
Parallel and Distributed Inference in Coupled Tensor
Factorization Models

Umut Şimşekli
Department of Computer Engineering
Boğaziçi University, İstanbul, Turkey
umut.simsekli@boun.edu.tr

Beyza Ermiş
Department of Computer Engineering
Boğaziçi University, İstanbul, Turkey
beyza.ermis@boun.edu.tr

Ali Taylan Cemgil
Department of Computer Engineering
Boğaziçi University, İstanbul, Turkey
taylan.cemgil@boun.edu.tr

Figen Öztoprak
Department of Industrial Engineering

Bilgi University, İstanbul, Turkey
figen.oztoprak@bilgi.edu.tr

Ş. İlker Birbil
Faculty of Engineering and Natural Sciences

Sabancı University, İstanbul, Turkey
sibirbil@sabanciuniv.edu

Abstract

Coupled tensor factorization methods are useful for sensor fusion, combining in-
formation from several related datasets by simultaneously approximating them
by products of latent tensors. These methods are naturally adopted for the mod-
ern computing infrastructure that comprises of systems with hybrid architectures
where the data might be very large and be distributed across several computers
where each computer has multiple processors such as a multicore system or a
graphics processing unit (GPU). In this paper, we present a parallel and distributed
algorithmic framework for coupled tensor factorization to simultaneously estimate
latent factors, specific divergences for each dataset as well as the relative weights
in an overall additive cost function. We illustrate the proposed method on syn-
thetic data experiments, where we show that the speed of the proposed algorithm
is nearly proportional to the number of processing nodes.

1 Introduction

Coupled tensor factorization methods are useful in various application areas such as audio process-
ing [1], computational psychology [2], bioinformatics [3] or collaborative filtering [4], where infor-
mation from diverse sources are available and need to be combined for arriving at useful predictions.
Examples of such situations are abound: for example for product recommendation, a product-buyer
rating matrix can be enhanced with demographic information from the customer and connectivity
information from a social network. In musical audio processing, one example is having a large col-
lection of annotated audio data and symbolic music score information. The common theme in all
such applications is the data fusion problem.

1

As a warm up, let us consider a simple example of a coupled matrix factorization model where two
observed data matrices X1 and X2 are collectively decomposed as

X1(i1, i3) ≈ X̂1(i1, i3) =
∑
i4

Z1(i1, i4)Z3(i4, i3),

X2(i2, i3) ≈ X̂2(i2, i3) =
∑
i4

Z2(i2, i4)Z3(i4, i3) (1)

The factor Z3 is the shared factor in both decompositions, making the overall model coupled. We
call the factors Z1 and Z2 as local factors as they are only related to specific observations. The aim
in this model is to estimate the latent factors Z1, Z2, and Z3 given X1 and X2, where we need to
solve the following optimization problem:

(Z?1 , Z
?
2 , Z

?
3) = arg min

Z1,Z2,Z3

[1

φ1
D1(X1||X̂1) +

1

φ2
D2(X2||X̂2)

]
(2)

where D1 and D2 are divergence functions measuring the approximation error and the dis-
persion parameters φ1 and φ2 are the relative weights for the error in the approximation
to each observed tensor. In practice, separable divergences are used, e.g., D1(X1||X̂1) =∑
i1,i3

dp1(X1(i1, i3)||X̂1(i1, i3)). Some popular divergence (i.e., cost) functions are special cases
of the β-divergence, defined as: (p = 2− β)

dp(x; x̂) =
x2−p

(1− p)(2− p)
− xx̂1−p

1− p
+
x̂2−p

2− p
(3)

where p is a power parameter. By taking appropriate limits it is easy to verify that dp is the Eu-
clidean distance square, information divergence or Itakura-Saito divergence [5] for p = 0, 1 and 2
respectively.

A strong and flexible modeling strategy for coupled tensor factorizations is based on exploiting the
close connection between β-divergences and a particular exponential family, the so-called Tweedie
models [6]. It turns out that Tweedie densities, to be described in more detail in the supplementary
document, can be written in the following moment form

P(x; x̂, φ, p) =
1

K(x, φ, p)
exp

(
− 1

φ
dp(x; x̂)

)
(4)

where K(·) is the normalizing constant, x̂ is the mean, φ is the dispersion and p is the power
parameter of the β-divergence defined in Eq.3. An important property is that the normalization
constant K does not depend on x̂; hence it is easy to see that for fixed p and φ, solving a maximum
likelihood problem for x̂ is indeed equivalent to minimization of the β-divergence. Here, different
choices of p yield well-known important distributions such as Gaussian (p = 0), Poisson (p = 1),
compound Poisson (1 < p < 2), gamma (p = 2) and inverse Gaussian (p = 3) distributions.
Excluding the interval 0 < p < 1 for which no exponential dispersion model exists, for all other
values of p, one obtains Tweedie stable distributions [7]. To be described in more detail in the
following section, in this probabilistic setting, the power parameter p will determine the divergence
function (e.g., D1 orD2 in Eq.2), the dispersion φ will determine the relative weight of the cost, and
the mean parameter x̂ will be the output of the desired factorization.

Apart from estimation of the latent factors (e.g., Z1, Z2, Z3), which is the primary task in coupled
factorization models, further problems arise within these models that can be summarized as follows:

• Estimation of the dispersions: The dispersion parameters φ1 and φ2 play a key role in coupled
factorizations as they form the balance between the approximation error to X1 and X2, for ex-
ample observations may have been recorded using different and unknown scales. Typically, such
weight parameters are selected manually [8, 9] and data is assumed to be suitably preprocessed. In
a statistical setting, these relative weights are directly proportional to the observation noise vari-
ances and can be estimated directly from data. Regarding this problem, in [10] we have developed
a method for maximum a-posteriori (MAP) inference for φ for the cases where p ∈ {0, 1, 2, 3}.
In [11], we have presented two variational methods for estimating φ for 1 < p < 2. Recently,
we have developed a generalized method for dispersion estimation that covers the whole Tweedie
family [12].

2

• Automatic selection of the divergences: Euclidean divergence is commonly used in tensor models,
implicitly related to a conditionally Gaussian noise assumption. However, heavy-tailed noise
distributions are often needed for robust estimation and more specific noise models are needed
for sparse data, where Gaussian assumptions fall short. Choosing suitable divergence functions
D1 and D2 (i.e., estimating p1 and p2) becomes even more critical in coupled models due to
the data heterogeneity, where X1 and X2 may have different statistical characteristics. In such
cases, it is useful to choose a specific divergence for each observed matrix, where we call total
cost functions such as Eq.2 as mixed divergences. The state-of-the-art for estimating the power
parameters in Tweedie models is based on numerical methods such as a grid search procedure
[11, 12, 13, 14].

• Handling arbitrary model topologies: So far, we have motivated the tasks on the example model
of Eq.1. However, in applications, one often needs to develop custom model topologies, where
either the observed objects or the latent factors have multiple entities and cannot be represented
without loss of structure using a matrix. To have this modeling flexibility for real world data
sets that may consist of several tensors and require custom models, we would like to develop an
algorithmic framework to handle a broad variety of model topologies. In this study, we make use
of the Generalized Coupled Tensor Factorization (GCTF) framework [15] that aims to cover all
possible model topologies and coupled factorization models.

In this paper, we will be concerned with distributed and parallel inference in coupled tensor fac-
torization models. We present a parallel and distributed algorithmic framework for coupled tensor
factorizations where we address all the aforementioned problems in a large-scale setting. Here, we
envision a distributed-data/distributed-processing scenario, where each observed tensor (e.g., X1,
X2) may reside at a different site (for example a cluster or a multicore machine) and each site has
multiple processors with parallel, whilst limited, computational capacity. Our approach to opti-
mization is inspired by the distributed and parallel stochastic gradient descent method for matrix
factorizations (MF) in [16, 17]. These methods make use of the conditional independence structure
of matrix factorizations, where the data is carefully segmented into mutually disjoint blocks that
can be processed in parallel. Recently, [18] adapted this method to coupled tensor factorization (a
Parafac-MF decomposition). However, this algorithm is focused only on estimating the factors of
this specific model topology, without divergence or dispersion estimation. This algorithm also does
not respect data locality and requires that blocks of observed tensors are distributed a-priori to each
processor, possibly resulting in a heavy communication overhead. Also, for certain privacy critical
applications, sending data across sites may be undesirable. In contrast, our approach is geared to-
wards the distributed data scenario and we never need to transmit any data across sites, yet still being
a valid incremental gradient method. We illustrate the proposed approach on synthetic data, where
we focus on computationally less intensive; yet very widely used cases of the Tweedie distribution.
Our experiments on a coupled matrix factorization problem show that the speed of the proposed
algorithm is nearly proportional the number of processing nodes.

2 Probabilistic Modeling of Coupled Tensor Factorizations

In this study, we would like to deal with a broad variety of models and we rigorously develop our
non-standard tensor notation [15], that aims to cover all possible model topologies and coupled fac-
torization models. In this notation, a tensor is an N -way array.1 We will denote tensors with capital
letters, such as A, with its elements denoted by A(i1, i2, . . . , iN). Here, A has N distinct indices
i1, i2, . . . , iN . We let I = [N] to be the index set of A, where [N] denotes the set {1, 2, . . . , N}.
Each index ik for k ∈ I runs from 1 to its cardinality, denoted by sk; i.e., we have ik ∈ {1 . . . sk},
alternatively, ik ∈ [sk]. Each element of A is a real number and we write A ∈ Rs1×···×sN .

Example 1. Suppose we have a 3-way tensor A(i1, i2, i3) where i1 ∈ {1, 2}, i2 ∈ {1, 2, 3} and
i3 ∈ {1, 2}. Then, the index set is I = {1, 2, 3}, N = 3, and the index sizes are s1 = 2, s2 = 3,
s3 = 2; hence A ∈ R2×3×2.

In order to be able to handle a broad variety of tensor models and avoid unnecessary model specific
notation, we index the elements of tensors with index configurations. An index configuration v is an

1We refer vectors as tensors with N = 1 index and matrices as tensors with N = 2 indices.

3

N -tuple from the product space of the domains of all indices defined as:

v ∈ CI(I) ≡
∏
k∈I

[sk] = [s1]× [s2]× · · · × [sN].

We will call the set C as the set of index configurations. Given an index configuration v, we will
write v(k) to refer specifically to the value of the index ik, i.e., v(k) = ik. Given the index set I , a
tensor element A(i1, i2, . . . , iN) is denoted more compactly by A(v).

Often, we need to iterate over configurations on a particular subset Iα ⊂ I . Given a particular
v ∈ CI(I), we define vα as the index configuration such that vα(k) = v(k) = ik for all k ∈ Iα and,
vα(k) = 1 for all k /∈ Iα. That is,

vα ∈ CI(Iα) =
∏
k∈I

[s
1(k∈Iα)
k] = [s

1(1∈Iα)
1]× [s

1(2∈Iα)
2]× · · · × [s

1(N∈Iα)
N] (5)

where 1(x) = 1 if x is true, and 1(x) = 0 otherwise. We will call CI(Iα) as the set of index
configurations of Iα with respect to the domain I where Iα ⊂ I .

We define the tensor contraction as the operation of summing a tensor over a subset of its indices.
Often, we are required to contract a tensor F with index set J over a subset of its indices to obtain
a tensor X̂ with index set I0 ⊂ J . We define the index configurations v ∈ CJ(J), v0 ∈ CJ(I0), and
v̄0 ∈ CJ(Ī0) where Ī0 = J \ I0 denotes the indices that are not present in X̂ . We write

X̂(v0) =
∑
v̄0

F (v0 ∪ v̄0) =
∑
v̄0

F (v),

where the union is defined as (v0 ∪ v̄0) ∈ CJ(I0 ∪ Ī0) such that (v0 ∪ v̄0)(k) = v(k) for all k such
that ik ∈ I0 ∪ Ī0 and (v0 ∪ v̄0)(k) = 1 otherwise.

Example 2. Following Example 1, suppose we wish to sum the tensor A over i2 to obtain the tensor
X̂ . Here, the result X̂ would be a tensor with two indices i1 and i3, with the index set as I0 = {1, 3}.
In traditional notation, the contraction would be denoted as X̂(i1, i3) =

∑
i2
A(i1, i2, i3). Instead of

dropping index i2, we write the result of the contraction as X̂(i1, 1, i3) =
∑
i2
A(i1, i2, i3), adopting

the convention that X̂(i1, 1, i3) and X̂(i1, i3) refer to the same object. Hence the summation over
the index i2 is equivalent to computing X̂(i1, 1, i3) = A(i1, 1, i3) + A(i1, 2, i3) + A(i1, 3, i3)
for each possible configurations of the pair i1, i3. This is exactly the elements of the sets of index
configurations of I0 given as CI(I0) = {(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)}.We have Ī0 = I\I0 =
{2} and the set of index configurations of Ī0 is: CI(Ī0) = {(1, 1, 1), (1, 2, 1), (1, 3, 1)}.
Similarly, we define the tensor product as the operation of multiplying two tensors. Two tensors Z1

and Z2 with index sets I1 and I2 can be mutiplied to obtain the tensor product G on the index set
J = I1 ∪ I2. We write G(w) = Z1(v1)Z2(v2) where w = v1 ∪ v2. More generally, for index sets
Iα ⊂ J where J = ∪αIα for α ∈ [Nz], we let w ∈ CJ(J) and vα ∈ CJ(Iα). The product is a
tensor G with the index set J , and Zα are a collection of tensors, each with the index set Iα. When
w = v1 ∪ v2 ∪ · · · ∪ vNz , we write

G(w) =
∏

α∈[Nz]

Zα(vα) = Z1(v1)Z2(v2) . . . ZNz (vNz).

The Generalized Coupled Tensor Factorization (GCTF) framework is a statistical model for multiple
observed tensors Xν for ν ∈ [Nx]. Each observed tensor Xν is approximated by a model output
tensor X̂ν that is obtained by the product of some latent tensors Zα for α ∈ [Nz]. The model is
defined as follows:

Xν(uν) ≈ X̂ν(uν) =
∑
ūν

∏
α

Zα(vα)R(ν,α) (6)

Here, uν ∈ CI(I0,ν) denotes the index configuration of Xν and vα ∈ CI(Iα) denotes the index
configuration of Zα, where I0,ν and Iα denote the index sets of an observed tensor Xν and a latent
factor Zα, respectively. The set of all indices of a GCTF model is denoted by the index set I =
{1, 2, . . . , N}; it is the union of all indices used in the model, both the indices of observed and latent

4

tensors: I = (∪νI0,ν)∪ (∪αIα). R is an Nx ×Nz matrix with binary entries (0 or 1) that describes
the coupling structure of a GCTF model, where each entry Rνα specifies if the model output tensor
X̂ν is a function of Zα. Finally, ūν ∈ CI(Ī0,ν) denote the index configurations that X̂ν is contracted
on, where Ī0,ν = (∪α,Rνα=1Iα) \ I0,ν . The factors Zα are called local if they are connected to a
single observed tensor (

∑
ν Rνα = 1) and shared if they are connected to multiple observed tensors

(
∑
ν Rνα > 1).

Example 3. Let us illustrate the model defined in Eq.1 in the GCTF notation. There are Nx = 2
observed tensors in the model (X1 andX2). There areNz = 3 latent tensors (Z1, Z2, Z3). The set of
all indices I is defined as I = {1, 2, 3, 4}, the index sets of the observed tensors I0,ν are defined as
I0,1 = {1, 3} and I0,2 = {2, 3}, and the index sets of the latent factors Iα are defined as I1 = {1, 4},
I2 = {2, 4}, and I3 = {3, 4}. The sets of contraction indices are given as Ī0,1 = Ī0,2 = {4}. The
coupling matrix for this model is given as follows: R = [1 0 1 ; 0 1 1].

The GCTF framework assumes the following probabilistic model on the observed tensors:

Xν(uν) ∼ T Wpν

(
Xν(uν); X̂ν(uν), φν

)
, ν = 1, . . . , Nx (7)

where T W denotes Tweedie distribution and X̂1:Nx are the model output tensors that are defined in
Eq.6. The key contribution of this study is to simultaneously estimate latent factors Z1:Nz , specific
divergences for each dataset p1:Nx as well as the dispersions φ1:Nx in a parallel and distributed man-
ner, where the number of observed tensors, the number of latent factors, and the model topologies
can be arbitrary.

3 Inference

In this study we propose a parallel and distributed framework for maximum a-posteriori estimation,
where the aim is to solve the following optimization problem:

max
Z1:Nz

φ1:Nx ,p1:Nx

[
−
∑
ν,uν

(
logK(Xν(uν), φν , pν) +

1

φν
dp(Xν(uν)||X̂ν(uν))

)
+
∑
ν

log P(φν)

]
(8)

where P(φν) is the conjugate prior distribution of the dispersions, that is an inverse gamma distri-
bution: φν ∼ IG(φν ; τφ, κφ). Note that, when the dispersion and power parameters are known,
the normalizing constant K(·) becomes irrelevant and the problem reduces to divergence minimiza-
tion. However, when these parameters are not known, we need to deal with the normalizer K(·), an
expression without a simple closed form apart from the cases p = 0, 1, 2, 3.

In order to estimate the latent factors, dispersions, and power parameters jointly, we utilize an it-
erative schema where we divide the optimization problem of Eq.8 into simpler subproblems. The
ultimate method is a coordinate descent algorithm, where each parameter is updated at each itera-
tion given the up-to-date values of the remaining parameters. Here, each iteration i consists of three
estimation steps, stated as follows:

Z(i+1)
α = arg max

Zα

Nx∑
ν=1

log P(Xν |Z1:Nz , φ
(i)
ν , p(i)

ν), α = 1, . . . , Nz (9)

φ(i+1)
ν = arg max

φν

log
(
P(Xν |φν , X̂(i+1)

ν , p(i))P(φν)
)
, ν = 1, . . . , Nx (10)

p(i+1)
ν = arg max

pν

log P(Xν |X̂(i+1)
ν , φ(i+1)

ν , pν), ν = 1, . . . , Nx (11)

In [11, 12], we focused on making inference in the challenging cases of the Tweedie distribution,
where we evaluated our methods on regular-sized data due to computational requirements. Here, we
will develop parallel and distributed methods for solving each of these subproblems in large-scale
settings.

3.1 Distributed Incremental Gradient Descent for Learning the Factors

Given the dispersion and power parameters, finding the optimal factorsZ1:Nz reduces to the problem
of minimizing the β-divergence between the observations and the product of the latent factors, given

5

Stratum 1

≈

≈
X2

1
2
3

Z1

1 2 3 4x
Z3

i1

i2

i3

i3

Site
 1

Site
 2

2
1

3

5
4 4

5

Z2
5

X1

Stratum 2

≈

≈

X1

X2

1
2
3

Z1

2 3 4 5x
Z3

2
3

1

4
5

4
5

Z2
1

Stratum 3

≈

≈

X1

X2

1
2
3

Z1

3 4 5 1x
Z3

2
3

1

4
5

4
5

Z2
2

Figure 1: Illustration of DIGD on the simple model. The blocks are obtained by partitioning the
observed indices i1, i2, i3 into N1 = 3, N2 = 2, and N3 = 5 pieces, respectively. There are 2
different sites and 5 nodes in total; the first site has 3 nodes and the second site has 2 nodes. The
nodes are represented with different textures. The numbers inside the blocks indicate the nodes in
which the corresponding blocks are located. In this example, at each sub-iteration, node i transfers
its shared factor block to node (i mod 5) + 1. This strategy implicitly determines the stratum at
each sub-iteration.

as follows:

minimize
∑
ν

∑
uν

1

φν
dpν
(
Xν(uν)||

∑
ūν

∏
α

Zα(vα)R(ν,α)
)

subject to Zα(vα) ∈ C, ∀α ∈ [Nz], vα ∈ CI(Iα)

where C is a constraint set. For simplicity, we define the iterate u that covers all (ν, uν) pairs and
rewrite the cost function as follows:

minimize
U∑
u=1

fu(Z1, . . . , ZNz),

subject to the same constraints and fu(·) is the appropriate cost function. If U is sufficiently small,
standard algorithms [15, 19] that minimize the β-divergence can be used here. However, when U is
large, operating on the entire cost function becomes impractical. Besides, in large-scale applications
the data is usually distributed among many processing units, which brings motivation to utilize
distributed incremental methods.

Incremental gradient methods are powerful algorithms that operate on a single sample u at each
iteration, rather than the entire cost function [20]. The idea is to take a small step at each iteration in
the opposite direction of the gradient computed on the sample u. The order in which the samples are
selected is an important choice and might result in different computational requirements depending
on the problem structure. Here, we exploit the conditional independence structure of coupled tensor
factorizations and construct a specific ordering by rearranging the cost function as follows:

minimize
∑
s

∑
b∈Ωs

∑
u∈Ωb

fu(Zb1, . . . , Z
b
Nz)

where b is called as a block, Ωb denotes the data points in block b, s is called as a stratum, and
Ωs denotes the blocks in stratum s. In large-scale applications, these blocks and the corresponding
factors Zbα will be fully distributed. The key point here is to form each stratum in such a way that the
parameter spaces of the blocks in a stratum become disjoint; enabling these blocks to be processed
in parallel. In other words, we would like to iterate sequentially over the index s and process the
summation over b in parallel. We now describe how to form such blocks and strata for coupled
tensor factorization that supports data locality.

We start by defining a partition for each index ik. For the observed indices (k ∈ ∪νI0,ν), we define
the partition Pk = {(bk)1, . . . , (bk)Nk} on the set [sk], where (bk)i are non-empty, disjoint subsets
of [sk] and Nk denotes the number of subsets in Pk. We do not need partitions for the hidden
indices (k /∈ ∪νI0,ν), however for notational consistency, we define a partition with a single element
for each hidden index: Pk = {(bk)1}, where (bk)1 = [sk]. Then a block of an observed tensor
Xν(uν) is specified by a set of index configurations defined as follows:

uν ∈ BI(I0,ν , γ) =
∏
k∈I

(bk)1(k∈I0,ν)
γk

= (b1)1(1∈I0,ν)
γ1 × (b2)1(2∈I0,ν)

γ2 × · · · × (bN)1(N∈I0,ν)
γN

6

where we define S1 = S and S0 = {1} for the set S. Here, γ is an array of integers that fully
determine the structure of a block, where each γk ∈ [Nk] determines the element that will be
selected from Pk, so that (bk)γk is the γth

k element of Pk. The corresponding blocks for the factors
are defined similarly; these blocks consist of all Zα(vα) with vα ∈ BI(Iα, γ). In practice, the data
is usually sparse and partitioning the data into balanced blocks can be an important but a highly
nontrivial task. Here, we utilize a simple heuristic approach for data-dependent index partitioning
where each observed index is partitioned separately.

A stratum σ = {γ1, γ2, . . . , γNs} is a collection of Ns non-overlapping blocks, where for each pair
of blocks we have γik 6= γjk for all k in the index set I and i 6= j. Since the elements of the partitions
are disjoint by definition and there are no common elements in two different blocks, the parameter
spaces of the blocks in a stratum will also be disjoint by construction. This enables the blocks in a
stratum to be processed in parallel. Moreover, we always choose strata such that the blocks in any
stratum obey the data locality as illustrated in Fig 1.

Here, we propose a distributed incremental gradient descent (DIGD) algorithm for coupled tensor
factorizations, where we sequentially iterate over the strata and process the blocks in a strata in
parallel. One iteration of DIGD consists of several sub-iterations, where a stratum σ is implicitly
determined at each sub-iteration by the schedule that the blocks of the shared factors are transferred
among the nodes. After σ is formed, we run the IGD updates in parallel for each block in σ. The
sub-iterations are continued until all the entries of the observed tensors are visited. Here, first we
assign the blocks of local factors to the processors, then we circulate the blocks of the shared factors
among the processors (see Fig 1). The pseudo-code for the overall algorithm and the required
partial derivatives are provided in the supplementary document. Note that, we run DIGD until
convergence at each iteration of the overall method defined in Eqs 9-11, therefore each iteration
of the overall algorithm consists of several iterations of DIGD. The proposed algorithm is a valid
IGD algorithm; provided all the elements of the observed tensors are processed at each iteration, the
proof of convergence proceeds in the same lines as in [20].

3.2 Parallel and Distributed Estimation of Mixed Divergences

The MAP estimate of φ has analytical solution only for the Gaussian and the inverse Gaussian
distributions. Inferring φ is intractable for the other cases. In our previous work [10], we showed that
the inference becomes tractable for the Poisson and gamma distributions when the gamma functions
in the probability mass and density functions are approximated with Stirling’s approximation. The
MAP estimate of φ for the cases p ∈ {0, 1, 2, 3} is given as follows: [10]

φ?ν =

(∑
uν
dpν (Xν(uν)||X̂ν(uν))

)
+ κφ

Sν/2 + τφ + 1
, p ∈ {0, 1, 2, 3} (12)

where Sν is the number of elements in Xν and dp(·) is the β-divergence, defined in Eq.3. In
this study, we focus on computationally less intensive; yet very widely used cases of the Tweedie
distribution: p ∈ {0, 1, 2}. It is also straightforward to extend the proposed method for the remaining
cases of p [12].

The last step of the proposed method (Eq.11) is to compute the maximum likelihood estimate of the
power parameter p. Unfortunately, the optimal p does not have an analytical solution; the state-of-
the-art is based on running numerical methods on this problem. In this study, we follow [11, 12] and
utilize a grid search procedure in order to estimate the power parameter p given the other parameters.

Computing Eq.12 and the likelihood values for the grid search is inherently parallelizable since the
problem is separable over the index configurations uν . In the distributed setting, after the DIGD
procedure converges, each node starts to compute the relevant part of the computations (note that,
these local computations can also be computed in a parallel fashion by using multicore CPUs) and
passes the shared factor block to the next node. This procedure is continued until all the nodes
complete their corresponding computation after passing over all the elements of the observed ten-
sors. Finally, the nodes report the intermediate computations to a responsible node in their own site.
The responsible nodes aggregate all the intermediate computations and compute the new φν and pν
values. These values are then broadcasted to the relevant nodes.

7

50K 100K 250K 500K 1M 2M 5M 10M
0

2000

4000

6000

8000

10000

Data Size (# of non−zeros)

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Sequential

Parallel & Distributed

(a)

1 2 3 4 5

10
6

10
7

Iterations

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

(b)

Figure 2: a) The running times of the algorithms for different data sizes b) The value of the objective
function over the iterations for s1 = s2 = s3 = 320 and s4 = 5. These iterations correspond to the
overall algorithm defined in Eqs 9-11, where at each iteration DIGD is run until convergence.

4 Preliminary Experiments

In this section, we illustrate the proposed method on the simple model defined in Eq.1. Here, we
randomly generate the latent variables Z1:3, φ1:2, power parameters p1:2, and the observed tensors
X1:2. Our aim is to estimate all the latent variables given X1 and X2.

In this study, we implement the distributed inference algorithm by a message passing protocol in C
using the OpenMPI2 library. The algorithm is particularly suited for message passing and low level
control on the distributed computations provide more insight then other platforms such as Hadoop
MapReduce3. We conduct our experiments in a pseudo-distributed setting where we use an 8-core
MacPro with 32 GB of memory. Thanks to the flexibility of OpenMPI library, it is possible to run
the same code on any MPI cluster without any modifications.

In our experiments, we partition the observed indices i1 and i2 into N1 = N2 = 4 parts and i3
into N3 = 8 parts. In the DIGD procedure, we set the step size η(i) = (a/i)b, where i denotes
the iteration number. An important observation is that, for the shared factors, the value of a should
be smaller than the value that is chosen for the local factors, in order to have a faster convergence.
Here, we set a = 0.01 for the local factors and a = 0.001 for the shared factors. The value of b is
set to 0.51 for all factors.

Figure 2(a) shows the comparison between the proposed approach and the sequential implementation
in terms of running times. The picture reveals that we are able to get a 6 fold performance increase on
a 8 core machine when we have 10 million entries in the observed matrices. Figure 2(b) shows that
the objective is decreased quickly during the iterations, with jumps corresponding to the estimation
of divergences and dispersions.

5 Conclusion

We presented a parallel and distributed algorithmic framework for coupled tensor factorization to
simultaneously estimate latent factors, specific divergences for each dataset as well as the relative
weights in an overall additive cost function, where the number of observed tensors, the number of
latent factors, and the model topologies can be arbitrary. We illustrated the proposed method on
synthetic data experiments. Our experiments on a coupled matrix factorization problem showed that
the speed of the proposed algorithm is nearly proportional to the number of processing nodes.

2http://www.open-mpi.org
3http://hadoop.apache.org

8

http://www.open-mpi.org
http://hadoop.apache.org

References

[1] L. Le Magoarou, A. Ozerov, and N. Q. K. Duong, “Text-informed audio source separation
using nonnegative matrix partial co-factorization,” in MLSP, 2013.

[2] T.F. Wilderjans, E. Ceulemans, I. Van Mechelen, and R.A. van den Berg, “Simultaneous
analysis of coupled data matrices subject to different amounts of noise.,” Br J Math Stat
Psychol, vol. 64, pp. 277–90, 2011.

[3] E. Acar, G. Gurdeniz, M. A. Rasmussen, D. Rago, L. O. Dragsted, and R. Bro, “Coupled
matrix factorization with sparse factors to identify potential biomarkers in metabolomics.,”
IJKDB, vol. 3, no. 3, pp. 22–43, 2012.

[4] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang, “Collaborative filtering meets mobile
recommendation: A user-centered approach,” in AAAI’10, 2010.

[5] C. Févotte, N. Bertin, and J. L. Durrieu, “Nonnegative matrix factorization with the Itakura-
Saito divergence. with application to music analysis,” Neural Computation, vol. 21, pp. 793–
830, 2009.

[6] Y. K. Yılmaz and A. T. Cemgil, “Alpha/beta divergences and tweedie models,”
arXiv:1209.4280 v1, 2012.

[7] B. Jørgensen, The Theory of Dispersion Models, Chapman & Hall/CRC Monographs on
Statistics & Applied Probability, 1997.

[8] M. Kim, J. Yoo, K. Kang, and S. Choi, “Nonnegative matrix partial co-factorization for spectral
and temporal drum source separation,” J. Sel. Topics Signal Processing, vol. 5, no. 6, pp. 1192–
1204, 2011.

[9] T. Barker, T. Virtanen, and O. Delhomme, “Ultrasound-coupled semi-supervised nonnegative
matrix factorisation for speech enhancement,” in ICASSP, 2014.

[10] U. Şimşekli, B. Ermiş, A. T. Cemgil, and E. Acar, “Optimal weight learning for coupled tensor
factorization with mixed divergences,” in EUSIPCO, 2013.

[11] U. Şimşekli, A. T. Cemgil, and Yılmaz K., “Learning the beta-divergence in tweedie compound
poisson matrix factorization models,” in ICML, 2013.

[12] Umut Simsekli, Ali Taylan Cemgil, and Beyza Ermis, “Learning mixed divergences in coupled
matrix and tensor factorization models,” in submitted to ICASSP, 2015.

[13] P. K. Dunn and G. S. Smyth, “Series evaluation of tweedie exponential dispersion model
densities,” Stats. & Comp., vol. 15, pp. 267–280, 2005.

[14] Y. Zhang, “Likelihood-based and bayesian methods for tweedie compound poisson linear
mixed models,” Statistics and Computing, vol. accepted, 2012.

[15] Y. K. Yılmaz, A. T. Cemgil, and U. Şimşekli, “Generalised coupled tensor factorisation,” in
NIPS, 2011.

[16] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis, “Large-scale matrix fac-
torization with distributed stochastic gradient descent,” in ACM SIGKDD, 2011.

[17] Benjamin Recht and Christopher Ré, “Parallel stochastic gradient algorithms for large-scale
matrix completion,” Mathematical Programming Computation, 2013.

[18] Alex Beutel, Abhimanu Kumar, Evangelos E. Papalexakis, Partha Pratim Talukdar, Christos
Faloutsos, and Eric P. Xing, “Flexifact: Scalable flexible factorization of coupled tensors on
hadoop,” in SDM, 2014.

[19] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factor-
ization, Wiley, 2009.

[20] D. P. Bertsekas, “Incremental Gradient, Subgradient, and Proximal Methods for Convex Opti-
mization: A Survey,” 2010.

9

	Introduction
	Probabilistic Modeling of Coupled Tensor Factorizations
	Inference
	Distributed Incremental Gradient Descent for Learning the Factors
	Parallel and Distributed Estimation of Mixed Divergences

	Preliminary Experiments
	Conclusion

