Clustering with Prior Infor mation
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A fundamental issue in clustering concerns one’s abilibd(#mitation) to detect clusters, assuming
they are built-in to the model that generates the data [1R4fults for theplanted partitiongraph
models suggest that clusters can be recovered with agbécauracy if sufficient data (link density)
is available [2]. More recently, this problem of clusterafgtbility has been addressed theoretically
for sparsegraphs, by formulating it through a certain Ising—Potts ktamian [6]. It was shown that
clustering in the sparse planted partition model is charad by a phase transition from detectable
to undetectable regimes as one increases the overlap etiveelusters [6]. Specifically, for
sufficiently large inter—cluster coupling, the underlyiipdanted) cluster structure has no impact on
the optimal (minimum—energy) configuration of the Hamileom

Here we examine the cluster—detection problem in semi+sigegl settings, when one has some
background knowledge about the clusters. Generally spgakuch information can be in form of
pair-wise constraints (via must— and cannot links), ogerathtively, via known cluster assignments
for a fraction of nodes. Here we consider the latter scerdefmed on glanted bisectiorgraph
model [2]. Namely, consider two clusters containiNgnodes each. Each pair of nodes within the
same cluster is linked with probability/ N, wherea is the average within—cluster connectivity.
Also, each pair of nodes in different clusters is linked witbbability~y /N, wherey is inter—cluster
connectivity. We assign weights and K to within—cluster and inter—cluster links, and define the
following (min—cut) Hamiltonian [3, 6]:
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where we made the bi—cluster nature of the network explicihbroducing separate spin variables
s; = £l ands; = +£1 (i = 1,..., N) for two clusters. HereJ;; and.J;; are iid random variables

which assume zero with probability- - and.J > 0 with probability 5. Likewise, K;; identically
and independently are equal to zero with probability 7 and toX” > 0 with probability 3.

The optimal clustering corresponds to the spin configunatiat minimizes the above Hamiltonian.
To simplify the analysis, we assume equipartition, so thai(1) will be studied under the constraint
Zf-V:lSi + Zfil,ﬂ = 0. Thus, detecting the sign of a given spinat zero temperature (so as to
exclude all thermal fluctuations) we can conclude to whicistgr the corresponding node belongs:
all spins having equal signs belong to the same cluster. Titwe probability p. for the cluster
assignment is

pe = (1 —=1Im[)/2,  m = [{si)r=0lav = —[(Si)7=0]av, 2

wherem is the (single—cluster) magnetizatian, .)r—o is the zero-temperature Gibbsian average,
i.e. the average over all configurations of spins having extttermodynamic limit the minimal
energy given by (1), and whefe .], is the average over the bi-graph structure.

The above formulation refers to unsupervised clusteringhé semi—supervised case, we assume
that for some (randomly distributed) nodes their clustsiggsnent is known in advance. We in-
troduce this knowledge into the model fiying the spins situated at those nodes to corresponding
values. Thus, (1) is modified as
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wheref; (resp. f;) are identically and independently distributed randoniakses that are equal to
0 with probabilityl — p and tooco (resp.—oco) with probability p.

We study the above model within the Bethe—Peierls appraiamalet P(h) (P(h)) denote the
probability of an internaldavity) field acting on ars (3) spin. Then we have according to the zero
temperature cavity method [5]:
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whereg[a, b] = sign(a) min| |al, b], and wherey, (resp.hy) are the fields acting on thaespin from

3-spin (resp from othes-spins). These fields naturally enter with we@h{— (resp. &<2),
which is the degree distribution of the corresponding ErdRenyi network. Also, (4)3 f)
po(f —o0) 4+ (1 — p)o(f) is the distribution of the frozen (supervising) field actomgs-spins.

Due to (1-3) and the complete inversion symmetry betweetwtbeclusters, we can takB(g) =
P(—g), and then (4) is worked out via the Fourier representatiothefdelta-function yielding

P(h) = ps(h — o) + (1 — p)P(h), whereP(h) refers to those-spins, which were not directly
frozen by infinitely strong random fields:

P(h) — e / 2_Z ezzh exp{ap efzzJ 4 vp elzK
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+ (1- p)/dgﬁ(g) [ae—izsign(g) min(|g1|,J] veizsign(g) min[.an]} } (5)
SinceJ and K are integers, we look for the solution for Eq. 5 in the follagiform:

P(h) = Z:":_wcna(h —n), (6)

The average magnetization (hence, the error probabititgxpressed throuhg the coefficieatsas

o0

m= /dh P(h)sign(h) = Z[C" —C_p) (7)

n=0

Another relevant quantity is the so called Edwards—Andeosder parameter given by[5]:

g = [{5:)3g o = / dh B(R)sign®(h) = 1 - co ®)

where]. . ],y is now the average over the bi-graph structure and the rarfiéais.

Let us first focus on thenweighted/J = K = 1) andunsupervisedp = 0) scenario that was
studied in Ref. [6]. In this case, the order parameters cashben to satisfy the following system
of transcendental equations:
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wherel, (x) is the modified Bessel function. Eq. (10) predicts a secan@rdransition, wheren
is the order-parameter. In the vicinity of this transitioa use Taylor expansion of (9, 10) overto
obtain

1—q=e ™4 [(a +7)q], (11)
Tt

We havem > 0 (m = 0) if the RHS of (12) is larger (smaller) than its LHS. Thus, EtR) deter-
mines the detection threshold, above of which the methoaljalole of detecting clusters witketter



than randonprobability of error (2). The critical line on thgy, ) plane is shown in Figure 1(a):
It starts from(e = 1,y = 0), since (11) predicts a percolation bound §or¢ = 0 (¢ > 0) for
a+v <1 (a+~ > 1). Naturally, close the percolation bound= 1, even very small inter—cluster
coupling~ nullifies m. Fig. 1(a) also shows that at the detection threshotd ~. Furthermore, it
can be shown that the differenae— ~ at the threshold grows ag’2w(« + ) for a largea + ~;
see (11). Thus, the rat@% converges to zero for a large+ . In thisweaksense, the detection
threshold converges t@ = ~ for large« + +, while for any finite« the unsupervised clustering
detection threshold lies below the line= ~.
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Figure 1: (a) The phase diagram fér= K = 1. The line on thga, ) plane indicates second-
order phase-transition from = 0 (no clustering detection) to: > 0 (clustering detection); (b)
Normal curve: magnetizatiom versusx for v = 1. m undergoes second-order phase-transition at
«a = 3.4. Dashed curves: remnant [semi-supervised] magnetizatimrsusx for vy = 1. From top

to bottom:p = 0.2, 0.05, 0.01.

Under semi-supervised setting, we still employ (6) and iob@, 10), but now in the RHS of these
equations one should substitute— p + (1 — p)m andg — p+ (1 — p)q. Expanding over a small
m we get

1—gq=e NI (0 + 7)o+ [1 = plg)), (13)
LIi[(a+7v)(p+ [1 = plg)]
Ll(a+7)(p+ 1 - plg)]

Nowm > 0 for anya —+ > 0. This is the average-connectivity threshold, which for¢basidered
unweighted scenario is the only possible definition of dtiefy. Thusanygeneric semi-supervising
leads to the theoretically best possible threshold ~; see Fig. 1(b).

m=pla—7)(1-q) |1+

The above analysis can be generalized to the planted pargtaphs with integer weights, although
the resulting equations are rather involved. Here we oeerndgur main results obtained for two
particular (but important) cases (the details are forthogn First, conside2J = K = 2. While

for the previous unweighted situation, any amount of seupiesvision (as quantified by) sufficed

for shifting the clustering threshold toaindependent value, here the detection threshold starts to
depend orp, and the smallest threshold is achieved for» 0. This is illustrated in see Table 1.
To understand this seemingly counterintuitive observatiote that detection threshold is achieved
as a balance between the inter—cluster links [with the @ecannectivityy and weightK = 2]
that—due to negatively frozen spins—exert negative fielishe test spin and the within—cluster
links [with the average connectivity and weightJ = 1] that exert positive fields. A larges
facilitates the negative fields, since they have twice lavgeight, which explains why vanishing
semi-supervising — 0 facilitates a lower detection threshold.

Now consider rather paradoxical aspect of the semi-sugethdetection threshold: itésnallerthan
the value deduced from balancing the cumulative weightsithfim~cluster and inter—cluster links,
which yieldsaJ = vK. Indeed, according to Table 1 (wheye= 1) we haven = 1.5 (reached for

p — 0) versus the weight-balancing value= 2. This result seemingly contradicts the intuition we
got so far:i) a rough intuition about Hamiltonian (1) is that it is baseddefining a cluster via the
within—cluster weight being larger than the inter—clusteight. ii) The unsupervised threshold is
well above the weight-balancing prediction (see last calimirable 1).iii) In the unweighted case



[ » [ 03 [ 01 [ 0.05 [ 0005 [0.0005] 0 |

e 1.6812 | 1.5976 | 1.5617 | 1.5173 | 1.5119 | 4.9122
q 0.86734 | 0.7871 | 0.7518 | 0.7087 | 0.7036 | 0.8373

[m]a—s || 0.0401 | 0.0182 | 0.0102 | 0.0016 | 10 % | — |

Table 1: Weighted situatior2J = K = 2. Forv = 1 and various semi-supervising degreese
list the clustering threshold and the value of at this threshold.

(J = K) the semi-supervising just reduces the detection thregbalardsa: = ~, which coincides
with the weight-balancing value.

To understand this effect, we turn to the physical picturéhef threshold, where positively and
negatively acting links driven by the semi-supervisedZ@m) spins compensate each other. At the
weight-balancing pointvJ = vK (with J < K) fewer (but stronger) inter—cluster links have the
same weight as more numerous (but weaker) within—clusiksli Since the within—cluster links
are more numerous, their overall effect on a (randomly amoteest spin is more deterministic and
hence capable of building up a positiweat o/ = vK. Thus, the actual threshold is reached for
aJ < yK.

We alo calculaten at the weight-balancing valueJ = ~K, since this is the semi-supervising
benefit of those who would insist on the weight-balancingriédin of the threshold; see Table 1.
Note finally that for large values of both unsupervised and semi-supervised thresholds cante@rg
aJ = vK, since now fluctuations are irrelevant from the outset.

All these effects turn upside-down fa¥X = J = 2. Now the threshold is minimized for the max-
imal semi-supervising — 1, and the semi-supervised detection threshold always larger than
the weight-balancing valugk/J. These results are explained by “inverting” the above agus
developed fou < K.

In summary, we have demonstrated analytically that any Isthat finite) amount of semi—
supervision suppresses the phase transition in clustectaility for the planted—bisection model,
by shifting the detection threshold to its lowest possitdtue. For graphs where the links within
and across the clusters have different weights, we fourtdshrai—supervision leads to a detection
threshold that depends @n Furthermore, it/ < K, then forp — 0, the detection threshold con-
verges to a value lower (better) from the one obtained viarizahg within—cluster and inter—cluster
weights. This suggests that for weighted graphs a smalldenéric] semi-supervising can be em-
ployed for defining the very clustering structure. This d&fin is non-trivial, since it performs
better than the weight-balancing definition. Note also fhatveighted graphs the very notion of
the detection threshold is not clearpriori, in contrast to unweighted networks, where tidy
possible definition goes via the connectivity balance- ~. To illustrate this unclarity, consider
a node connected to one cluster via few heavy links, and tthanaluster via many light links.
To which cluster this node should belomgprinciple? Our (speculative) answer is that the proper
cluster assignment in this case can be defined via semigsingy.
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