CONVEX HULL - PARALLEL AND DISTRIBUTED ALGORITHMS

Suhas Suresha, Jayanth Ramesh

Stanford University

suhas17@stanford.edu, jayanth7@stanford.edu

June 1, 2016
Overview

1 Ultimate Planar Convex Hull Algorithm

2 Quick Hull Algorithm
Ultimate Planar Convex Hull

- Recursive algorithm employing the divide and conquer approach
- Computes the upper convex hull and lower convex hull
- Divides the space into two halves and finds the edge of upper (lower) convex hull cutting across the half
Ultimate Planar Convex Hull - Sequential and Parallel

Sequential
- n - number of points, h - number of edges in the convex hull
- Recurrence is $f(n, h) = cn + \max_{h_l + h_r = h} \left(f\left(\frac{n}{2}, h_l\right) + f\left(\frac{n}{2}, h_r\right) \right)$
- Upper Hull - $\mathcal{O}(n \log h)$ - Lower Hull
- Overall Work (Worst Case) - $\mathcal{O}(n \log h)$
- Scales with n and h

Parallel
- Recurrence is $f(n, h) = c \log^3 n + \max_{h_l + h_r = h} \left(f\left(\frac{n}{2}, h_l\right), f\left(\frac{n}{2}, h_r\right) \right)$
- Overall Depth (Worst Case) - $\mathcal{O}(\log^4 n)$
Ultimate Planar Convex Hull - Distributed

- Not amenable to distributed scenario
- Divide and conquer paradigm - generally not good for distributed systems
- Involves call to a recursive function inside a recursive function
Quick Hull

- Approach similar to QuickSort
- Recursive algorithm - divides the space into subsets of points
- Removes points which doesn’t belong to the convex hull
Quick Hull - Sequential and Parallel

- **Sequential**
 - Each call performs $O(n)$ work and h such calls
 - Overall Work (Worst Case) - $O(nh)$
 - Scales with n and h

- **Parallel**
 - Each call performs $O(\log n)$ work and h such calls
 - Not amenable to parallelization - in the h dimension
 - Overall Work (Worst Case) - $O(h \log n)$
 - Scales with n and h
Quick Hull - Distributed

- Communication Pattern
 - All to One and One to All - All Reduce

- Communication Cost
 - m - number of machines, $\frac{n}{m}$ - data per machine
 - In each call, $O(m)$ communications
 - h rounds, so $O(mh)$ total communications
 - Scales only with h

- Work - $O\left(\frac{n}{m}h\right)$
- Depth - $O\left(\log\left(\frac{n}{m}\right)h\right)$
The End