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A fundamental issue in clustering concerns one’s ability (and limitation) to detect clusters, assuming
they are built-in to the model that generates the data [1, 4].Results for theplanted partitiongraph
models suggest that clusters can be recovered with arbitrary accuracy if sufficient data (link density)
is available [2]. More recently, this problem of cluster detectability has been addressed theoretically
for sparsegraphs, by formulating it through a certain Ising–Potts Hamiltonian [6]. It was shown that
clustering in the sparse planted partition model is characterized by a phase transition from detectable
to undetectable regimes as one increases the overlap between the clusters [6]. Specifically, for
sufficiently large inter–cluster coupling, the underlying(planted) cluster structure has no impact on
the optimal (minimum–energy) configuration of the Hamiltonian.

Here we examine the cluster–detection problem in semi–supervised settings, when one has some
background knowledge about the clusters. Generally speaking, such information can be in form of
pair-wise constraints (via must– and cannot links), or, alternatively, via known cluster assignments
for a fraction of nodes. Here we consider the latter scenariodefined on aplanted bisectiongraph
model [2]. Namely, consider two clusters containingN–nodes each. Each pair of nodes within the
same cluster is linked with probabilityα/N , whereα is the average within–cluster connectivity.
Also, each pair of nodes in different clusters is linked withprobabilityγ/N , whereγ is inter–cluster
connectivity. We assign weightsJ andK to within–cluster and inter–cluster links, and define the
following (min–cut) Hamiltonian [3, 6]:

H = −
∑N

i<j
Jijsisj −

∑N

i<j
J̄ij s̄is̄j −

∑N

i,j
Kijsis̄j, (1)

where we made the bi–cluster nature of the network explicit by introducing separate spin variables
si = ±1 ands̄i = ±1 (i = 1, . . . , N ) for two clusters. HereJij andJ̄ij are iid random variables
which assume zero with probability1− α

N
andJ > 0 with probability α

N
. Likewise,Kij identically

and independently are equal to zero with probability1 − γ
N

and toK > 0 with probability γ
N

.

The optimal clustering corresponds to the spin configuration that minimizes the above Hamiltonian.
To simplify the analysis, we assume equipartition, so that the (1) will be studied under the constraint∑N

i=1si +
∑N

i=1s̄i = 0. Thus, detecting the sign of a given spinsi at zero temperature (so as to
exclude all thermal fluctuations) we can conclude to which cluster the corresponding node belongs:
all spins having equal signs belong to the same cluster. The error probabilitype for the cluster
assignment is

pe = (1 − |m|)/2, m ≡ [〈si〉T=0]av = −[〈s̄i〉T=0]av, (2)

wherem is the (single–cluster) magnetization,〈. . .〉T=0 is the zero-temperature Gibbsian average,
i.e. the average over all configurations of spins having in the thermodynamic limit the minimal
energy given by (1), and where[. . .]av is the average over the bi-graph structure.

The above formulation refers to unsupervised clustering. In the semi–supervised case, we assume
that for some (randomly distributed) nodes their cluster assignment is known in advance. We in-
troduce this knowledge into the model byfixing the spins situated at those nodes to corresponding
values. Thus, (1) is modified as

H̃ = H −
∑N

i=1
fisi −

∑N

i=1
f̄is̄i, (3)
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wherefi (resp.f̄i) are identically and independently distributed random variables that are equal to
0 with probability1 − ρ and to∞ (resp.−∞) with probabilityρ.

We study the above model within the Bethe–Peierls approximation. Let P (h) (P̄ (h)) denote the
probability of an internal (cavity) field acting on ans (s̄) spin. Then we have according to the zero
temperature cavity method [5]:

P (h) =

∞∑

n,m=0

γme−γ

m!

αne−α

n!

∫
p̂(f)df

∫ ∏m

k=1
P (hk)dhk

∫ ∏n

l=1
P̄ (gk)dgk

×δ
(

h − f −
∑m

k=1
φ[hk, J ] −

∑n

k=1
φ[gk, K]

)
, (4)

whereφ[a, b] ≡ sign(a)min[ |a|, b ], and wheregk (resp.hk) are the fields acting on thes-spin from

s̄-spin (resp. from others-spins). These fields naturally enter with weightγme−γ

m! (resp. αne−α

n! ),
which is the degree distribution of the corresponding Erdös–Rényi network. Also, (4)̂p(f) =
ρδ(f −∞) + (1 − ρ)δ(f) is the distribution of the frozen (supervising) field actingons-spins.

Due to (1–3) and the complete inversion symmetry between thetwo clusters, we can takēP (g) =
P (−g), and then (4) is worked out via the Fourier representation ofthe delta-function yielding
P (h) = ρδ(h − ∞) + (1 − ρ)P̃ (h), whereP̃ (h) refers to thoses-spins, which were not directly
frozen by infinitely strong random fields:

P̃ (h) = e−α−γ

∫
dz

2π
eizh exp

{
αρ e−izJ + γρ eizK

+ (1 − ρ)

∫
dgP̃ (g)

[
αe−iz sign(g) min[|g1|,J] + γeiz sign(g) min[|g|,K]

]}
. (5)

SinceJ andK are integers, we look for the solution for Eq. 5 in the following form:

P̃ (h) =
∑∞

n=−∞
cnδ(h − n), (6)

The average magnetization (hence, the error probability) is expressed throuhg the coefficientscn as

m =

∫
dh P̃ (h) sign(h) =

∞∑

n=0

[cn − c−n] (7)

Another relevant quantity is the so called Edwards–Anderson order parameter given by[5]:

q = [ 〈si〉
2
T=0 ]av =

∫
dh P̃ (h) sign2(h) = 1 − c0 (8)

where[. . .]av is now the average over the bi-graph structure and the randomfields.

Let us first focus on theunweighted(J = K = 1) andunsupervised(ρ = 0) scenario that was
studied in Ref. [6]. In this case, the order parameters can beshown to satisfy the following system
of transcendental equations:

1 − q = e−(α+γ)qI0[
√

(α + γ)2q2 − (α − γ)2m2], (9)

m = −2e−(α+γ)q
∑∞

n=1
In(x) sinh

[
natanh

(γ − α)m

(α + γ)q

]
. (10)

whereIn(x) is the modified Bessel function. Eq. (10) predicts a second-order transition, wherem
is the order-parameter. In the vicinity of this transition we use Taylor expansion of (9, 10) overm to
obtain

1 − q = e−(α+γ)qI0[(α + γ)q], (11)

1 = (α − γ)(1 − q)

(
1 +

I1[(α + γ)q]

I0[(α + γ)q]

)
. (12)

We havem > 0 (m = 0) if the RHS of (12) is larger (smaller) than its LHS. Thus, Eq.(12) deter-
mines the detection threshold, above of which the method is capable of detecting clusters withbetter
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than randomprobability of error (2). The critical line on the(α, γ) plane is shown in Figure 1(a):
It starts from(α = 1, γ = 0), since (11) predicts a percolation bound forq: q = 0 (q > 0) for
α + γ < 1 (α + γ > 1). Naturally, close the percolation boundα = 1, even very small inter–cluster
couplingγ nullifies m. Fig. 1(a) also shows that at the detection thresholdα > γ. Furthermore, it
can be shown that the differenceα − γ at the threshold grows as

√
2π(α + γ) for a largeα + γ;

see (11). Thus, the ratioα−γ
α+γ

converges to zero for a largeα + γ. In thisweaksense, the detection
threshold converges toα = γ for largeα + γ, while for any finiteα the unsupervised clustering
detection threshold lies below the lineα = γ.
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Figure 1: (a) The phase diagram forJ = K = 1. The line on the(α, γ) plane indicates second-
order phase-transition fromm = 0 (no clustering detection) tom > 0 (clustering detection); (b)
Normal curve: magnetizationm versusα for γ = 1. m undergoes second-order phase-transition at
α = 3.4. Dashed curves: remnant [semi-supervised] magnetizationm̃ versusα for γ = 1. From top
to bottom:ρ = 0.2, 0.05, 0.01.

Under semi-supervised setting, we still employ (6) and obtain (9, 10), but now in the RHS of these
equations one should substitutem → ρ + (1− ρ)m andq → ρ + (1− ρ)q. Expanding over a small
m we get

1 − q = e−(α+γ)(ρ+[1−ρ]q)I0[(α + γ)(ρ + [1 − ρ]q)], (13)

m = ρ(α − γ)(1 − q)

[
1 +

I1[(α + γ)(ρ + [1 − ρ]q)]

I0[(α + γ)(ρ + [1 − ρ]q)]

]
.

Now m > 0 for anyα−γ > 0. This is the average-connectivity threshold, which for theconsidered
unweighted scenario is the only possible definition of clustering. Thus,anygeneric semi-supervising
leads to the theoretically best possible thresholdα = γ; see Fig. 1(b).

The above analysis can be generalized to the planted partition graphs with integer weights, although
the resulting equations are rather involved. Here we overview our main results obtained for two
particular (but important) cases (the details are forthcoming). First, consider2J = K = 2. While
for the previous unweighted situation, any amount of semi-supervision (as quantified byρ) sufficed
for shifting the clustering threshold to aρ-independent value, here the detection threshold starts to
depend onρ, and the smallest threshold is achieved forρ → 0. This is illustrated in see Table 1.
To understand this seemingly counterintuitive observation, note that detection threshold is achieved
as a balance between the inter–cluster links [with the average connectivityγ and weightK = 2]
that—due to negatively frozen spins—exert negative fields on the test spin and the within–cluster
links [with the average connectivityα and weightJ = 1] that exert positive fields. A largerρ
facilitates the negative fields, since they have twice larger weight, which explains why vanishing
semi-supervisingρ → 0 facilitates a lower detection threshold.

Now consider rather paradoxical aspect of the semi-supervised detection threshold: it issmallerthan
the value deduced from balancing the cumulative weights of within–cluster and inter–cluster links,
which yieldsαJ = γK. Indeed, according to Table 1 (whereγ = 1) we haveα = 1.5 (reached for
ρ → 0) versus the weight-balancing valueα = 2. This result seemingly contradicts the intuition we
got so far:i) a rough intuition about Hamiltonian (1) is that it is based ondefining a cluster via the
within–cluster weight being larger than the inter–clusterweight. ii) The unsupervised threshold is
well above the weight-balancing prediction (see last column in Table 1).iii) In the unweighted case
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ρ 0.3 0.1 0.05 0.005 0.0005 0

α 1.6812 1.5976 1.5617 1.5173 1.5119 4.9122
q 0.86734 0.7871 0.7518 0.7087 0.7036 0.8373

m|α=2 0.0401 0.0182 0.0102 0.0016 10−4 −

Table 1: Weighted situation:2J = K = 2. Forγ = 1 and various semi-supervising degreesρ we
list the clustering thresholdα and the value ofq at this threshold.

(J = K) the semi-supervising just reduces the detection threshold towardsα = γ, which coincides
with the weight-balancing value.

To understand this effect, we turn to the physical picture ofthe threshold, where positively and
negatively acting links driven by the semi-supervised (frozen) spins compensate each other. At the
weight-balancing pointαJ = γK (with J < K) fewer (but stronger) inter–cluster links have the
same weight as more numerous (but weaker) within–cluster links. Since the within–cluster links
are more numerous, their overall effect on a (randomly chosen) test spin is more deterministic and
hence capable of building up a positivem at αJ = γK. Thus, the actual threshold is reached for
αJ < γK.

We alo calculatem at the weight-balancing valueαJ = γK, since this is the semi-supervising
benefit of those who would insist on the weight-balancing definition of the threshold; see Table 1.
Note finally that for large values ofγ both unsupervised and semi-supervised thresholds converge to
αJ = γK, since now fluctuations are irrelevant from the outset.

All these effects turn upside-down for2K = J = 2. Now the threshold is minimized for the max-
imal semi-supervisingρ → 1, and the semi-supervised detection thresholdα is always larger than
the weight-balancing valueγK/J . These results are explained by “inverting” the above arguments
developed forJ < K.

In summary, we have demonstrated analytically that any small (but finite) amount of semi–
supervision suppresses the phase transition in cluster detectability for the planted–bisection model,
by shifting the detection threshold to its lowest possible value. For graphs where the links within
and across the clusters have different weights, we found that semi–supervision leads to a detection
threshold that depends onρ. Furthermore, ifJ < K, then forρ → 0+, the detection threshold con-
verges to a value lower (better) from the one obtained via balancing within–cluster and inter–cluster
weights. This suggests that for weighted graphs a small [butgeneric] semi-supervising can be em-
ployed for defining the very clustering structure. This definition is non-trivial, since it performs
better than the weight-balancing definition. Note also thatfor weighted graphs the very notion of
the detection threshold is not cleara priori, in contrast to unweighted networks, where theonly
possible definition goes via the connectivity balanceα = γ. To illustrate this unclarity, consider
a node connected to one cluster via few heavy links, and to another cluster via many light links.
To which cluster this node should belongin principle? Our (speculative) answer is that the proper
cluster assignment in this case can be defined via semi-supervising.
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