
CME 305: Discrete Mathematics and Algorithms

The following lecture notes are based heavily on the paper by Spielman and Srivastava, sometimes following

it literally.

1 Introduction

The goal of sparsification is to approximate a given graph G by a sparse graph H on the same set of vertices.

If H is close to G in some appropriate metric, then H can be used as a proxy for G in computations without

introducing too much error. At the same time, since H has very few edges, computation with and storage

of H should be cheaper.

Given a graph G = (V,E), we wish to solve some problems that involve cuts of G. For example: Minimum

Cut, Sparsest Cut, Maximim Cut, etc. The running time of algorithms for these problems typically depends

on the number of edges in the graph, which might be as high as
(
n
2

)
. To bring down the running time of

these algorithms, it would be nice if we could build another graph G′ that approximates G across all cuts,

but has fewer edges.

We will describe the method of Spielman and Svristava (2009) to ‘sparsify’ our graph, which uses effective

resistances to drive a sampling procedure.

2 Random Sampling

To see how naive random sampling performs, we will sample each edge with the same probability p, and

give weight 1/p to each edge in the sparse graph H. With these weights, each edge e ∈ E will have expected

contribution exactly 1 to any cut, and thus the expected weight of any cut in H will match G. It remains

to see how many samples we need to have cut equivalence between G and H with high probability.

Consider a particular cut S ⊆ V . If it has c edges crossing it in G, the expected weight of edges crossing it

in the new graph H is also c. Denote the total weight of edges between S and V − S by fG(S) = c, we have

the following concentration result due to Chernoff:

P (|fH(S)− c| ≥ εc) ≤ 2e−ε
2pc/2

In particular, picking p = Ω( t logn
ε2c ) will make the RHS of the above less than 1/nt. To make sure this

result holds for all cuts, we take c to be the global minimum cut, and apply union bound using Karger’s

cut-counting theorem. Karger’s cut-counting says that the If G has a min-cut of size c, then the number of

cuts of value αc is at most n2α.

This sampling procedure gives us a sparsified graph H with O(n
2 log(n)
cε2 ) edges. This has a major drawback:

the dependence on c can be really disadvantageous when c = 1, which happens for example in the dumbbell

graph. We alleviate this problem via importance sampling and effective resistances.

3 Sampling with effective resistances

The main idea is to include each edge of G in the sparsifier H with probability proportional to its effective

resistance. The effective resistance of an edge is known to be equal to the probability that the edge appears

in a random spanning tree of G, and is proportional to the commute time between the endpoints of the edge.

We show how sampling according to these resistances yields a good sparsifier.
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To define effective resistance, identify G = (V,E) with an electrical network on n nodes in which each edge

e corresponds to a link of conductance 1. Then the effective resistance Re across an edge e is the potential

difference induced across it when a unit current is injected at one end of e and extracted at the other end of

e. The algorithm can now be stated as follows.

H = Sparsify(G, q)

for q times do

Sample an edge e with probability pe = Re

n−1

Add e to H with weight 1
peq

(summing weights if needed)

end for

3.1 Laplacian

Recall that the Laplacian of a weighted graph is given by LG = D − A where A is the weighted adjacency

matrix and D is the diagonal matrix of weighted degrees of each node. When we drop the subscript and

write L, we have that LG is intended. Notice that the quadratic form associated with L is just

xTLx =
∑

(u,v)∈E

(x(u)− x(v))2wuv

Let LG be the Laplacian of G and let LH be the Laplacian of H. The main theorem is that if q is sufficiently

large, then the quadratic forms of LH and LG are close.

Theorem 1 Suppose G and H = Sparsify(G, q) have laplacians LG and LH respectively, and 1
√
n < ε ≤ 1.

If q = O(n log(n)/ε2), then probability at least 1/2, we have for all x ∈ Rn:

(1− ε)xTLHx ≤ xTLGx ≤ (1 + ε)xTLHx

3.2 Effective Resistances via Linear Algebra

Let G be an undirected graph and B its corresponding m×n incidence matrix. First, arbitrarily orient each

edge of E, then define the (e, v) entry of B as 1 if v is the head of e, and −1 if v is the tail. All other entries

are zero. Then it is easy to see that LG = BTB. We denote the rows of B as be. Note that bTe = χv − χu.

It is immediate that L is positive semidefinite since xTLx = xTBTBx = ||Bx||22 ≥ 0, any x ∈ Rn. We also

have ker(L) = ker(B) = span(1) since

xxLx = 0⇔ ||Bx||22 = 0⇔
∑

(u,v)∈E

(x(u)− x(v))2wuv = 0

⇔ x(u)− x(v) = 0

⇔ x is constant, since G is connected

Now we introduce the pseudoinverse of L, denoted L+. Since L is symmetric we can diagonalize it as

L =
∑n−1
i=1 λiuiu

T
i , where λ1, . . . , λn−1 are the nonzero eigenvalues of L, and ui the eigenvectors. The

Moore-Penrose Pseudoinverse of L is defined

L+ =

n−1∑
i=1

1

λi
uiu

T
i
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Notice that

LL+ = L+L =

n−1∑
i=1

uiu
T
i

Which is simply the projection onto the span of the nonzero eigenvectors of L. Thus LL+ is the identity on

im(L) = im(L+) = span(1)⊥.

Now we define some electrical flow notation. For a vector iext(u) of currents injected at the vertices, let i(e)

be the currents induced in the edges (in the direction of orientation) and v(u) the potentials induced at the

vertices. By Kirchoffs current law, the sum of the currents entering a vertex is equal to the amount injected

at the vertex:

BT i = iext

By Ohm’s law, the current flow in an edge is equal to the potential difference across its ends times its

conductance:

i = Bv

Combining these two facts

iext(u) = BTBv = Lv

Now since iext ⊥ 1, and by the projection property of the pseudoinverse, we have

v = L+iext

Recall that the effective resistance between two vertices u and v is defined as the potential difference induced

between them when a unit current is injected at one and extracted at the other. We will derive an algebraic

expression for the effective resistance in terms of L+. To inject and extract a unit current across the endpoints

of an edge e = (u, v), we set iext = bTe = (χv − χu), which is clearly orthogonal to 1. The potentials induced

by iext at the vertices are given by v = L+bTe ; to measure the potential difference across e = (u, v), we simply

multiply by be on the left:

v(v)− v(u) = (χv − χu) = (χv − χu)TL+bTe

It follows that the effective resistance across e = (u, v) is given by beL
+bTe .

3.3 The Projection Matrix Π

Define the matrix Π = BL+BT . It is clear that im(Π) ⊆ im(B). We also have that im(B) ⊆ im(Π) since

for any y ∈ im(B) there exists an x ⊥ 1 such that Bx = y, and so Πy = BL+BTBx = y by the projection

property of LL+. Thus im(Π) = im(B).

It is easy to see that P is the orthogonal projection onto im(B), since

Π2 = BL+BTBL+BT = BL+LL+BT = Π

Furthermore Π is symmetric, and has its e’th diagonal entry equal to Re. Since Π is a projection with an

n− 1 dimensional range, it has exactly n− 1 eigenvalues equal to 1, and all others equal to 0. Therefore the

trace of Π, is tr(Π) = n− 1. This implies the sum of all effective resistances across edges of a graph is n− 1,

and explains the normalization factor in the sampling algorithm Sparsify(G, q) introduced earlier.
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4 The Main Result

First we get handle on the output of the sparsification algorithm using linear algebra. Define the m × m
diagonal matrix S, which has on the e’th diagonal set to the number of times edge e was sampled, scaled by

1/qpe. More concretely, define the random variable de as the number of times edge e was sampled. Then

S(e, e) =
de
qpe

We then write the laplacian of H as LH = BTSB. Note that S and LH are random matrices with E[S] = Im
and E[LH ] = LG.

Now, we will apply a concentration bound of Rudelson and Vershynin to bound the number of samples q

needed to ensure ||ΠSΠ−ΠΠ||2 small. To do so, we interpret the sampling procedure as sampling columns

of Π (of which there are m) from the distribution which draws column e as Π(., e)/
√
qpe with probability pe.

With this definition for samples of yi, and the definition of S, it is clear

ΠSΠ =
1

q

q∑
i=1

yyTi

Furthermore E[yyT ] = ΠΠT = ΠΠ. We can now apply the bound of Rudelson & Vershynin. This concen-

tration inequality is given in the following lemma.

Lemma 1 Let p be a probability distribution over Ω ⊆ Rd such that supy∈Ω ||y||2 ≤M and ||EpyyT ||2 ≤ 1.

Let y1, . . . , yq be independent samples drawn from p, then

E||1
q

q∑
i=1

yiy
T
i − EyyT ||2 ≤ min(CM

√
log q

q
, 1)

Where C is an absolute constant.

Applying the above lemma to ΠSΠ and ΠΠ, we have by setting q = O(n logn
ε2 )

E||ΠSΠ−ΠΠ||2 = E||1
q

q∑
i=1

yyTi − EyyT ||2 ≤ ε/2

Assuming ε ≤ 1/
√
n which will happen for n large enough. Finally, by Markov’s inequality we have

||ΠSΠ−ΠΠ||2 ≤ ε

with probability at least half.

It remains to show how ||ΠSΠ − ΠΠ||2 being small implies that LH and LG are close in relative error. To

see this:

||ΠSΠ−ΠΠ||2 ≤ ε⇔ sup
|yTΠ(S − I)Πy|

yT y
≤ ε, ∀y ∈ Rm

⇒ sup
|yTΠ(S − I)Πy|

yT y
≤ ε, ∀y ∈ im(B)

⇒ sup
|yT (S − I)y|

yT y
≤ ε, ∀y ∈ im(B)

⇒ sup
|(Bx)T (S − I)(Bx)|

(Bx)T (Bx)
≤ ε, ∀y = Bx, x ⊥ 1
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⇒ sup
|xTLHx− xTLGx|

xTLGx
≤ ε, ∀x ⊥ 1

⇒ (1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ⊥ 1

Thus we have the required result for all x /∈ ker(B). For x ∈ ker(B), LHx = LGx = 0, thus the result holds

trivially. So we have for all x ∈ Rn

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

As required.
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