
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#4 – Due at the beginning of class Thursday 03/16/17

1. Let G = (V,E) be a c-edge connected graph. In other words, assume that the size
of minimum cut in G is at least c. Construct a graph G′(V,E ′) by sampling each
edge of G with probability p independently at random and reweighing each edge with
weight 1/p. Suppose c > log n, and ε is such that 10 log(n)

cε2
≤ 1. Show that as long as

p ≥ 10 log(n)
cε2

, with high probability the size of every cut in G′ is within (1 ± ε) of the
cut in the original graph G.

Solution: To see how this naive random sampling performs, we will sample each edge
with the same probability p, and give weight 1/p to each edge in the sparse graph H.
With these weights, each edge e ∈ E will have expected contribution exactly 1 to any
cut, and thus the expected weight of any cut in H will match that of G. It remains to
see how many samples we need to have cut equivalence between G and H with high
probability.

Consider a particular cut S ⊆ V . If it has c edges crossing it in G, the expected weight
of edges crossing it in the new graph H is also c. Denote the total weight of edges
between S and V \S by fG(S) = c, and we have the following concentration result due
to Chernoff:

P[|fH(S)− c| ≥ εc] ≤ 2e−ε
2pc/2

In particular, picking p = 2
tlogn
ε2c

(for t set a little later) will make the RHS of the

above less than 2e−tlogn. To bound the probability there exists a bad cut, we apply
union bound using Karger’s cut-counting theorem, which says that if G has a min-cut
of size c, then the number of cuts of value αc is at most n2α. Thus

P[∃S s.t. |fH(S)− c| ≥ εc] ≤
n2∑
α=1

n2α2e−αlog(n)t

= 2
n2∑
α=1

e2αlog(n)−αlog(n)t

= 2
n2∑
α=1

eαlog(n)(2−t)

We pick t = 5, continuing:

= 2
n2∑
α=1

e−3αlog(n) ≤ 2
n2∑
α=1

1

n3
≤ 2

n

Which goes to zero. Note that increasing t by 1 increases by 1 the polynomial degree
showing up in the denominator.

2. Let V be a finite set. A function f : 2V → R is submodular iff for any A,B ⊆ V , we
have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B)

Now consider a graph with nodes V . For any set of vertices S ⊆ V let f(S) denote the
number of edges e = (u, v) such that u ∈ S and v ∈ V −S. Prove that f is submodular.

Solution. To see this, notice that f(A)+f(B) = a+b+2c+d+e+2f , for any arbitrary
A and B, and a, b, c, d, e, f are as shown in the figure. Here, a (for example) represents
the total capacity of edges with one endpoint in A and the other in V − (A∪B). Also
notice that f(A∩B) + f(A∪B) = a+ b+ 2c+ d+ e, and since all values are positive,
we see that f(A) + f(B) ≥ f(A∩B) + f(A∪B) , satisfying the definition. Thanks to
1 for the figure.

It is worth noting all submodular functions can be minimized in polynomial time, and
that many discrete optimization problems can be recast as submodular optimization,
with the Minimum Cut problem being a famous example.

3. A square integer matrix A is unimodular if and only if its determinant is −1 or 1. A
matrix (not necessarily square) M is totally unimodular iff every square submatrix
has determinant 1, −1, or 0, i.e. every non-singular square submatrix is unimodular.

Show that for a linear program with totally unimodular constraint matrix M and
integral right-hand side c, all extreme points must be integral.

Solution: Suppose the LP has the form:

max
x

cTx

subject to Ax ≤ b

Where A is totally unimodular and b is integral. Let v be a vertex solution. Since v is
a vertex, several inequalities of Ax ≤ b are equalities. So therefore we can derive a sub-
matrix A′ of A (and a ‘submatrix’ b′ of b) such that A′ is a full rank square matrix and

1http://www.cs.illinois.edu/class/sp10/cs598csc/Lectures/Lecture6.pdf

2

A′v = b′. So v = (A′)−1b′. By Cramer’s rule v is given by vi =det(A′i)/det(A′), where
A′i is the matrix where the ith column replaced by b′. Since A is totally unimodular,
A′ is totally unimodular. Note that we can write:

vi = det(A′i)/det(A′) = (b1det(A′1)− b2det(A′2) + ...)/det(A′)

So since b is integer and A′ is full rank and totally unimodular, vi is integer.

4. Given a list of personnel (n persons) and of list of k vacation periods, each period
spanning several contiguous vacation days. Let Dj be the set of days included in the
jth vacation period. You need to produce a schedule satisfying:

• For a given parameter c, each tech support person should be assigned to work at
most c vacation days total.

• For each vacation period j, each person should be assigned to work at most one
of the days during the period.

• Each vacation day should be assigned a single tech support person.

• For each person, only certain vacation periods are viable.

Describe a polynomial time algorithm to generate an assignment or output that no
assignment exists. Prove correctness.

Solution: Let V1 = {p1, ..., pn}, V2 = {D1, ..., Dk} and V3 = {y11, ..., y1n1 ,, yk1, ..., yknk
},

where V1 is the list of personel, V2 is the list of vacation periods and yi1, ..., yini
is the set

of contiguous vacation days in Di. By adding two nodes (s, t), we construct a network
flow G as follows,

• s→ pi, c(s, pi) = c for any i

• pi connects to all the viable vacation periods with c(pi, Dj) = 1

• Di → yij for any i, j with c(pi, yij) = 1

• yij → t with c(yij, t) = 1

where c(∗, ∗) is the capacity function. Assignment exists iff the maximum flow of G is∑
i ni.

By Ford-Fulkerson algorithm, the maximum flow of G can be solved in polynomial
time.

5. Let G be a graph with n nodes and an independent set of size 2n/3. Give a poly-
nomial time algorithm to find an independent set of size n/3 or greater - find a 1/2-
approximation to the independent set in this graph.

Solution: We do this by converting the problem to an instance of VERTEX COVER,
applying an approximation algorithm we know for this problem, and finally realize that
the vertex cover found by our approximation corresponds to an independent set of at
least the required size.

3

Let S be the independent set of size 2n/3 in the graph. Consider the set T = V − S,
the complement of S in G. For every edge (u, v) in G, we see that either u or v must
lie in T– if neither u nor v was in T then both u and v would be in S, implying that
our independent st S contains the edge (u, v). Thus, we see that T is a vertex cover of
the graph, which has size n− 2n/3 = n/3.

With this in mind, consider the problem of approximating the minimum vertex cover
in G. We recall that we can achieve a 2−approximation for this problem via the linear
programming relaxation covered in class. Thus, if the optimal vertex cover has size
OPTV C , we can find a vertex cover of size at most 2OPTV C . But we see from above
that G contains a vertex cover of size n/3. Thus, we have OPTV C ≤ n/3, and so
applying the LP-relaxation algorithm to G will afford a vertex cover of at most 2n/3
nodes. Let this found vertex cover be T ′.

Finally, consider the set S ′ = V −T ′, the complement of T ′ in G. For every edge (u, v)
in G, we see that one of u and v must lie outside of S ′, as otherwise both u and v would
lie in S ′ and thus neither u nor v would lie in T ′. Thus, in this case we would have
that the edge (u, v) would have neither of its endpoints inside of T ′, a contradiction.
So, for every edge (u, v) in the graph, S ′ cannot contain both u and v: thus, S ′ is an
independent set. As |T ′| ≤ 2n/3, we have |S ′| = |V | − |T ′| ≥ n− 2n/3 = n/3– and so
we have found an independent set of size at least n/3, as desired.

6. The directed cut size is the number of outgoing edges from a cut S. The directed
MAX-CUT problem asks for the cut with maximum directed cut size. Give a 1/4
approximation algorithm for this problem.

Solution: Consider the following modification to the greedy algorithm for undirected
MAX-CUT covered in class: Initialize two sets A = V,B = ∅, and consider the cuts
defined by A and B. If there exists a vertex v such that moving it from one set to
the other would strictly increase the cut size of A plus the cut size of B, move it,
and continue doing this until no such vertex v can be found. Compute the cuts sizes
of A and B, and return the larger of the two. This runs in polynomial time as it
costs O(m) time to compute the value of a given cut, we do this at most n times to
find a satisfactory vertex v, and since the maximum cut value is m and each swap we
perform is guaranteed to increase the cut size by at least 1, we do at most m swaps
before returning our approximate max cut. Thus, this algorithm runs in time O(nm2).

We will now show it achieves the desired approximation ratio. We note trivially that
OPT ≤ m for this problem. This will serve as our handle on OPT . Let δX,Y be the
number of edges crossing out of X into Y . With this, we see that the cut size of X
is just δX,V−X . Now, as B = V − A by the algorithm, we see that the size of the
cut defined by A is δA,B, and the size of the cut defined by B is δB,A. We claim that
δA,B +δB,A ≥ 2δA,A. To prove this, we consider what happens when we take some node
v ∈ A and move it into B. Let δXin(v) be the number of edges pointing into v from
some set X and let δXout(v) be the number of edges pointing out of v into X. With this,
we see that when we move v from A to B, the cut defined by A loses δBout(v) edges (the
edges originally pointing out of v now point within B and do not cross the cut) but
gains δAin(v) (the edges pointing into v from A will now cross the cut). Similarly, if we

4

move v from A to B the cut from B to A will gain δAout(v) edges but lose δBin(v) edges.
Thus moving v will change the sum of the cut sizes by δAin(v)+δAout(v)−δBout(v)−δBin(v).

Since we know that moving single nodes across the cut cannot increase this sum of
cut sizes, we must have that δAin(v) + δAout(v) − δBout(v) − δBinv ≤ 0, for every v ∈ A.
If we sum these inequalities over all v in A, we see that the first two terms will each
count the number of edges internal to A (or, δA,A), the third term counts the number
of edges crossing from A to B (or δA,B), and the fourth term counts the number of
edges crossing from B to A (or δB,A). With this we see that the sets A and B found
by our algorithm must satisfy 2δA,A ≤ δA,B + δB,A.

By the same reasoning, we also see that δB,A + δA,B ≥ 2δB,B. Since every edge in the
graph is directed, we see that regardless of the cut found the edge is counted in exactly
one of δA,A, δA,B, δB,A, δB,B. Thus, δA,A + δA,B + δB,A + δB,B = m. Finally, since our
outputted cut will have size max(δA,B, δB,A), we have that APX = max(δA,B, δB,A) ≥
(δA,B + δB,A)/2 ≥ (δA,A + δA,B + δB,A + δB,B)/4 = m/4 ≥ OPT/4– our algorithm finds
a 1/4-approximation as desired.

(Note: A more intricate greedy algorithm achieves a .5 approximation for this problem,
and the original Goemans-Williamson paper also provides an algorithm with a .796...
approximation ratio. The current best algorithm for the directed MAX-CUT problem
achieves a .859... approximation, using extensions to the semidefinite programming
technique of Goemans-Williamson.)

7. Online social networks carry a huge potential for online advertising. After a recent
controversy, a popular social networking platform does not allow advertisers to target
the users individually. However, it is allowed to run ads on user communities.

Formally, let X be the set of all users on a social network, and S1, S2, . . . , Sm be
subsets of X, where each Si represents a user community. Notice that a user can
belong to several communities. Suppose the advertiser can afford placing ads on at
most k communities. The goal is to show the ads to as many users as possible, i.e. to
find Si1 , Si2 , . . . , Sik such that | ∪kj=1 Sij | is maximized.

Unfortunately, this problem is NP-hard and therefore we are interested in designing
efficient approximation algorithms to solve it. Consider the following greedy approach:
pick the k communities one at a time, and in each iteration pick the community that
contains the largest number of users that have not been covered yet. In other words,
choose the community that maximizes the current coverage. Show that this greedy
approach yields at least 1− (1− 1/k)k > 1− 1/e fraction of the optimal solution.

Hint: Let xi denote the number of new elements covered by the algorithm in the i-th
set that it picks. Also, let yi =

∑i
j=1 xj, and zi = OPT − yi. Show xi+1 ≥ zi/k and

prove by induction that zi ≤ (1− 1/k)iOPT .

Solution: Optimal solution covers OPT elements at k iterations. That means, at each
iteration there should be some sets whose size is greater than or equal to 1/k of the
remaining uncovered elements, i.e., zi/k. If we were choosing the optimal sets each
time, we know that at each iteration, we would be able to choose a new set that has
at least 1/k of the uncovered elements. So during the greedy algorithm, when we are

5

choosing the next set with the maximum number of uncovered elements, there must
be some set with at least 1/k of the uncovered elements in OPT we choose, so we have
xi+1 ≥ zi/k.

In the first step, we have x1 ≥ OPT/k (using the same arguments above). Note
y1 = x1, we have

OPT − y1 = OPT − x1 ≤ OPT −OPT/k = (1− 1/k)OPT

Now, for inductive hypothesis assume zi ≤ (1− 1/k)iOPT is true, for i+ 1,

zi+1 = zi − xi+1 ≤ zi − zi/k = zi(1− 1/k) = (1− 1/k)i+1OPT

Note that yk =
∑k

i=1 xi = OPT − zk ≤ OPT − (1− 1/k)kOPT ≤ (1− 1/e)OPT .

8. The knapsack problem is a very well studied NP-hard combinatorial optimization
problem. Given n items with (positive) weights w1, w2, . . . , wn and associated val-
ues v1, v2 . . . , vn and a bag that can hold total weight W , determine the number of
each items to feasibly place in the bag (total weight chosen at most W) to maximize
the value of items chosen. Give an algorithm to solve this problem with running time
O(nW).

Note that in the above version we assume an unlimited supply of every item, but there
are variants with limits on each item that can be solved in the same running time in
a very similar manner. Finally, note that the above running time is not necessarily
polynomial because W is not necessarily polynomial in n.

Solution: First we break up the problem into smaller subproblems. Let K(w) be
the maximum value achievable with a knapsack of capacity w, so we care about the
value K(W). Then notice that K(w) = K(w−wi) + vi for some item i in the optimal
knapsack of capacity of w. Therefore, we may write the following:

K(w) = max
i:wi≤w

{K(w − wi) + vi}

We set K(0) = 0 and we compute K(w) using the above from w = 1 to W , in that
order. We keep track of each value for K while we do this procedure. Thus, we do
O(W) computations, each taking O(n) time, so the total time is O(nW).

9. The max weight independent set problem is the following: given an undirected graph
G = (V,E) and a weight function on the vertices w : V → R, output the indepen-
dent set of G with the maximum weight, where we define the weight of the set S as∑

v∈S w(v). Our usual notion of maximum independent set problem is just a special
case of this problem with all weights equal to 1, so this problem is also NP-hard.

However, we can solve it on trees (in fact, if you’re interested, we can solve this problem
on graphs with bounded treewidth). Give a polynomial time algorithm to solve this
problem on trees.

6

Solution: We are given a tree T = (V,E). Suppose the tree is rooted at some node v1.
We break up the problem into smaller subproblems. Let OPT (u) be the max weight
independent set of the subtree of T rooted at u, T (u). Thus, we want to compute
OPT (v1).

We know OPT (u) = w(u) for any leaf u. Furthermore, for any node u, we have the
following relation:

OPT (u) = max

 ∑
v child of u

OPT (v), w(u) +
∑

v grandchild of u

OPT (v)


Therefore, to compute OPT (v1) we simply work up the tree, starting at the leaves,
computing OPT (u) for all nodes u. The runtime of this algorithm is O(n) (we only
care about OPT (u) at most three times, when computing it and when computing the
value for it’s parent and grandparent).

7

