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Overview We’re going to continue with optimization. We’ll see how to implement these algo-

rithms on Spark and also how to generalize these algorithms to other platforms.

15.1 Optimization, scaling, and gradient descent in Spark

Separable objective functions If you recall, we have two different optimization algorithms.

There’s gradient descent, and stochastic gradient descent. In this class, we’ll implement gradient

descent on Spark, and then we’ll see why SGD not suitable for Spark, and then we’ll learn how to

implement SGD regardless of the data-flow paradigm of the language we’re computing in. We’re

going to do this all on seperable objective functions, of the form

min
w

n∑
i=1

Fi(w)

where w ∈ Rd and Fi is often the loss-function applied to a training point i; the loss can be defined

with something as fancy as a neural network or as something as simple as least squares. F could

be evaluating a linear or non-linear model. We’re dealing with a very general framework.

Scaling in various dimensions We’re interested in scaling in the following ways.

• Scaling n

• Scaling d

Assumptions of what can fit locally on a single machine In the first part of the lecture,

we’ll assume n is large but that d numbers can fit on a single machine’s RAM. E.g. d is a million,

and n is a trillion. Recall what gradient descent looks like. Start with a random vector x0, say

initialized to all zeros. Then xk+1 ← xk − α
∑n

i=1∇Fi(xk), where ∇Fi(·) is a vector itself.

15.1.1 Implementing Gradient Descent in Spark

Let’s now take out our Spark tools and try to implement this algorithm. We have an RDD and

its associated operations, where do we start? First off, how are our data stored on the distributed

cluster? Look at where we’re scaling, and think about how we can shove this data into a cluster.

We store one training point on a single machine. The data points are chopped up row-by-row. If

we look at our data as if its rows of a matrix,
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How are our data partitioned? So, we split up our data row-by-row and store it in an RDD.

val points = spark.textFile(...).map(parsePoint).cache()

where parsePoint is a closure which takes as argument a text-file of training points and their

associate labels, and outputs a clean d-dimensional xi vector and a single label yi.

A note on transformations and actions The action cache tells Spark that we’re going to

use the RDD of interest a lot, and that each machine should try to hold that its part of the RDD

in memory as much as possible rather than flushing data to disk. Since we’re going to repeatedly

iterate over this RDD in our gradient descent, we wish to store the RDD in memory. Since cache is

an action, Spark actually kicks off computation and reads in the text file, applying the parsePoint

closure to each part of the distributed file.1 Note that the transformation map(parsePoint) is a

closure which is shipped to a worker, and that worker must be able to perform whatever compu-

tations parsePoint requires on its input argument; the worker must be able to fit the resulting

output in memory in order to store it as an entry in the RDD.

def parsePoint: textFile("0, 1, 25, 3.14") --> [0, 1, 25] (3.14)

val w = Vector.zeros(d)

Gradient descent implementation Now, let’s write our code for gradient descent.

val points = spark.textFile(...).map(parsePoint).cache() var w = Vector.zeros(d)

For (i <- 1 to numIterations):

val gradient = ...

w -= alpha * gradient

End

Think about how to fill in our gradient object. We have to perform a summation across

machines, where on each machine we compute the gradient ∇Fi(·). So, first, we compute the

individuals gradients.

points.map(p => ∇Fp(w))

where obviously ∇Fp(w) is the gradient of Fp evaluated at point w. E.g. if Fi(w) = (wTxi−yi)2,
then ∇Fi may be calculated symbolically, and we may plug this formula into ∇Fp(·). Now, we need

to compute the summation, for this we use a reduce. Realize that so far no computation has kicked

off. When we use a reduce (action) we kick off computation.

points.map(p => ∇Fp(w)).reduce( + )

1Suppose we have a 1 terabyte dataset, and we have a small amount of memory, say 10 gigabytes. Suppose we

wish to process the large dataset. We can read directly off the large terabyte slowly, or we can read directly off the

ram for faster access. The question becomes which part of the data set to store in ram since we can’t fit the entire

object in memory. We commonly employ Least Recently Used caching, which evicts items from ram according to

which piece of data was least recently used. This is a simple heuristic, but works in practice.
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This last reduce is non-trivial, but we know how to implement it. It considers communication

cost between machines, scheduling, and executing operations locally in a PRAM model. The map

and reduce are all performed in parallel. In all,

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.zeros(d)

For (i <- 1 to numIterations):

val gradient = points.map(p => \nabla F_p(w)) .reduce(_+_)

w -= alpha * gradient

End

Take a moment to appreciate that we understand each piece of the above code, and all the inner

workings of each action and transformation. Gradient descent is very powerful, and can go a long

way.

15.1.2 Broadcasting in Spark

There’s something particular about the way Spark broadcasts. Suppose we have a machine with

four different CPU’s on it.

RAM

p0 p1 p2 p3

hard disk

By default, when a map happens, anything that is needed for the map to happen is shipped out

to the workers. So, in our code above w must be shipped to the mappers. Notice that there is a

mapper per CPU. So in reality, if each node in our cluster has 4 CPU’s, we’ll actually send 4 copies

of w to each machine.

RAM

p0 p1 p2 p3

data
replicate0

data
replicate1

data
replicate2

data
replicate3

hard disk

Why do we do this? By default, we assume w is being modified, in which case we must store

w separately since each CPU modifies some part of it, and otherwise we run into concurrent write
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issues. Also notice that if w large and we are not modifying it (which is true in gradient descent)

that we are wasting storage. So, to get around this we can broadcast w so that it only gets sent to

each machine a single time. To do this, we need to first define w as a broadcast variable.

var w_br = sc.broadcast(w)

and whenever we use this broadcast object, we must refer to its value.

points.map(p => ∇Fp(w br.value).reduce( + ))

And finally we need to re-broadcast our w after it gets updated. So, the code now looks like

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.zeros(d)

var w_br = sc.broadcast(w)

For (i <- 1 to numIterations):

val gradient = points.map(p => \nabla F_p(w_br.value)) .reduce(_+_)

w -= alpha * gradient

w_br = sc.broadcast(w)

End

What do we gain from this broadcast? Aside from being more storage efficient on each machine,

i.e. storing a single copy of the data object instead of multiple, we also take advantage of bit-torrent

broadcasting when we use Spark’s broadcasting. So, broadcast really only makes sense for data

objects that are large enough we don’t want to store multiple times needlessly, but small enough

that we can store the entire object in ram.

15.2 Analysis

The work is straightforward to analyze: we just add up the cost of all matrix operations we’re

applying. But what about depth? Where is our main bottleneck? The for loop is a giant syn-

chronization barrier where we have to wait for all mappers to finish computation before continuing

on to the next iteration of our loop. If we have to do too many iterations, we have to wait for

a very long time. Thankfully, we can take advantage of our cluster of machines to distribute the

work of calculating the gradient and updating w across machines. The outer loop is what is not

parallelized.

So, numIterations doesn’t have to be very large for convex functions. For convex functions,

gradient descent converges quickly. But for non-convex problems such as neural nets, we need many

iterations.

Communication costs The map is embarrassingly parallel, and requires no communication.

The broadcast is a one to all communication. The reduce is an all-to-one communication. So, we
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have a one-to-all, an embarassingly parallel, and then an all-to-one. So as far as communication

goes, we’re doing alright because we’re avoiding all-to-all communication.2

15.2.1 SGD

What about SGD? In stochastic gradient descent, we sample a training point from i = 1, . . . , n to

get a point-estimate of the gradient ∇Fi(w), and then we update xk+1− = α∇Fi(xk). So instead

of using the full summation, we only look at a single point. Now, realize that with SGD we need

even more iterations. So the depth gets even worse (although we do decrease work). The solution

was to do HogWild! I.e. don’t wait between iterations for updates to be written to w.

15.3 Recapping differences between (Stochastic) Gradient Descent

The difference between SGD and GD: gradient descent is more expensive in work (T1) but requires

fewer iterations. On the other hand SGD requires less work per iteration, but instead requires

more iterations. All of this is on a PRAM model. To get around synchronization barrier, we

use HogWild! We’ve now written down how to do gradient descent with Spark. We have yet to

distribute SGD. How on earth are we going to implement HogWild! on Spark? Spark has all these

synchronization barriers: we have to wait for the broadcast to finish, then the map and reduce to

finish, then another broadcast. We can’t tell Spark “not to wait”. The fate of Spark computations

is that they must be fault-tolerant, and to this end we require synchronization barriers. So, SGD

is not well suited for Spark, and neither is HogWild! Spark is not the right tool.

What is the right tool for SGD? Well, tools such as Tensor Flow allow us to set up clusters

on our own that have fault tolerance but that don’t have synchronization barriers. However, we

have to program ourselves a parameter server that holds w. So, each worker asks the parameter

server for a current copy of w. Then, the machine samples its own data, computes a gradient, and

sends the resulting update back to the driver. If we wish to stay true to SGD, we would have to

wait for each worker to finish their updates in sequence. However, we’re going to go HogWild!

and not wait. Using this setup, if a machine goes down, it’s OK. We won’t get updates from that

part of the training data for some time, but we can detect that the machine goes down and restart

computation. With the parameter server, we need to checkpoint our results once in a while to

ensure that if it dies, we don’t have to re-do too much work. Optimization lends itself well to

warm-starts.

2Technically, when we call points.map(), we serialize code and send it to each machine. One reason we chose

Scala to implement Spark is that it’s easy to serialize code. We remark that there is a function called allReduce

which merges the concept of a reduce and broadcast. After a reduce, the result of the reduce ends up on the driver

machine. After an allReduce the result of the reduce gets sent to all machines via a broadcast; the broadcast

happens simultaneously with the regular reduce.
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