
Ameet Talwalkar

MLbase: A System for
Distributed Machine Learning

Problem: Scalable implementations
difficult for ML Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

CHALLENGE: Can we
simplify distributed ML

development?

Key Features

-

-

® ®

The Language of Technical Computing

MATLAB® is a high-level language and
interactive environment for numerical com-
putation, visualization, and programming.
Using MATLAB, you can analyze data,
develop algorithms, and create models and
applications. The language, tools, and built-
in math functions enable you to explore
multiple approaches and reach a solution
faster than with spreadsheets or traditional
programming languages, such as C/C++ or
Java™.

You can use MATLAB for a range of appli-
cations, including signal processing and
communications, image and video process-
ing, control systems, test and measurement,
computational finance, and computational
biology. More than a million engineers and
scientists in industry and academia use
MATLAB, the language of technical
computing.

 MATLAB Overview 2:04

Analyzing and visualizing data using the MATLAB
desktop. The MATLAB environment also lets you write
programs and develop algorithms and applications.

Key Features

-

-

® ®

The Language of Technical Computing

MATLAB® is a high-level language and
interactive environment for numerical com-
putation, visualization, and programming.
Using MATLAB, you can analyze data,
develop algorithms, and create models and
applications. The language, tools, and built-
in math functions enable you to explore
multiple approaches and reach a solution
faster than with spreadsheets or traditional
programming languages, such as C/C++ or
Java™.

You can use MATLAB for a range of appli-
cations, including signal processing and
communications, image and video process-
ing, control systems, test and measurement,
computational finance, and computational
biology. More than a million engineers and
scientists in industry and academia use
MATLAB, the language of technical
computing.

 MATLAB Overview 2:04

Analyzing and visualizing data using the MATLAB
desktop. The MATLAB environment also lets you write
programs and develop algorithms and applications.

Too many ways
to preprocess…

Too many
knobs…

Problem: ML is difficult  
for End Users…

Difficult to
debug…

Doesn’t scale…

CHALLENGE: Can we
automate ML pipeline

construction?

Too many
algorithms

MLbase

4

MLlib
MLI

MLOpt

Apache Spark
Spark: Cluster computing system designed for iterative
computation (most active project in Apache Software Foundation)
MLlib: Spark’s core ML library
MLI: API to simplify ML development
MLOpt: Declarative layer to automate hyperparameter tuning

MLbase aims to
simplify development
and deployment of

scalable ML
pipelines

Experimental
Testbeds

Production
Code

Vision
MLlib / MLI
MLOpt

History of MLlib
Initial Release
• Developed by MLbase team in AMPLab
• Scala, Java
• Shipped with Spark v0.8 (Sep 2013)  

15 months later…
• 80+ contributors from various organization
• Scala, Java, Python
• Latest release part of Spark v1.1 (Sep 2014)

What’s in MLlib?

• Alternating Least Squares
• Lasso
• Ridge Regression
• Logistic Regression
• Decision Trees
• Naïve Bayes
• Support Vector Machines
• K-Means
• Gradient descent
• L-BFGS
• Random data generation
• Linear algebra
• Feature transformations
• Statistics: testing, correlation
• Evaluation metrics

Collaborative Filtering
for Recommendation

Prediction

Clustering

Optimization
Primitives

Many Utilities

Benefits of MLlib

• Part of Spark
• Integrated data analysis workflow
• Free performance gains

Apache Spark

SparkSQL Spark
Streaming MLlib GraphX

Benefits of MLlib

• Part of Spark
• Integrated data analysis workflow
• Free performance gains

• Scalable, with rapid improvements in speed
• Python, Scala, Java APIs
• Broad coverage of applications & algorithms

Performance Spark: 10-100X faster than
Hadoop & Mahout

On a dataset with 660M users, 2.4M items, and 3.5B ratings  
 MLlib runs in 40 minutes with 50 nodes

0

12.5

25

37.5

50

MLlib
Mahout

Number of Ratings

0M 200M 400M 600M 800M

R
un

tim
e

(m
in

ut
es

)

ALS on Amazon Reviews on 16 nodes

Performance
Steady performance gains

ALS

Decision Trees

K-Means

Logistic
Regression

Ridge Regression

Speedup
(Spark 1.0 vs. 1.1)

~3X speedups on average

ML Developer API (MLI)
• Shield ML Developers from low-details
• Provide familiar mathematical operators in distributed setting
• Standard APIs defining ML algorithms and feature extractors 

• Tables
• Flexibility when loading data
• Common interface for feature extraction / algorithms 

• Matrices
• Linear algebra (on local partitions at first)
• Sparse and Dense matrix support 

• Optimization Primitives
• Distributed implementations of common patterns

MLI, MLlib and Roadmap
• MLlib incorporate ideas from MLI

• Matrices and optimization primitives already in MLlib
• Tables and ML API will be in next release

• Longer term for MLlib
• Scalable implementations of standard ML methods and

underlying optimization primitives
• Further support for ML pipeline development (including

hyper parameter tuning using ideas from MLOpt)

Feedback and
Contributions Encouraged!

Vision
MLlib / MLI
MLOpt

✦ User declaratively specifies task
✦ PAQ = Predictive Analytic Query
✦ Search through MLlib to find the best

model/pipeline

SQL Result

TuPAQ: An Efficient Planner for Large-scale Predictive

Analytic Queries

ABSTRACT
The proliferation of massive datasets combined with the develop-
ment of sophisticated analytical techniques have enabled a wide
variety of novel applications such as improved product recommen-
dations, automatic image tagging, and improved speech driven in-
terfaces. These and many other applications can be supported by
Predictive Analytic Queries (PAQs). The major obstacle to support-
ing these queries is the challenging and expensive process of PAQ
planning, which involves identifying and training an appropriate
predictive model. Recent efforts aiming to automate this process
have focused on single node implementations and have assumed
that model training itself is a black box, thus limiting the effective-
ness of such approaches on large-scale problems. In this work, we
build upon these recent efforts and propose an integrated PAQ plan-
ning architecture that combines advanced model search techniques,
bandit resource allocation via runtime algorithm introspection, and
physical optimization via batching. The resulting system, TUPAQ,
solves the PAQ planning problem with comparable accuracy to ex-
haustive strategies but an order of magnitude faster, and can scale to
models trained on terabytes of data across hundreds of machines.

1. INTRODUCTION
Over the past four decades, a great deal of database systems re-

search has focused on finding efficient execution strategies for a
number of different workloads – single node and distributed trans-
actional, analytical, and stream processing workloads have all been
active areas of study. Rapidly growing data volumes coupled with
the maturity of sophisticated statistical techniques have led to de-
mand for support of a new type of workload: predictive analytics
over large scale, distributed datasets. Indeed, the support of pre-
dictive analytic queries in database systems is an increasingly well
studied area. Systems like MLbase [37], MADLib [33], COLUM-
BUS [38], MauveDB [27], BayesStore [52] and DimmWitted [56]
are all efforts to integrate statistical query processing with a data
management system.

Concretely, users would like to issue queries that involve reason-
ing about predicted attributes, where predicted attributes are de-
rived from a set of observed input attributes along with a labeled

SELECT e.sender, e.subject, e.message

FROM Emails e

WHERE e.user = ’Bob’

AND PREDICT(e.spam, e.message) = false GIVEN
LabeledData

(a) Spam labeling.
SELECT um.title

FROM UserMovies um

WHERE um.user = ’Bob’ AND um.viewed = false
ORDER BY PREDICT(um.rating) GIVEN Ratings

DESC LIMIT 50

(b) Movie recommendation.
SELECT p.image

FROM Pictures p

WHERE PREDICT(p.tag, p.photo) = ’Plant’ GIVEN
LabeledPhotos

AND p.likes > 500

(c) Photo classification.
Figure 1: Three examples of PAQs, with the predictive clauses
highlighted in green. (1a) leverages predicted values in the spam
attribute to return Bob’s non-spam emails. (1b) leverages Bob’s
predicted movie ratings to return Bob’s list of the top 50 predicted
movie titles. (1c) finds popular pictures of photos based on an im-
age classification model – even if the images are not labeled. Each
of these use cases may require considerable training data.

training dataset. We refer to such queries as Predictive Analytic
Queries, or PAQs. The predictions returned by the system should
be highly accurate both on training data and new data as it comes
into the system. PAQs consist of traditional database queries along
with new predictive clauses, and these predictive clauses are the
focus of this work. Examples of PAQs are illustrated in Figure 1,
with the predictive clauses highlighted in green.

Given recent advances in statistical methodology, supervised ma-
chine learning (ML) techniques are a natural way to support the
predictive clauses in PAQs. In the supervised learning setting, a sta-
tistical model leverages training data to relate the input attributes to
the desired output attribute. Furthermore, ML methods learn better
models as the size of the training data increases, and recent ad-
vances in distributed ML algorithm development, e.g., [13, 44, 40]
enable large-scale model training in the distributed setting. Unfor-
tunately, the application of supervised learning techniques to a new
input dataset is computationally demanding and technically chal-
lenging. For a non-expert, the process of carefully preprocessing
the input attributes, selecting the appropriate ML model, and tun-

1

PAQ Model

ML

Data Feature
Extraction

Model
Training

Final
Model

A Standard ML Pipeline

✦ In practice, model building is an iterative process of
continuous refinement

✦ Our grand vision is to automate the construction of these
pipelines

Training A Model
✦ Iteratively read through data

✦ compute gradient
✦ update model
✦ repeat until converged

✦ Requires multiple passes
✦ Common access pattern

✦ ALS, Random Forests, etc.
✦ Minutes to train an SVM on

200GB of data on a 16-node
cluster

The Tricky Part
✦ Model

✦ Logistic Regression, SVM, Tree-
based, etc.

✦ Model hyper-parameters
✦ Learning Rate, Regularization,

etc.

Models

Hyper
Parameters

Featurization

✦ Featurization
✦ Text: n-grams, TF-IDF
✦ Images: Gabor filters, random

convolutions
✦ Random projection? Scaling?

A Standard ML Pipeline

✦ In practice, model building is an iterative process of
continuous refinement

✦ Our grand vision is to automate the construction of these
pipelines

✦ Start with one aspect of the pipeline - model selection

Data Feature
Extraction

Model
Training

Final
Model

Automated Model Selection

One Approach

Learning
Rate

Regularization

Best answer

✦ Sequential Grid Search
✦ Search over all

hyperparameters, algorithms,
features, etc.

✦ Drawbacks
✦ Expensive to compute models
✦ Hyperparameter space is

large

✦ Common in practice!

A Better Approach

✦ Better resource utilization
✦ through batching

✦ Early Stopping  

✦ Improved Search

Learning
Rate

Regularization

Best answer

A Tale Of 3 Optimizations

Better Resource Utilization

Early Stopping

Improved Search

✦ Typical model update requires 2-4 flops/double 

✦ But modern memory much slower than
processors
✦ We can do 25 flops / double read!
✦ This equates to 6-8 model updates per double

we read, assuming models fit in cache  

✦ Train multiple models simultaneously

Better Resource Utilization

What Do We See In Spark?

✦ 2x and 5x increase in
models trained/sec with
batching

What Do We See In Spark?

✦ These numbers are with
vector-matrix multiplies 
 

What Do We See In Spark?

✦ These numbers are with
vector-matrix multiplies 
 

✦ Can do better when
rewriting in terms of
matrix-matrix multiplies

A Tale Of 3 Optimizations

Better Resource Utilization

Early Stopping

Improved Search

Learning
Rate

Regularization

Best answer

Early Stopping

✦ Each point is a trained model  

✦ Some models look bad early
✦ So we give up early! 

✦ So far a heuristic…
✦ …but can be framed as a

multi-armed bandit problem

Early Stopping

✦ Each point is a trained model  

✦ Some models look bad early
✦ So we give up early! 

✦ So far a heuristic…
✦ …but can be framed as a

multi-armed bandit problem

Better Resource Utilization

Algorithmic Speedups

Improved Search

A Tale Of 3 Optimizations

What Search Method?

✦ Various derivative-free optimization techniques
✦ Simple ones (Grid, Random)
✦ Classic Derivative-Free (Nelder-Mead, Powell’s

method)
✦ Bayesian (e.g., SMAC, TPE) 

✦ What should we do?

GRID NELDER_MEAD POWELL RANDOM SMAC SPEARMINT TPE

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

australian
breast

diabetes
fourclass

splice

16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625
Method and Maximum Calls

Da
ta

se
t a

nd
 V

al
id

at
io

n
Er

ro
r

Maximum Calls
16
81
256
625

Comparison of Search Methods Across Learning Problems
GRID NELDER_MEAD POWELL RANDOM SMAC SPEARMINT TPE

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

australian
breast

diabetes
fourclass

splice

16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625
Method and Maximum Calls

Da
ta

se
t a

nd
 V

al
id

at
io

n
Er

ro
r

Maximum Calls
16
81
256
625

Comparison of Search Methods Across Learning Problems

What Search Method?

●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●
●●●●●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●
●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●
●●●●

●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.25

0.50

0.75

0 200 400 600 800
Time elapsed (m)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Search Method
●

●

●

Grid − Unoptimized
Random − Optimized
TPE − Optimized

Model Convergence Over Time

Putting It All Together
✦ First version of MLbase optimizer
✦ 30GB dense images (240K x 16K)
✦ 2 model families, 5 hyperparams
✦ Baseline: grid search
✦ Our method: combination of

✦ Batching
✦ Early stopping
✦ Random or TPE

20x speedup compared to grid search
15 minutes vs 5 hours!

Does It Scale?

✦ 1.5TB dataset (1.2M x 160K)
✦ 128 nodes, thousands of

passes over data
✦ Tried 32 models in 15 hours

✦ Good answer after 11 hours

●●●●●●●● ●●●●●● ●●●●● ●●●●

●●●●

●● ●● ●

0.25

0.50

0.75

5 10
Time elapsed (h)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Convergence of Model Accuracy on 1.5TB Dataset

Future Work

Data Feature
Extraction

Model
Training

Final
Model

Automated ML Pipeline Construction

Other Future Work

✦ Ensembling

✦ Leverage sampling

✦ Better parallelism for smaller datasets

✦ Multiple hypothesis testing issues

MLbase website
www.mlbase.org

MLlib Programming Guide
spark.apache.org/docs/latest/mllib-guide.html

Spark user lists 
spark.apache.org/community.html

Scalable Machine Learning
www.edx.org/course/scalable-machine-
learning-uc-berkeleyx-cs190-1x

MLOpt: Declarative layer to automate
hyperparameter tuning

MLI: API to simplify ML development

MLlib: Spark’s core ML library

Spark: Cluster computing system
designed for iterative computation

MLlib
MLI

MLOpt

Apache Spark

Experimental
Testbeds

Production
Code

