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Abstract

Finding the number of groups in a data set, k, is an important problem in the
field of unsupervised machine learning with applications across many scientific
domains. The problem is difficult however, because it is ambiguous and hierar-
chical, and current techniques for finding & often produce unsatisfying results.
Humans are adept at navigating ambiguous and hierarchical situations, and this
paper measures human performance on the problem of finding k across a wide
variety of data sets. We find that humans employ multiple strategies for choosing
k, often simultaneously, and the number of possible interpretations of even simple
data sets with very few (/N < 20) samples can be quite high. In addition, two
leading machine learning algorithms are compared to the human results.
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1 Human Data

Eighteen undergraduate human subjects were recruited for this project, 11 female and 7 male, to
determine the number of groups present in 50 distinct point light displays. Each point light display
was presented at two different scales and two different rotations, for a total of four presentations per
display and 200 trials per subject. Subjects were asked to determine the number of groups in each
display and were encouraged to give more than one answer if appropriate. There was no time limit
for response. Subjects were told to ignore answers above 20 and to focus on “the bigger picture” to
find a reasonable answer less than 20. The sequence of trial presentations was structured into four
blocks of 50 randomly ordered trials each, with each block consisting of a unique permutation of
every point light display. After the subjects completed all 200 trials, they were interviewed in order
to gain insight into their techniques. The human data were analyzed and will be presented collapsed
across subjects, scales and rotations. The results are presented in normalized bar plots meant to
represent a probability distribution over k, based on the number of responses at each particular k.
For each display there are at least 72 responses represented, assuming one answer per subject per
trial. The actual number of responses might be larger if subjects were inclined to give multiple
answers.

The 50 point light displays used in this experiment were chosen to provide a mixture of depth and
breadth within the extremely large space of possible point light displays. Sixteen of the displays
consisted of various riffs on mixtures of Gaussians, while another three were mixtures of Gaussians
overlaid with uniformly distributed random noise. Nine displays consisted solely of uniformly dis-
tributed random noise (with differing number of samples between eight and 10,000). Three displays
depicted two-dimensional embeddings of real data. Eight displays contained lines, circles or a com-
bination of the two. The final 11 displays consisted of other synthetic data transformed by a variety
of nonlinear distortions. See Fig. [I|for thumbnails of all the displays used. Subjects always saw the
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Figure 1: The stimuli.

displays as white points on a black background, but for the sake of presentation the displays in this
paper are black on white and the points have been increased in size.

We focused heavily on mixture of Gaussian data sets due to the prominence of the Gaussianity as-
sumption in the machine learning literature [4][5][6]. We also used several data sets with uniform
noise in order to investigate how subject responses varied with sample size and to what extent sub-
jects saw patterns where none were justified by the underlying distribution. Our shape-based and
distorted displays were included for breadth and represent a case where the data are drawn from no
standard underlying distribution.

Though all of the data sets are two-dimensional, we anticipate that insights gained from this study
will lead to algorithmic improvements even in high-dimensional spaces. Certain algorithms (such
as the Eigengap algorithm discussed below) operate over affinity matrices that are insensitive to the
underlying dimensionality of a data set. Thus, improvements in these algorithms as measured by
similarity to human performance in two dimensions will likely scale to high-dimensional data.

2 Results

Several interesting trends emerge in the human responses. In the interview section of the study,
subjects predominantly report two central strategies: looking for areas of greatest density, perhaps
separated by empty space (N = 13), and counting shapes or blobs (N = 11). Many of those
subjects report using both strategies (N = 9). The latter strategy can be interpreted as a model
fitting strategy, where subjects see a collection (mixture) of objects (e.g. arcs or Gaussians) and
then explicitly count the number of those objects regardless of overlapping density. Rarer strategies
include grouping by shape orientation (/N = 1), and grouping by shape type (if there are both circles
and lines in a display, there are two groups, N = 1). Finally, one subject explicitly mentions a
hierarchical strategy, where he or she searches for small clusters first, and then groups them into
larger clusters.

In concordance with interview responses indicating two primary strategies, we find several examples
of bimodal responses for displays where these two strategies would diverge. Some examples are
shown in Fig.[2]

3 Strategies

Based on the observations discussed above, humans follow at least two broad strategies when choos-
ing k, density strategies and model fitting strategies. In this section, two algorithms from recent
work in the field that represent these two strategies will be briefly described and their performance
compared to the human data.



3.1 Density Strategies

Density strategies discover clusters by looking for regions of low density between groups of points,
following density within groups to find all the points that belong to them, and attempting to ignore
low density noise. A recent algorithm [8]], which this paper will refer to as the Eigengap algorithm,
brings these strategies for finding & under the spectral clustering umbrella. The Eigengap algorithm
treats each data point as a node on a graph, and then performs a random walk between the nodes,
with the probability of transitioning between any two nodes weighted by the distance between them.
If two nodes are close together then the probability of transitioning from one to the other will be
high and if two nodes are far apart then the probability of transitioning from one to the other will be
low. Thus, if a group of points is separated by a large distance from the rest of the data, a random
walk will be unlikely to transition across that gap. In this case, all the points within the group will
have a high probability of ending up on other points in the group and little probability of ending up
outside the group.

A matrix, P, representing the probability of any point ending up at any other point in the data set
will therefore be block diagonal if there are distinct groups within the data set that are separated by
sufficient distance. This block diagonal structure is represented by the n largest eigenvalues of P,
and eigenvalues greater than the nth will generally be much smaller than the first n eigenvalues. By
finding the largest difference between neighboring eigenvalues sorted in descending order, one can
find a useful estimate of the number of groups in the data. For example, if the difference between
the third and fourth eigenvalues is 0.4 and that distance is greater than the distance between all other
adjacent eigenvalues, then there are likely to be three groups in the data.

As the random walk progresses the Eigengap algorithm
naturally finds groups of coarser and coarser structure.
Over an increasing number of steps, a random walk will
become more and more likely to cross over low density
sections of the data set, and thus two groups that initially
might be separated will over time merge and lower val-
ues for k will be discovered. In this way the Eigengap
algorithm can respond well to hierarchical data given a
sufficiently long random walk.

3.2 Model Fitting Strategies

Several model fitting strategies based on an assumption of
mixture of Gaussian distributed data have been proposed
in the past [4] [S]]. This section describes a recent variant

called PG-means [6]. PG-means searches for Gaussian C‘ ¢ :

clusters in a data set using an iterative process. The al- ¢ . '
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gle Gaussian cluster given the data using the Expectation- '
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Smirnov (KS) test is applied to each projection and if ev-

ery KS test indicates a sufficiently good fit (as measured

by a parameter « that was set to 0.001) then the current Figure 2: A sample of displays that
value for k is accepted. Otherwise, k is incremented by elicited bimodal responses from sub-
one and the entire process is repeated. jects.

If PG-means did not find an answer less than k£ = 20, the algorithm was halted and its response
considered to be k = 1. Note that unlike the Eigengap algorithm, PG-means will only give one
possible value for k.

3.3 Comparison with Human Data



To broadly compare Eigengap and PG-means : %
performance with human performance, both the ! '

human results and the algorithmic results are ¥

interpreted as probability distributions over k. A , *s |
The sum Kullback-Leibler (KL) divergence is
then calculated between the human results and
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Unsurprisingly, given its ability to return multi-

ple values of k and discover hierarchical organi- : :
zation, Eigengap outperforms PG-means with a ‘

sum KL divergence of 269.1 compared to 316.2 : |
for PG-means. A simple unweighted combina- STH - |
tion of the two, however, performs better than

either algorithm on its own with a sum KL di- ‘ <
vergence of 245.8 (an improvement of 8.7 per- : | ¢
cent over the Eigengap algorithm). See Fig. |||||. __.II h v
for some sample comparisons of this combined

result to human responses.
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Finding reasonable values for k is an important Figure 3: Sample human (left) versus combined
and difficult problem in unsupervised machine Eigengap and PG-means (right) probability distri-

learning. As one can see from the samples in butions over k.
Fig.[3] current algorithms do well in certain sit-

uations and very poorly in others. By further investigating human performance and attempting to
apply the insights garnered from such investigation, substantial progress can be made in developing
new algorithms to tackle this thorny problem.
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