
Reza Zadeh

Distributed Computing with Spark
and MapReduce

@Reza_Zadeh | http://reza-zadeh.com

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
»How to split problem across nodes?
• Must consider network & data locality

»How to deal with failures? (inevitable at scale)
»Even worse: stragglers (node not failed, but slow)
»Ethernet networking not fast
»Have to write programs for each machine

Rarely used in commodity datacenters

Data Flow Models
Restrict the programming interface so that the
system can do more automatically
Express jobs as graphs of high-level operators
»System picks how to split each operator into tasks

and where to run each task
»Run parts twice fault recovery

Biggest example: MapReduce
Map

Map

Map

Reduc
e

Reduce

MapReduce + GFS
Most of early Google infrastructure,
tremendously successful

Replicate disk content 3 times, sometimes 8

Rewrite algorithms for MapReduce

Diagram of typical cluster
http://insightdataengineering.com/blog/pipeline_map.html

Example MapReduce Algorithms
Matrix-vector multiplication

Power iteration (e.g. PageRank)
Gradient descent methods

Stochastic SVD
Tall skinny QR

Many others!

Why Use a Data Flow Engine?
Ease of programming
»High-level functions instead of message passing

Wide deployment
»More common than MPI, especially “near” data

Scalability to very largest clusters
»Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding

Limitations of MapReduce

Limitations of MapReduce
MapReduce is great at one-pass computation,
but inefficient for multi-pass algorithms
No efficient primitives for data sharing
»State between steps goes to distributed file system
»Slow due to replication & disk storage

iter. 1 iter. 2 . .
.

Input

file system
read

file system
write

file system
read

file system
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

file system
read

Commonly spend 90% of time doing I/O

Example: Iterative Apps

Example: PageRank
Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page
adjacency lists and rank vector

Neighbors
(id, edges)

Ranks
(id, rank) …

Same file grouped
over and over

iteration 1 iteration 2 iteration 3

Result
While MapReduce is simple, it can require
asymptotically more communication or I/O

Verdict
MapReduce algorithms research doesn’t go
to waste, it just gets sped up and easier to
use

Still useful to study as an algorithmic
framework, silly to use directly

Spark computing engine

Spark Computing Engine
Extends a programming language with a
distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
»Most active community in big data, with 50+

companies contributing

Clean APIs in Java, Scala, Python, R

Resilient Distributed Datasets (RDDs)

Main idea: Resilient Distributed Datasets
» Immutable collections of objects, spread across cluster
» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()
val lines = sc.textFile("log.txt") // RDD[String]

// Transform using standard collection operations
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(‘\t’)(2))

messages.saveAsTextFile("errors.txt")

lazily evaluated

kicks off a computation

Key Idea
Resilient Distributed Datasets (RDDs)
»Collections of objects across a cluster with user

controlled partitioning & storage (memory, disk, ...)
»Built via parallel transformations (map, filter, …)
»The world only lets you make make RDDs such that

they can be:

Automatically rebuilt on failure

Python, Java, Scala, R
// Scala:

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

// Java (better in java8!):

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap

In
pu

t f
ile

RDDs track lineage info to rebuild lost data

filterreducemap

In
pu

t f
ile

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data

Partitioning

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap

In
pu

t f
ile

RDDs know their partitioning functions

Known to be
hash-partitioned

Also known

State of the Spark ecosystem

Most active open source community in big data

200+ developers, 50+ companies contributing

Spark Community

Giraph Storm

0

50

100

150

Contributors in past year

Project Activity
M

ap
Re

du
ce

YA
RN

HD
FS

St
or

m
Sp

ar
k

0

200

400

600

800

1000

1200

1400

1600

M
ap

Re
du

ce
YA

RN
HD

FS
St

or
m

Sp
ar

k

0

50000

100000

150000

200000

250000

300000

350000

Commits Lines of Code Changed

Activity in past 6 months

Continuing Growth

source: ohloh.net

Contributors per month to Spark

Built-in libraries

Standard Library for Big Data
Big data apps lack libraries
of common algorithms
Spark’s generality + support
for multiple languages make it
suitable to offer this

Core

SQL ML graph
…

Python Scala Java R

Much of future activity will be in these libraries

A General Platform

Spark Core

Spark
Streaming

real-time

Spark SQL
structured

GraphX
graph

MLlib
machine
learning

…

Standard libraries included with Spark

Machine Learning Library (MLlib)

40 contributors in
past year

points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)

MLlib algorithms
classification: logistic regression, linear SVM,
naïve Bayes, classification tree
regression: generalized linear models (GLMs),
regression tree
collaborative filtering: alternating least squares
(ALS), non-negative matrix factorization (NMF)
clustering: k-means||
decomposition: SVD, PCA
optimization: stochastic gradient descent, L-BFGS

31

GraphX

32

General graph processing library

Build graph using RDDs of nodes and edges

Large library of graph algorithms with
composable steps

GraphX

Spark Streaming
Run a streaming computation as a series
of very small, deterministic batch jobs

33

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

• Chop	up	the	live	stream	into	batches	of	
X	seconds	

• Spark	treats	each	batch	of	data	as	
RDDs	and	processes	them	using	RDD	
operations

• Finally,	the	processed	results	of	the	
RDD	operations	are	returned	in	
batches

Spark Streaming
Run a streaming computation as a series
of very small, deterministic batch jobs

34

Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

• Batch	sizes	as	low	as	½	second,	latency	
~	1	second

• Potential	for	combining	batch	
processing	and	streaming	processing	in	
the	same	system

Spark SQL
// Run SQL statements
val teenagers = context.sql(

"SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are RDDs of Row objects
val names = teenagers.map(t => "Name: " + t(0)).collect()

Enables loading & querying structured data in Spark

c = HiveContext(sc)
rows = c.sql(“select text, year from hivetable”)
rows.filter(lambda r: r.year > 2013).collect()

From Hive:

{“text”: “hi”,
“user”: {
“name”: “matei”,
“id”: 123

}}

c.jsonFile(“tweets.json”).registerAsTable(“tweets”)
c.sql(“select text, user.name from tweets”)

From JSON: tweets.json

Spark SQL

