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Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
»How to split problem across nodes?
• Must consider network & data locality

»How to deal with failures? (inevitable at scale)
»Even worse: stragglers (node not failed, but slow)
»Ethernet networking not fast
»Have to write programs for each machine

Rarely used in commodity datacenters



Data Flow Models
Restrict the programming interface so that the 
system can do more automatically
Express jobs as graphs of high-level operators
»System picks how to split each operator into tasks 

and where to run each task
»Run parts twice fault recovery

Biggest example: MapReduce
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MapReduce + GFS
Most of early Google infrastructure, 
tremendously successful

Replicate disk content 3 times, sometimes 8

Rewrite algorithms for MapReduce



Diagram of typical cluster
http://insightdataengineering.com/blog/pipeline_map.html



Example MapReduce Algorithms
Matrix-vector multiplication

Power iteration (e.g. PageRank)
Gradient descent methods

Stochastic SVD
Tall skinny QR

Many others!



Why Use a Data Flow Engine?
Ease of programming
»High-level functions instead of message passing

Wide deployment
»More common than MPI, especially “near” data

Scalability to very largest clusters
»Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding



Limitations of MapReduce



Limitations of MapReduce
MapReduce is great at one-pass computation, 
but inefficient for multi-pass algorithms
No efficient primitives for data sharing
»State between steps goes to distributed file system
»Slow due to replication & disk storage
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Commonly spend 90% of time doing I/O

Example: Iterative Apps



Example: PageRank
Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page 
adjacency lists and rank vector

Neighbors
(id, edges)

Ranks
(id, rank) …

Same file grouped
over and over

iteration 1 iteration 2 iteration 3



Result
While MapReduce is simple, it can require 
asymptotically more communication or I/O



Verdict
MapReduce algorithms research doesn’t go 
to waste, it just gets sped up and easier to 
use

Still useful to study as an algorithmic 
framework, silly to use directly



Spark computing engine



Spark Computing Engine
Extends a programming language with a 
distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
»Most active community in big data, with 50+ 

companies contributing

Clean APIs in Java, Scala, Python, R



Resilient Distributed Datasets (RDDs)

Main idea: Resilient Distributed Datasets
» Immutable collections of objects, spread across cluster
» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()
val lines = sc.textFile("log.txt") // RDD[String]

// Transform using standard collection operations
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(‘\t’)(2))

messages.saveAsTextFile("errors.txt")

lazily evaluated

kicks off a computation



Key Idea
Resilient Distributed Datasets (RDDs)
»Collections of objects across a cluster with user 

controlled partitioning & storage (memory, disk, ...)
»Built via parallel transformations (map, filter, …)
»The world only lets you make make RDDs such that 

they can be:

Automatically rebuilt on failure



Python, Java, Scala, R
// Scala:

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

// Java (better in java8!):

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();



Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap
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RDDs track lineage info to rebuild lost data



filterreducemap

In
pu

t f
ile

Fault Tolerance

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data



Partitioning

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap
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RDDs know their partitioning functions

Known to be
hash-partitioned

Also known



State of the Spark ecosystem



Most active open source community in big data

200+ developers, 50+ companies contributing

Spark Community

Giraph Storm
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Project Activity
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Continuing Growth

source: ohloh.net

Contributors per month to Spark



Built-in libraries



Standard Library for Big Data
Big data apps lack libraries
of common algorithms
Spark’s generality + support
for multiple languages make it
suitable to offer this

Core

SQL ML graph
…

Python Scala Java R

Much of future activity will be in these libraries



A General Platform

Spark Core

Spark
Streaming

real-time

Spark SQL
structured

GraphX
graph

MLlib
machine
learning

…

Standard libraries included with Spark



Machine Learning Library (MLlib)

40 contributors in 
past year

points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)



MLlib algorithms
classification: logistic regression, linear SVM,
naïve Bayes, classification tree
regression: generalized linear models (GLMs), 
regression tree
collaborative filtering: alternating least squares 
(ALS), non-negative matrix factorization (NMF)
clustering: k-means||
decomposition: SVD, PCA
optimization: stochastic gradient descent, L-BFGS
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GraphX
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General graph processing library

Build graph using RDDs of nodes and edges

Large library of graph algorithms with 
composable steps

GraphX



Spark Streaming
Run a streaming computation as a series 
of very small, deterministic batch jobs
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Spark

Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

• Chop	up	the	live	stream	into	batches	of	
X	seconds	

• Spark	treats	each	batch	of	data	as	
RDDs	and	processes	them	using	RDD	
operations

• Finally,	the	processed	results	of	the	
RDD	operations	are	returned	in	
batches



Spark Streaming
Run a streaming computation as a series 
of very small, deterministic batch jobs
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Spark
Streaming

batches	of	X	
seconds

live data	stream

processed	
results

• Batch	sizes	as	low	as	½	second,	latency	
~	1	second

• Potential	for	combining	batch	
processing	and	streaming	processing	in	
the	same	system



Spark SQL
// Run SQL statements
val teenagers = context.sql(

"SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are RDDs of Row objects
val names = teenagers.map(t => "Name: " + t(0)).collect()



Enables loading & querying structured data in Spark

c = HiveContext(sc)
rows = c.sql(“select text, year from hivetable”)
rows.filter(lambda r: r.year > 2013).collect()

From Hive:

{“text”: “hi”, 
“user”: {
“name”: “matei”,
“id”: 123

}}

c.jsonFile(“tweets.json”).registerAsTable(“tweets”)
c.sql(“select text, user.name from tweets”)

From JSON: tweets.json

Spark SQL


