MLbase: A System for Distributed Machine Learning

Ameet Talwalkar

Problem: Scalable implementations difficult for ML Developers...

Problem: ML is difficult for End Users...

Too many algorithms

Too many knobs...

Too many ways to preprocess...

Difficult to

CHALLENGE: Can we automate ML pipeline construction?

MLbase

MLbase aims to simplify development and deployment of scalable ML pipelines

Spark: Cluster computing system designed for iterative computation (most active project in Apache Software Foundation)

MLlib: Spark's core ML library

MLI: API to simplify ML development

MLOpt: Declarative layer to automate hyperparameter tuning

Vision
MLIib / MLI
MLOpt

History of MLlib

Initial Release

- Developed by MLbase team in AMPLab
- Scala, Java
- Shipped with Spark v0.8 (Sep 2013)

15 months later...

- 80+ contributors from various organization
- Scala, Java, Python
- Latest release part of Spark v1.1 (Sep 2014)

What's in MLlib?

Benefits of MLlib

- Part of Spark
 - Integrated data analysis workflow
 - Free performance gains

Benefits of MLlib

- Part of Spark
 - Integrated data analysis workflow
 - Free performance gains
- Scalable, with rapid improvements in speed
- Python, Scala, Java APIs
- Broad coverage of applications & algorithms

Performance

Spark: 10-100X faster than

Hadoop & Mahout

On a dataset with 660M users, 2.4M items, and 3.5B ratings MLlib runs in 40 minutes with 50 nodes

Performance

ML Developer API (MLI)

- Shield ML Developers from low-details
 - Provide familiar mathematical operators in distributed setting
 - Standard APIs defining ML algorithms and feature extractors

Tables

- Flexibility when loading data
- Common interface for feature extraction / algorithms

Matrices

- Linear algebra (on local partitions at first)
- Sparse and Dense matrix support

Optimization Primitives

Distributed implementations of common patterns

MLI, MLIib and Roadmap

- MLlib incorporate ideas from MLl
 - Matrices and optimization primitives already in MLlib
 - Tables and ML API will be in next release
- Longer term for MLlib
 - Scalable implementations of standard ML methods and underlying optimization primitives
 - Further support for ML pipeline development (including hyper parameter tuning using ideas from MLOpt)

Feedback and Contributions Encouraged!

Vision
MLlib / MLl
MLOpt

ML

- User declaratively specifies task
- PAQ = Predictive Analytic Query
- Search through MLlib to find the best model/pipeline

```
SELECT e.sender, e.subject, e.message
FROM Emails e
WHERE e.user = 'Bob'
AND PREDICT(e.spam, e.message) = false GIVEN
LabeledData
```

A Standard ML Pipeline

- In practice, model building is an iterative process of continuous refinement
- Our grand vision is to automate the construction of these pipelines

Training A Model

- Iteratively read through data
 - compute gradient
 - update model
 - repeat until converged
- * Requires *multiple passes*
- Common access pattern
 - ALS, Random Forests, etc.
- Minutes to train an SVM on 200GB of data on a 16-node cluster

$$w := w - \alpha \nabla Q(w) = w - \alpha \sum_{i=1}^{n} \nabla Q_i(w),$$

The Tricky Part

- Model
 - Logistic Regression, SVM, Treebased, etc.
- Model hyper-parameters
 - Learning Rate, Regularization, etc.

- Featurization
 - ◆ Text: n-grams, TF-IDF
 - Images: Gabor filters, random convolutions
 - Random projection? Scaling?

A Standard ML Pipeline

Automated Model Selection

- In practice, model building is an iterative process of continuous refinement
- Our grand vision is to automate the construction of these pipelines
- Start with one aspect of the pipeline model selection

One Approach

- Sequential Grid Search
 - Search over all hyperparameters, algorithms, features, etc.
- Drawbacks
 - Expensive to compute models
 - Hyperparameter space is large
- Common in practice!

A Better Approach

- Better resource utilization
 - through batching
- Early Stopping
- Improved Search

A Tale Of 3 Optimizations

Better Resource Utilization

Early Stopping

Improved Search

Better Resource Utilization

- ◆ Typical model update requires 2-4 flops/double
- But modern memory much slower than processors
 - We can do 25 flops / double read!
 - This equates to 6-8 model updates per double we read, assuming models fit in cache
- Train multiple models simultaneously

What Do We See In Spark?

 2x and 5x increase in models trained/sec with batching

Batch Size D	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	1.91	1.50	1.51	1.38
5	4.05	2.53	1.93	1.36
10	5.31	3.40	2.37	1.14

What Do We See In Spark?

 These numbers are with vector-matrix multiplies

Batch Size D	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	1.91	1.50	1.51	1.38
5	4.05	2.53	1.93	1.36
10	5.31	3.40	2.37	1.14

What Do We See In Spark?

 These numbers are with vector-matrix multiplies

Batch Size D	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	1.91	1.50	1.51	1.38
5	4.05	2.53	1.93	1.36
10	5.31	3.40	2.37	1.14

 Can do better when rewriting in terms of matrix-matrix multiplies

Batch Size D	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	0.97	1.51	0.92	1.28
5	2.67	2.95	2.26	3.18
10	4.54	7.36	6.39	5.40

A Tale Of 3 Optimizations

Better Resource Utilization

Early Stopping

Improved Search

Early Stopping

- Each point is a trained model
- Some models look bad early
 - So we give up early!
- So far a heuristic...
 - ...but can be framed as a multi-armed bandit problem

Early Stopping

- Each point is a trained model
- Some models look bad early
 - So we give up early!

- So far a heuristic...
 - ...but can be framed as a multi-armed bandit problem

A Tale Of 3 Optimizations

Better Resource Utilization

Algorithmic Speedups

Improved Search

What Search Method?

- Various derivative-free optimization techniques
 - Simple ones (Grid, Random)
 - Classic Derivative-Free (Nelder-Mead, Powell's method)
 - ◆ Bayesian (e.g., SMAC, TPE)
- ♦ What should we do?

What Search Method?

Putting It All Together

- First version of MLbase optimizer
- → 30GB dense images (240K x 16K)
- ◆ Baseline: grid search
- Our method: combination of
 - Batching
 - Early stopping
 - Random or TPE

20x speedup compared to grid search 15 minutes vs 5 hours!

Does It Scale?

- ◆ 1.5TB dataset (1.2M x 160K)
- 128 nodes, thousands of passes over data
- ◆ Tried 32 models in 15 hours
 - Good answer after 11 hours

Future Work

Automated ML Pipeline Construction

Other Future Work

- Ensembling
- Leverage sampling
- Better parallelism for smaller datasets
- Multiple hypothesis testing issues

MLOpt: Declarative layer to automate hyperparameter tuning

MLI: API to simplify ML development

MLlib: Spark's core ML library

Spark: Cluster computing system designed for iterative computation

MLbase website

www.mlbase.org

MLlib Programming Guide

spark.apache.org/docs/latest/mllib-guide.html

Spark user lists

spark.apache.org/community.html

Scalable Machine Learning

www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x