph on m edges has a subgraph on at least m/2 edges which is bipartite.

Consider our randomized max-cut algorithm, whereby we select each node for inclusion in our cut with
probability p = 1/2. Then realize that an edge appears in our cut if and only if exactly one of its incident
nodes is in the cut, which happens with probability 1/2. 9 This holds for each edge, hence by linearity of
expectation, there exists a cut of size m/2.

Consider the sub-graph induced by taking only these m/2 edges. Realize that for each edge, exactly one
node incident to our cut and one node not in the cut, i.e. we have a bi-partition.

Prove that a graph with 2n nodes and minimum degree n must be connected.

Assume toward contradiction that the graph G split into k > 1 components. Fix attention to any two
vertices u, v in different components. By definition of being in different components, they have no common
neighbors, i.e. |Γ(u) ∩ Γ(v)| = 0. Also note that |Γ(u) ∪ Γ(v)| ≤ 2n − 2 since if u, v are not directly
connected then their neighborhoods exclude each other, and further our graph only has 2n nodes. We now
use inclusion-exclusion principle,

2n− 2 ≥ |Γ(u) ∪ Γ(v)| = |Γ(u)|︸ ︷︷ ︸
≥n

+ |Γ(v)|︸ ︷︷ ︸
≥n

− |Γ(u) ∩ Γ(v)|︸ ︷︷ ︸
=0

But this suggests that 2n− 2 ≥ 2n which is a contradiction. Whence our graph must be connected.

8If it had a neighbor in ∪i−2j=0`j , we get a contradiction with how we constructed our BFS tree. Note that it’s OK to have
neighbors in `i since our original graph not a tree. It’s also OK to have neighbors in `i+1 since each layer 1 < i < d in our
tree has children. However, note that there can not be neighbors in any of `i+2, . . . , `d, for if there were, said node should
actually belong in layer `i+1, since it’s reachable with a direct edge from `i.

9Fix attention to edge e = (u, v). Realize that each of u, v could be in or out of the cut, hence there are four possibilities.
Two possibilities involve exactly one of u or v chosen for inclusion in S; these are disjoint events each with probability 1/4,
hence with probability 1/2 edge e is in the cut. With probability 1/4, both u, v ∈ S and with probability 1/4, both u, v 6∈ S.
This partition accounts for our sample space.

6

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle

