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1 Introduction

There are a wide variety of clustering algorithms that, when run on the same data, often produce
very different clusterings. Yet there is no principled method to guide the selection of a clustering
algorithm. The choice of an appropriate clustering is, of course, task dependent. As such, we must
rely on domain knowledge. The challenge is to communicate such knowledge between the domain
expert and the algorithm designer. One approach to providing guidance to clustering users in the
selection of a clustering algorithm is to identify important properties that a user may want an algo-
rithm to satisfy, and determine which algorithms satisfy each of these properties. Clustering users
can then utilize prior knowledge to determine the properties that make sense for their application.

Ultimately, there would be a sufficiently rich set of properties that would provide detailed enough
guidelines for a wide variety of clustering users. For a property to be useful, a user needs to be
able to easily determine the desirability of the property. Such a description of clustering algorithms
would yield principled guidelines for clustering algorithm selection by answering a series of simple
questions. Bosagh Zadeh and Ben-David [1] make progress in this direction by providing a set
of abstract properties that characterize single linkage. In this work, we give another result in the
same direction by characterizing a family of clustering algorithms. These are initial steps toward the
ambitious program of developing broad guidelines for clustering algorithm selection.

Linkage-based clustering is one of the most commonly-used and widely-studied clustering
paradigms. We provide a surprisingly simple set of properties that uniquely identify linkage-based
clustering algorithms. Our characterization highlights how linkage-based algorithms compare to
other clustering algorithms.

Combining previously proposed properties with our newly proposed ones, we show how these prop-
erties partition the space of commonly-used clustering algorithms. Specifically, we show which of
these properties are satisfied by common linkage-based, centroid-based, and spectral clustering al-
gorithms. We hope that this analysis, as well as our characterization of linkage-based clustering,
will provide useful guidelines for users in selecting clustering algorithms.

2 Notation

A distance function is a function d : X x X — R, such that d is symmetric and d(z,x) = 0 for
all z € X. Let P(X) denote all subsets of data set X.

For clustering C, let |C/| denote the number of clusters in C'. For 2,y € X and clustering C of X,
we write x ~¢ y if z and y belong to the same cluster in C' and = ¢ y, otherwise.

A k-clustering C = {c1,ca,...,cx} of data set X is a set of k disjoint subsets of X, such that
U ¢i = X. A clustering of X is a k-clustering of X for some 1 < k& < |X]|.



3 Defining linkage-based Clustering

There is little variety in the literature on the definition of linkage-based clustering, and the dif-
ferences that do exist are syntactic in nature. A linkage-based algorithm begins by placing every
element of a data set into its own cluster, and then repeatedly merges clusters. What distinguishes
among different linkage-based algorithms is the mechanism used to determine which clusters to
merge at every step. There are a number of ways to describe the mechanism by which the algorithm
decides which clusters to merge. Such a mechanism is often described as a “linkage function,” which
takes two clusters as input and outputs a real number (see, for example, [2] and [4]). Everitte et al.
[3] refer to a linkage function as an “inter-object distance.” Although neither are rigorously defined,
they represent the same concept. We expect that the inter-object distance depends on the distances
between the individual points. Further, we expect that the measure depends only on the pairwise
distances between the points in the data set, and not on factors such as the labels of the points. As
such, the inter-object distance can be thought of as an “extension operator” of the original distance
function.

Our focus here is on the precise definition of the extension operator. Previous definitions of linkage-
based clustering vary slightly and are often informal on this point.

Definition 1. An extension operator A of d over X is a function d : P(X)? — R™.

Since the extension operator “sees” all of d, it can make decisions based on distances outside the

two input clusters. That is, d(A, B) may depend on distances outside of A U B. Moreover, d(A, B)
may depend on the point labels. To overcome these shortcomings, we present a more strict version
of an extension operator.

Definition 2 (Local extension operator). A local extension operator is an extension operator \ so
that for all data sets A, B, C, D and distance functions d1, da,

dAl(AaB) = dA2(CaD)a

whenever there exists a distance-preserving isomorphism ¢ : AU B — C U D where
d2(¢(x), d(y)) = di(x,y) forallz,y € AUB, C = {¢(a) | a € A} and D = {¢(b) | b € B}.

Given a local extension operator, d(A, B) depends only on the distances in A U B.

Definition 3 (linkage-based clustering function). A clustering function F' is linkage-based if there
exists a local extension operator N\ so that

o F(X,d,|X]|)={{z} |z € X}

o Forl <k < |X| F(X,d,k) is constructed by merging the two clusters in F(X,d, k + 1)
that minimize the value of d. Formally,
F(X,dk)={c|ce F(X,dk+1),c#c;,c#c;}U{c; Ug;},

such that {c;,c;} = argmin{ci}cj}gp(xd’(kﬂ))ci(ci, ).

Observe that single-linkage, average-linkage, and complete-linkage are linkage-based clustering
functions.

In the event that a distance function that depends on the entire data is desirable, one can simply
use an extension operator that is not local. We call such a clustering function is data-dependent
linkage-based.

4 Properties

4.1 Hierarchical clustering

Hierarchical clustering is a widely used class of clustering algorithms. Here we give a concise
formalization on what makes a clustering algorithm hierarchical.

Definition 4 (Refinement). A clustering C of X is a refinement of clustering C' of X if every cluster
c¢; € C' is the union of some clusters in C.

Definition 5 (Hierarchical). A clustering function is hierarchical if for every 1 < k < k' < |X
F(X,d, k') is a refinement of F(X,d, k).

>




4.2 Locality

We now introduce locality as a property of clustering algorithms. In our main result, we show how
local extension operators relate to local clustering algorithms.

Definition 6 (local). A clustering function F is local if for any clustering C C F(X,d, k),
F(X',d/X',|C]) = C

where X' = U c. That is, X' consists of the points in clusters of C.
ceC

To better understand locality, consider two runs of a clustering algorithm. In the first run, the al-
gorithm is called on some data set X and returns a k-clustering C. We then select some clusters
c1,C2,...,cp of C, and run the clustering algorithm on the points that the selected clusters consist
of, namely, ¢; U ca U ... U ¢y asking for &’ clusters. If the algorithm is local, then on the second run
of the algorithm it will output {¢1, 3, ..., cx }.

While locality is an intuitive property, it is not satisfied by all clustering functions. For instance,
some spectral clustering functions are not local.

4.3 Consistency

Consistency, introduced by Kleinberg [5], requires that the output of a clustering function, which
takes the number of clusters as input, be invariant to shrinking within-cluster distances, and stretch-
ing between-cluster distances.

Definition 7 (consistency). A clustering function F' is consistent if F(X,dx,k) = F(X,d, k)
whenever

o dy(z,y) <dx(w,y) if v ~p(x,dx k) Y and
o dv(z,y) = dx(v,y) if T #p(x.dx k) Y-
forall X,dx, and 1 < k < | X|.

We introduce two weak variations of consistency.

Definition 8 (outer-consistency). A clustering function F is outer-consistent if F'(X,dx,k) =
F(X,d%, k) whenever d'x(xz,y) > dx(z,y) if © #px.axr ¥ and dy(z,y) = dx(z,y) if
T ~p(xdyxok) Y forall X,dx, and 1 < k < |X|.
Definition 9 (inner-consistency). A clustering function F is inner-consistent if F/(X,dx,k) =
F(Xa levk) whenever le(x7y) < dx(1’7y) lf(ﬂ ~F(X,dx k) ) and le(xay) = dX(Ivy) lf
T A px.dx.k) Y Jorall X,dx, and 1 < k < | X|.

Clearly, consistency implies outer-consistency and inner-consistency.

We show in Section 6 that many common clustering algorithms, including the most common linkage-
based algorithms, satisfy outer-consistency. On the other hand, there are many clustering algorithms,
including maximum-linkage and average-linkage, that fail inner-consistency.

5 Characterizing linkage-based Clustering

The following is our main result, which specifies the properties that uniquely identify linkage-based
clustering functions.

Theorem 1. An outer-consistent clustering function is linkage-based if and only if it is hierarchical
and local.

Data-dependent linkage-based clustering functions are linkage-based clustering functions whose
extension operators may depend on the entire distance function. To characterize these clustering
functions, we no longer require locality.

Theorem 2. An outer-consistent clustering function is data-dependent linkage-based if and only if
it is hierarchical.



6 Taxonomy of clustering

We show how the properties discussed above partition the space of commonly-used clustering al-
gorithms. In particular, we analyze which properties are satisfied by linkage-based (single link-
age, average linkage and complete linkage), spectral clustering (ratio-cut and normalized cut), and
centroid-based algorithms (k-means and k-median). For example, while locality is an intuitive prop-
erty, it is not satisfied by spectral clustering algorithms. We also show that complete linkage and
average linkage both fail inner-consistency, and therefore also fail consistency. Below is a table
outlining our results.

Clustering Algorithm | Outer-consistency | Inner-consistency | Locality | Hierarchical | Order-invariance

Single Linkage v v v v v
Average Linkage v X v v X
Complete Linkage v X v v v
K-means v X v X X
K-median v X v X X
Ratio-cut v v X X X
Normalized-cut v X X X X

References

[1] Reza Bosagh Zadeh and Shai Ben-David. “A Uniqueness Theorem for Clustering.” The 25th
Annual Conference on Uncertainty in Artificial Intelligence (UAI 09), 2009.

[2] Chris Ding and Xiaofeng He. “Cluster Aggregate Inequality and Multi-level Hierarchical Clus-
tering.” Knowledge Discovery in Databases (PKDD), 2005. LNCS, Springer Berlin / Heidel-
berg, V. 3721, pp. 71-83

[3] Brain Everitt, Sabine Landau, and Morven Leese. “Cluster Analysis.” Fourth Edition. Oxford
University Press. 2001.

[4] Derek Greene, Gerard Cagney, Nevan Krogan, and Padraig Cunningham. “Ensemble non-
negative matrix factorization methods for clustering proteinprotein interactions.” Bioinformat-
ics Vol. 24 no. 15 2008, pages 17221728

[5] Jon Kleinberg. “An Impossibility Theorem for Clustering.” Advances in Neural Information
Processing Systems (NIPS) 15, 2002.



