CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)
HW#2 — Due at the beginning of class Thursday 02/05/15

1. (Kleinberg Tardos 7.27) Some of your friends with jobs out West decide they really
need some extra time each day to sit in front of their laptops, and the morning commute
from Woodside to Palo Alto seems like the only option. So they decide to carpool to
work. Unfortunately, they all hate to drive, so they want to make sure that any carpool
arrangement they agree upon is fair and doesn’t overload any individual with too much
driving. Some sort of simple round-robin scheme is out, because none of them goes to
work every day, and so the subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1,...,px}. We say
that the total driving obligation of p; over a set of days is the expected number of times
that p; would have driven, had a driver been chosen uniformly at random from among
the people going to work each day. More concretely, suppose the carpool plan lasts for
d days, and on the i"* day a subset S; C S of the people go to work. Then the above
definition of the total driving obligation A; for p; can be written as A; = Zi:pj es; ﬁ
Ideally, we’d like to require that p; drives at most A; times; unfortunately, A; may
not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — that is, a
sequence pi,, Diy, - - -, Di, With p;, € S; — and that a fair driving schedule is one in
which each p; is chosen as the driver on at most [A;] days.

(a) Prove that for any sequence of sets S, ..., Sy, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running time polyno-
mial in £ and d.

Solution: We convert the problem into a network flow problem. First we construct a
graph as follows. We denote the vertex p; as the i-th driver. Moreover we denote the
vertex g; as the j-th day. If p; can drive on the j-th day, we simply draw a directed
edge from p; to g; of capacity 1. Finally we draw a source s which connects each p;
with capacity [A;] and a sink which connects each ¢; with capacity 1. It is easy to
find that computing a fair driving schedule is equivalent to computing the maximum
flow problem. The only thing we need to do is to prove that the value of the maximum
flow is d.

First of all, it is obvious that for any flow f, |f| < d. Thus if we are able to find a flow
f with |f| = d, we are done. This is easy to achieve. Consider the following flow.
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This flow satisfies all the constraints and have value n. Thus there exists a fair schedule.
For computing it, we simply adopt the Ford algorithm.

2. Recall Karger’s algorithm for the global min-cut problem. In this problem we modify
the algorithm to improve its running time.



(a)

Prove that if we stop the original Karger’s algorithm when the remaining number
of vertices is

max{[1+n/\/§w,2} :

the probability that we have contracted an edge in the min-cut is less than 1/2.
Lets call this procedure Partial Karger.

Solution: Denote A as the event that we do not contract an edge in the min
cut. Suppose we stop at the k-th step, then:
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If we set k =n — {n/\/@)—‘ — 1, we have:
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Now suppose we apply Partial Karger to two copies of GG to produce graphs G,
and G5. We then recursively apply these steps to G7 and GG, and so on until each
recursive call returns a graph on two vertices. If 7(n) is the running time of this
process as a function of the number of vertices n of GG, derive a recursive equation
for r(n) and solve it to obtain an explicit expression for the running time (you
may use O(+) notation to simplify your recursive equation).

Solution: The operation cost for contracting a single edge is O(n). Thus the
operation cost for partial Kager is O(n?). By recursion we have:

r(n) = 2r(n/v2) + 0(n)
By Master’s Theorem we obtain r(n) = O(n%logn).

Show that the algorithm in part (b) produces O(n?) contracted graphs on two
vertices each. Prove that the probability that at least one of them contains a
global min-cut is at least 1/log(n) up to a multiplicative constant.

Hint: Think of the recursion as a binary tree with paths leading to the O(n?)
leaves representing the two-vertex contracted graphs.

Solution: By using partial Karger’s algorithm, we obtain graphs G, G5 from
the original graph G. Here G, G, have {n/ \/ZZ)-‘ vertices. We continue using

partial Karger’s algorithm, so that GGy, G5 keep branching. In the end we get a
binary tree. The height of the tree is log sn. Thus the total number of leaves is

O(QIOgﬁ” = O(n?). Now we proceed to prove that the probability that at least
one of the leaves contains a global min cut is greater than c¢/logn. We denote
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such probability as f(n). Moreover we denote p as the probability in part (a).
We know from part (a) that p < 1/2.

We consider 1 — f(n), which is the probability that none of the leaves contains a
global min cut. Since the algorithm G branches to G; and GG5. By independence
we only consider the probability that none of GG;’s leaves contains a global min
cut. There are two cases that can make this happen. (1) We contracted an edge
in the min cut when we derive G; from G using Karger’s algorithm, which has
probability p. (2) We did not contract an edge in the min cut when we derive G,
from G, but we unfortunately contracted a min-cut-edge in the following steps,
which has probability (1 — p)(1 — f(nsqrt2). Thus we have:

L—f(n)=(p+ (1 —=p) (1~ f(n/v2))* = (1~ (1-p)f(n/v2)

1 1
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Thus, f(n) > f(n/v2) — 1f?(n/v/2). We prove by induction that f(n) > ¢/logn
for some small ¢. Here we take the logarithm under base v/2. Suppose this holds
for k > n, then for k£ = n, we have:
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We want to prove that the right hand side is less than ¢/logn, that is:
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This is equivalent to @ < ¢. If we choose ¢ to be less than 2, then this indeed

holds. Thus we completed the induction process.

(d) Compare the running time of the above algorithm to Karger’s original given the
same probability of failure.
Solution: For the partial Karger’s algorithm, the success probability is ¢/logn.
Thus we need to run it logn times to achieve constant success rate. The total
run time is O(n?logn) times O(logn), which is O(n?log®n) time. For traditional
Karger’s algorithm, the total run time is O(n*mlogn). Obviously, partial Karger’s
algorithms is significantly smaller.

3. An independent set in a graph is a set of vertices with no edges connecting them.
Let G be a graph with nd/2 edges (d > 1), and consider the following probabilistic
experiment for finding an independent set in G: delete each vertex of G (and all its
incident edges) independently with probability 1 — 1/d.

(a) Compute the expected number of vertices and edges that remain after the deletion
process. Now imagine deleting one endpoints of each remaining edge.
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Solution. Each node survives with probability 1/d. Thus the expected number of
nodes is n/d. Each edge survives with probability 1/d? (both its ends must survive
independently). Thus the expected number of edges is nd/2 x 1/d* = n/2d.

(b) From this, infer that there is an independent set with at least n/2d vertices in
any graph with on n vertices with nd/2 edges.

Solution. After applying this sampling, we create an independent set as follows:
for each edge in the resulting graph, delete one of the endpoints. After doing
this for each edge, none of the remaining vertices are connected by any edges, i.e.
form an independent set. If G’ = (V’, E’) is the graph we obtain after sampling,
we expect the size of the independent set to be

Elsize of independent set] = E[|V'| — |E'|| =n/d —n/2d = n/2d

Since there will be at least one outcome with a value equal to (or greater than)
the expectation, by the probabilistic method there must be an independent set of
size > n/2d.

4. Prove that a graph can only have at most (Z) different cuts that realize the global
minimum cut value.

Solution: Suppose we run Karger’s min cut algorithm we saw in class. Let x; be the
event that the algorithm returns the i** global min cut. Suppose there are s different
min cuts, then the probabilities of realizing each in the algorithm will be disjoint (all
end with different sets of nodes at the conclusion of the algorithm). We saw in class
tha;1 for a given global min cut, the probability of returning that cut is > ﬁ So
we have:

S

2
P[returning a global min cut] = P[U]_,z;] = E Plz;] > sﬁ
n(n —
i=1

We also have that the probability of returning a global min cut is < 1, so we need the

above to be upper bounded by 1, which means s < @

5. Exhibit a graph G = (V| E)) where there are an exponential (in |V| = n, the number
of nodes) number of minimum cuts between a particular pair of vertices. Do this by
constructing a family of graphs parameterized on n and give a pair of vertices s, ¢ such
that there are exponentially many minimum cuts between s and t.

Solution. For n = 3, we simply have a path of length 2 between the two ends s and
t. For n > 3, each new vertex will be connected to s and ¢ (and nothing else) creating
an additional path of length 2 between s and t.

For general n, to separate s and ¢, we must cut one edge along every edge-disjoint path
between them. There are n — 2 paths between s and ¢, each of length 2. So we have
n — 2 binary choices, giving 2"~2 different minimum cuts.

6. Exhibit a directed graph that has cover time exponentially large in the number of
nodes. Contrast this with the cover time of undirected graphs discussed in class.
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Solution: Consider the digraph consisting of a directed cycle (1,2, ...,n, 1), and edges
(7,1), from vertices j = 2,...,n — 1. Starting from vertex 1, the expected time for a
random walk to reach vertex n is 3 x 2772 — 2; in fact, let 7" be the hitting time at
state n. E[T|zg =n] =0, E[T|zo = 1] =E[T|x¢ = 2| + 1, E[T|zo = i| = (1/2)E[T |z =
1]+ (1/2)E[T|xg = i + 1] + 1 for i = 2,...,n — 1. Solving this linear system, we get
E[T)zo=1]=3x2"2 =2 E[T|zg =14 =3(2" 2 —-2"%) fori =2,...,n.

. Given a directed graph G, we want to find a Cycle Cover (or return None if one does
not exist). Recall that a cycle cover is a set of cycles covering all nodes. Provide a
polynomial time algorithm for this problem, and justify correctness.

Solution. We construct a new bipartite graph as follows. We first double all nodes
(create a virtual copy), and form a bipartite graph with original nodes in L and copies
in R. For each e = (u,v) in the original graph, we add a directed arc (u,v) to our
bipartite graph with capacity one. We connect each original node to a source s with
capacity one edges. We connect each virtual copy node in R to a sink ¢ also with unit
capacity edges.

Now, use Ford-Fulkerson. When FF terminates, we get a set of edges which are sat-
urated in the max flow. Realize that a Cycle Cover will contain exactly n edges. If
there is a cycle cover, it must mean that each node has one incoming and one outgoing
edge exactly; we may turn this into a flow of size n in our constructed graph above
which still respects all capacity constraints. Conversely, if there is a flow of size n on
our constructed graph, then we may translate such a flow into a cycle cover; for each
node u € V| it contains exactly one incoming and one outgoing edge, and each node in
L has a corresponding node in R. If the flow returned by FF < n, then no cycle cover
exists.

. Compute the cover time of a Hamiltonian cycle with n vertices.

Solution. First of all C(G) < 2m(n — 1) = 2n(n — 1), so C(G) is O(n?). Now
we compute the maximum resistance in the graph. For two points that are x and
n — x edges away from each other, the resistance between these two points are R =
m = 2(1 — z/n). The maximum of this function is achieved at = = [n/2] and
Rz = 0(n). Then C(G) > mR,,,, implies C(G) is Q(n?). Hence C(G) is O(n?).

. Suppose we have a 2n x 2n (n > 2) table where each cell is filled with an integer in
{1,2,3,...,2n?}. Moreover, each integer shows up exactly twice. Show that one can
pick 2n cells that satisfy all the following conditions: (1). all the numbers written in
these cells are distinct; (2). in each row exactly one cell is picked out; (3) in each
column exactly one cell is picked out.

Solution. Take a random permutation 7 of {1,2,3,...,2n}, pick out 7 (i)-th cell
from row i. Any 2n cells chosen this way satisfy condition (2) and (3). We show
that the probability of these cells satisfying condition (1) is positive: For any j €
{1,2,3,...,2n?}, the probability of picking out two j’s in our 2n cells is: 0 if the two j’s
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10.

are in the same row or column; % X T1—1 if the two j’s are in different rows and columns.
. 1. . . o . 2 1 1

By union bound, the probability of satisfying condition (1) > 1 —2n° X 5- X 5= >0

when n > 2. Therefore there is a way of choosing 2n cells that satisfies all the three

required conditions. ([l

Say we have an n x n checkerboard.! The tiles are two-colored, i.e. white and black.
We delete an equal number of white and black squares from the board. Describe and
analyze an algorithm to determine whether an efficient tiling of Dominoes (which are
2 x 1 pieces) exists, subject to the constraint that each square is covered and no domino
is hanging off the board.
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Your input is a two-dimensional indicator array, of size n x n, whose i, 7 value is one
if and only if the square in row ¢ and column j has been deleted. Your output is a
single bit; you do not have to compute the actual placement of the dominoes. In the
example shown above, your algorithm should return True.

Solution. We draw edges between white and black nodes if they are adjacent. Realize
that since we lay a 2 x 1 domino, and since we can’t have a domino hanging off the
board, each domino must cover exactly one black and one white tile (since the board
does not have two adjacent tiles the same color). We seek to find a Perfect Matching
on this board, i.e. for each white tile remaining, we wish to pair with it a black tile
such that we may lay exactly one domino atop both.

We then run a max-flow on this new graph, and return true if and only if a perfect
matching is found.

1With credit to Jeff Erickson: http://jeffe.cs.illinois.edu/teaching/algorithms/.
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