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Abstract

Despite being one of the most commonly used tools for unsupervised exploratory
data analisys and despite its and extensive literature very little is known about the
theoretical foundations of clustering methods. We have been working on various
mathematical approaches which allow the extension of earlier results in this area
based on ideas from topology and metric geometry. We will give an overview at
the workshop.

1 Clustering

Desirable properties of clustering algorithms come from practicioners who have intuitive notions
of what is a good clustering: they know it when they see it. These is of course not satifactory and
a theoretical understanding needs to be developed. We want to argue that one thing this intuition
reflects is the fact that density needs to be incorporated in the clustering procedures. Single linkage
clustering, a procedure that enjoys several nice theoretical properties, is notorious for its insensitivity
to density, which is manifested in the so called chaining effect. Other methods such as average
linkage, complete linkage and k-means share the property that they exhibit some sort of sensitivivity
to density, but are unstable in a sense which can be made theoretically precise and are therefore not
well supported by theory. We believe that this disconnect between theory and practice should not
exist. In particular, in [1] we have constructed a framework that incorporates density via the use of
2-dimensional persistence ideas.

Kleinberg’s impossibility theorem [2] illustrates an important feature of clustering methods which is
that fixing a scale parameter is a very awkward thing. Statisticians developed hierarchical clustering,
a style of clustering that provides a summary of the behaviour of clusters at all choices of the scale
parameter at once. This changes the notion of what a clustering scheme is and one of the tasks we
face is to understand what is the analogue of Kleinberg’s theorem for this new class of hierarchical
clustering schemes. Dendrograms, the output of such methods, offer a good summary when there
is just one scale parameter in the hierarchical notion of clustering. In order to incorporate density
we need more than just one parameter and the challenge is to find useful summaries, similar to
dendrograms, for the situation when there are 2 or more parameters.

We are trying to close the gap between the theoretical side and the wishes of practicioner in two
different ways. One is the explicit inclusion of density into a multiparameter clustering scheme [1].
The other is by constructing a theory that permits a good deal of variety in the clustering schemes,
and in particular, includes analogues of the clique clustering mehtods familiar in network and graph
problems [3, 4].
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2 Overview of some of our results

Standard clustering methods take as input a finite metric space pX, dq and output a partition of
X . Kleinberg [2] discussed this situation in an axiomatic way and identified a set of reasonable
properties of standard clustering schemes, namely, scale invariance, richness and consistency. He
then proved, in the spirit of Arrow’s impossibility theorem, that no clustering scheme satisfying
these conditions simultaneously can exist. In the same spirit as Kleinberg’s theorem, we prove that
in the context of HC methods, one obtains existence and uniqueness instead of non-existence.

Hierarchical clustering: formulation Given a finite metric space pX, dq, a hierarchical clustering
method f returns a nested family of partitions, or dendrogram (a.k.a. persistent set) of X:

fpX, dq P DpXq � tpX, θq| θ : r0,8q Ñ PpXqu such that

(1) θp0q � ttx1u, . . . , txnuu; (2) there exists t0 s.t. θptq is the single block partition for all t ¥ t0;
(3) if r ¤ s then θprq refines θpsq; and (4) for all r there exists ε ¡ 0 s.t. θprq � θptq for t P rr, r�εs.

Following [5], we represent dendrograms (= weighted rooted trees) as ultrametric spaces: a metric
space pX,uq is an ultrametric space if and only if for all x, x1, x2 P X , maxpupx, x1q, upx1, x2qq ¥
upx, x2q. For n P N let Xn (resp. Un) denote the set of all metric spaces (resp. ultra-metric spaces)
with n points. Let X � \n¥1Xn denote set of all finite metric spaces and U � \n¥1Un all finite
ultrametric spaces. Then, a hierarchical clustering method can be regarded as a map T : X Ñ U s.t.
Xn Q pX, dq ÞÑ pX,uq P Un, n P N. There is a canonical construction: Let T� : X Ñ U be given
by pX, dq ÞÑ pX,u�q where

u�px, x1q :� min
"

max
i�0,...,`�1

dpxi, xi�1q|x � x0, . . . , x` � x1
*
.

This construction yields exactly single linkage clustering, [6]. For X P X let seppX, dq :�
minx�x1 dpx, x1q. We have the following characterization theorem:

Theorem 2.1 ([5]) Let T be a clustering method s.t.

1. T
�
tp, qu,

�
0 δ
δ 0

��
�
�
tp, qu,

�
0 δ
δ 0

��
for all δ ¡ 0.

2. Whenever X,Y P X and φ : X Ñ Y are such that dXpx, x1q ¥ dY pφpxq, φpx
1qq for all

x, x1 P X , then it also holds that

uXpx, x
1q ¥ uY pφpxq, φpx

1qq

for all x, x1 P X , where T pX, dXq � pX,uXq and T pY, dY q � pY, uY q.

3. For all pX, dq P X ,
upx, x1q ¥ seppX, dq for all x � x1 P X

where T pX, dq � pX,uq.

Then T � T�, i.e., T is single linkage HC.

Remark 2.1 It is interesting to consider the case when one requires φ to be 1 to 1 on points. In
this case, a much wider class of hierarchical schmemes becomes possible including for example a
certain version of clique clustering. The restriction on the nature of φ would be called restriction
of functoriality by a mathematician. The classification question of clustering methods that arises
becomes mathematically interesting and we are currently exploring it [4].

Metric stability of T� We also obtain the Proposition and Theorem below asserting metric stabil-
ity and asymptotic consistency of the method T�. We use the notion of Gromov-Hausdorff distance
between metric spaces, [7]. The Gromov-Hausdorff distance dGHpX,Y q between compact metric
spaces pX, dXq and pY, dY q is defined to be the infimal ε ¡ 0 s.t. there exists a metric d on X \ Y
with d|X�X

� dX and d|Y�Y � dY for which the Hausdorff distance between X and Y (as subsets
of pX \ Y, dq) is less than ε. This distance is a natural choice for comparing dendrograms as well
(when viewed as ultrametric spaces), see Figure 1 and [5].
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Figure 1: Two different dendrograms pX,αq and pX,βq over the same underlying set X �
tx1, x2, x3, x4u. Let α be the dendrogram represented in orange and β be the one in green. The
condition that dGHppX,αq, pX,βqq ¤ ε{2 is equivalent to the horizontal dotted lines corresponding
to ri and r1i (i � 1, 2, 3) being within ε of eachother.

Proposition 2.1 ([5]) For any finite metric spaces pX, dXq and pY, dY q

dGHppX, dXq, pY, dY qq ¥ dGHpT
�pX, dXq, T

�pY, dY qq.

Fix a finite set X . For a symmetric function W : X � X Ñ R� let LpW q denote the maximal
metric on X less than of equal to W :

LpW qpx, x1q � min

#
m̧

i�0

W pxi, xi�1q|x � x0, . . . , xm � x

+
for x, x1 P X .

Theorem 2.2 ([5]) Assume pZ, dZq is a compact metric space. Let X and X 1 be any two finite sets
of points sampled from Z and r, r1 ¡ 0 such that Z � YxPXBpx, rq and Z � Yx1PX1Bpx1, r1q. Let
dX � dZ |X�X

and dX1 � dZ |X1�X1
. Let T�pX, dXq � pX,uXq and T�pX 1, dX1q � pX 1, uX1q.

Then one has

1. (Finite Stability) dGHppX,uXq, pX 1, uX1qq ¤ pr � r1q.

2. (Convergence/consistency) Assume in addition that Z � \αPAZα where A is a finite
index set and Zα are compact, disjoint and path-connected sets. Let pA, dAq be the
finite metric space with underlying set A and metric given by dA :� LpW q where
W pα, α1q :� minzPZα,z1PZα1 dZpz, z

1q for α, α1 P A. Let T�pA, dAq � pA, uAq. Then,
as r Ñ 0 one has dGHppX,uXq, pA, uAqq Ñ 0.

2.1 Two-parameter clustering

Despite its wide applicability, there is an unresolved issue regarding the difference of single linkage
(SL) clustering in contrast to average and complete linkage (AL and CL) clustering. In spite of the
fact that SL enjoys nice theoretical properties, practicioners have found the chaining effect inherent
to SL to be unacceptable. On the other hand, it is known that AL and CL are unstable in a precise
sense, but practical applications are usually done with one of these two methods, and this seems
to yield reasonable results. With regard to the chaining effect, it is well understood that one of the
shortcomings of SL is it insensitivity to density. In this direction, a classical result of Hartigan [8]
proves that SL is not consistent in the sense that it is unable to recover modes of an underlying
density in Rd. In [1] propose an extension of HC, called multiparameter hierarchical clustering
methods that tries to remedy this situation. The input to the method we propose is a triple pX, d, fq,
where pX, dq is a finite metric space and f : X Ñ R is a function defined on the data X , which
could be a density estimate or could represent some other type of information.
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Figure 2: In the output of the method of [1] we track two parameters, as opposed to the dendrograms
of HC that track just one. In our formulation the input is pX, d, fq, ε tracks the metric/scale infor-
mation and σ tracks the information contained in the sub-level sets of the function f . The example
in this figure shows a dataset exhibiting two modes. The colors of the points in reflect the inverse
of some density estimate. On the right, we show the output. The colorbar indicates the number of
clusters observed for each value of the pair pε, σq. Notice that for large values of ε, one sees only
one component, whereas for a large range of epsilons two components are detected.

The output of our method is more general than dendrograms, see Figure 2. Our construction is
motivated by the methods of persistent topology [9], the Reeb graph and Cluster Trees [10]. In
[1] we obtained a characterization theorem and establish a stability results which are similar to
Theorems 2.1 and 2.2. The computation of the two-dimensional dendrograms yields problems that
can be solved in polynomial time [11].
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