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1 Introduction

The growth of data sharing initiatives in neuroscience and genomics [14, 16, 19, 25] represents an exciting opportunity
to confront the “small N” problem plaguing contemporary studies [20]. When possible, open data sharing provides
the greatest benefit. However some data cannot be shared at all due to privacy concerns and/or risk of re-identification.
Sharing other data sets is hampered by the proliferation of complex data use agreements (DUAs) which preclude truly
automated data mining. These DUAs arise because of concerns about the privacy and confidentiality for subjects;
though many do permit direct access to data, they often require a cumbersome approval process that can take months.
Additionally, some researchers have expressed doubts about the efficiency and scalability of centralized data storage
and analysis for large volume datasets [18]. In response, distributed cloud solutions have been suggested [23]; however,
the task of transferring large volumes of imaging data (processed or unprocessed) to and from the cloud is far from
trivial. More worrisome than the challenges of data transfer and storage is the tendency for labs to collect, label, and
maintain neuroimaging data in idiosyncratic ways. Developing standardized data collection and storage is a recent
trend [26], and achieving such a standard may take years, or may never happen at all.

Consider a psychiatric researcher who wishes to understand the neurophysiological differences between patients with
schizophrenia and those without. Specifically, this researcher wishes to discover latent features in structural magnetic
resonance imaging (sMRI) brain scans, which are relevant for distinguishing the healthy control subjects from those
with the disorder. In order to robustly discover these latent features, the researcher would need access to a much larger
population dataset than that typically available at a single site. Rather than developing an entirely new study with new
subjects at great cost, it would be desirable to re-use data produced by other researchers who are studying or have
studied schizophrenia. This will not only reduce the cost of a particular study, but will also gain access to a data set of
sufficient size. The researcher may be familiar with current statistical and machine learning methods, such as support-
vector machine classification, independent components analysis (ICA), or nonnegative matrix factorization (NMF), but
likely has limited experience with distributed data mining, cloud computing, or using computational infrastructures
more complex than a desktop personal computer.
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The system we propose is a distributed service which seamlessly provides transparent access to resources, matching
the requirements of the researcher while preserving data privacy. The researcher would merely specify the datasets
to use, a criteria to select specific subjects from those datasets, and possibly some data privacy constraints, such as
data movement or a privacy budget.1 They would also select a machine learning method from those available in the
catalogue to be used in the data analysis—for example, latent feature discovery via nonnegative matrix factorization.
The system then autonomously executes the selected machine learning method in a distributed fashion across the
available infrastructure, subject to budgetary constraints, and returns the results to the researcher. By automating the
computational resources, data governance, and other system implementation issues, the researcher is insulated from the
details of how their request is processed. The C3 platform proposed here is design to provide a suite of functionalities
which forms a kind of application programming interface (API) for researchers who may lack the technical expertise to
leverage cloud computing and other technologies. Similarly, C3 can be extended to account for budgetary constraints
such as privacy requirements for data holders, eliminating the need to traverse a Procrustean maze of individual per-
use DUAs. Finally, this framework can take advantage of heterogeneous computational resources in an elastic and
on-demand manner, leading to much more efficient processing. There is substantial value to performing data analysis
on the fly, as the flow of data continues to increase. However, this does not mesh well with traditional approaches
in which a dataset is under the complete control of the investigator and analyses take weeks, months, or longer to
perform, re-check, and validate.

One of the motivations for C3 is the need to guarantee privacy in applications involving sensitive data. A canonical
example of this is medical research: due to ethical and legal concerns, many data holders are hesitant to share raw
data across the network, and would prefer a more gated access via trusted privacy-preserving algorithms. Here we
take a step towards distributed private analyses by keeping the data at each site and sharing only summaries of local
data sets. Such a system does not provide strong quantifiable privacy guarantees such as differential privacy. However,
differential privacy is guaranteed by the algorithms, and our focus here is on the system design. We leave the problem
of designing a differentially private version of our NMF algorithm for future work; differentially private algorithms for
tasks such as classification have shown promising initial results, and we believe these advances can be incorporated
easily into CometCloud. To our knowledge, no system for neuroimaging research is currently focused on advanced
solutions to the competing goals of data analysis and privacy, beyond simple anonymization or “defacing” [2].

Our contributions. Our contribution in this paper is a framework and interface for researchers who work with sensi-
tive data to run complex distributed machine learning algorithms on distributed data sets in a way that is transparent
to the user. We demonstrate the feasibility of this task by implementing a distributed version of a nonnegative matrix
factorization (NMF) algorithm [1, 11]. Such algorithms are attractive for nonnegative datasets since the latent factors
can be directly interpreted by the domain expert. For instance, in structural MRI datasets, the input to the matrix
factorization is gray matter concentration maps which are necessarily nonnegative. If both latent factors are nonneg-
ative then the presence of a certain latent feature can be simply checked by looking at the corresponding element in
the activation matrix. In contrast, independent component analysis (ICA) leads to real-valued features and activation
patterns which are rarely interpretable .

The benefits of this approach are: (i) Transparent use of ML algorithms allows users to focus on specifying the algo-
rithms they would like to run and the datasets to use. Datasets are selected based on criteria from their research study
and are subjected to budgetary, system usage, and privacy constraints. The framework autonomously marshals appro-
priated resources and orchestrates the execution of the selected algorithms; (ii) Transparently develop ML algorithms,
users focus on the logic of the machine learning algorithms without worrying about the underneath orchestration mech-
anisms; (iii) Privacy preservation control where users can add or use policies, such as differentially private algorithms
with budget tracking.

2 CometCloud

CometCloud is an autonomic framework for enabling real-world applications on software-defined federated cyber-
infrastructure, including heterogeneous infrastructures integrating public clouds (e.g., Amazon EC2), private clouds
(e.g., private OpenStack deployment), and data-centers. CometCloud exposes the federated infrastructure using cloud
abstractions to offer resources in an elastic and on-demand way, regardless their location. It also provides abstractions
and mechanisms to support a range of programming paradigms and applications requirements on top of the federa-
tion [5]. The ultimate goal of such as system is to autonomously control the computation, storage, and communication

1Privacy budgets are an accounting mechanism for loss of privacy, monetary compensation, or other quantifiable constraints .
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aspects of distributed data processing, leaving end users to merely specify what they want to do (e.g., process a dataset
using a specific application) rather than how (i.e., how many computers and from which location, where to move data,
how to interact with a specific system, etc.).

Conceptually, CometCloud is composed of a programming layer, service layer, and infrastructure layer. The infras-
tructure layer is composed by a dynamic self-organizing overlay which connects available resources. New resources
can be added to the overlay at runtime or remove when they are not needed. This layer is fault tolerant and resilient
to disconnects and failures. This layer also has a routing engine that allows to address resources using attributes (e.g.,
type of CPU, amount of memory) instead of specific addresses. Other features such as data replication, load balanc-
ing, notifications and event propagation are also supported. The service layer provides a range of services to support
autonomics at the programming and application level. This layer provides management of application executions,
discovery of services, associative object store to explicitly exploit context locality, and messaging service including
publish/subscribe and push/pull. The programming layer provides the basic functionality for application development
and management. It supports a range of paradigms including the master-worker and bag of tasks. Masters generate
tasks and workers consume them. Scheduling and monitoring of tasks are transparently supported by the framework
without users interaction. A task consistency service handles lost/failed tasks. CometCloud is not restricted to applica-
tions that have been developed in a particular programming language (e.g., Java), and has been demonstrated to work
as a wrapper for a number of other languages (C, Matlab, Fortran, Python, and Scala) [4].

2.1 CometCloud Federation Model

The CometCloud federation model is based on the Comet [12] coordination spaces concept. A Comet spaces is, in
essence, an overlay that is used to coordinate different aspects of the federation. In particular, we have decided to
use two kind of spaces in the federation. First, we have a single federated management space used to create the
actual federation and orchestrate the different resources. This space is used to interchange any operational message
for discovering resources, announcing changes in a site, routing users request to the appropriate sites, or initiating
negotiations to create ad-hoc execution spaces. On the other hand, we can have multiple shared execution spaces that
are created on demand to satisfy computing needs of the users. Execution spaces can be created in the context of
a single site to provision local resources and cloudburst to public clouds or external HPC systems. Moreover, they
can be used to create a private sub-federation across several sites. This case can be useful when several sites have
some common interest and they decide to jointly target certain type of tasks as a specialized community. The same
mechanism can be used to set boundaries across sites controlling data movement or access to computation [4].

In the model, users at every site have access to a set of heterogeneous and dynamic resources, such as public/private
clouds, supercomputers, and grids. These resources are uniformly exposed using cloud-like abstractions and mech-
anisms that facilitate the execution of applications across the resources. The federation is dynamically created in a
collaborative way, where sites “talk” to each other to identify themselves, negotiate the terms of adhesion, discover
available resources, and advertise their own resources and capabilities. Sites can join and leave at any point. Notably,
this requires a minimal configuration at each site that amounts to specifying the available resources, a queuing system
or a type of cloud, and credentials. As a part of the adhesion negotiation, sites may have to verify their identities using
security mechanisms such as X.509 certificates or public/private key authentication.

3 Platform Design

In this paper we propose a platform, called CometCloudCare (C3) to enable the use and development of distributed
machine learning algorithms that can take advantage of geographically distributed resources. In this platform privacy
raises as a first class citizen ensuring that distributed machine learning algorithms make use of various data without
compromising it. We envision users with two roles: regular users and power users. Regular users simply select a
desired machine learning algorithm and privacy policy from the catalogue and specify what datasets they want to
use. Users can always specify data movement constraints (e.g., a dataset cannot be moved outside of its location or
it can only be moved within a region). The underlying system takes care of provisioning resources, moving data, and
delivering the results. On the other hand, we envision power users that can create new machine learning algorithms by
specifying different functions and a workflow that determines how data flows from one function to another. Similarly
privacy policies can be created by specifying the functions and operations that need to be applied to data at any step of
the workflow. This platform builds on top of CometCloud which enables access to elastically federated resources by
presenting them as a single pool of resources. The architecture of our platform is presented in Figure 1.
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At the top of our framework we have the platform layer, where users are presented with a catalogue of machine learning
algorithms and privacy policies. In this way, users only need to provide basic information, such as: a workflow
describing how different machine learning algorithms will be using the data; objectives and policies relative to the
application (e.g., deadline, budget); and data sources. Then, the platform interacts with CometCloud to ensure that the
computation is done following the requirements. Hence, user is kept away from low level details regarding where and
how data is process. Additionally, the platform layer exposes appropriated APIs to allow power users creating new
algorithms and policies.

The platform layer interacts with CometCloud to gain transparent access to heterogeneous resources (see Figure 1).As
we described in Section 2, CometCloud is able to federate highly heterogeneous and dynamic cloud/grid/HPC infras-
tructures. These resources are presented as a single pool of resources using cloud-like capabilities. This enables the
integration of public/private clouds and autonomic cloudbursts, i.e., dynamic scale-out to clouds to address extreme
requirements such as heterogeneous and dynamics workloads, and spikes in demands.

Platform Layer 

 

CometCloud 

Machine Learning  
Algorithms 

Privacy Policies 

HPC Grid 

Cloud 

Cluster 

Cloud 

Application 
Objectives  & 

Policies 
Workflow 

Data 
Sources 

Figure 1: Platform-as-a-Service

3.1 The use case revisited

Let us consider a power-user, who wants to analyze structural MRI data spread across different medical centers.
Assume that the machine learning model the researcher wants to apply is not in the list of implemented algorithms. The
researcher can chose to implement a distributed version of the algorithm using the map/reduce paradigm. Our platform
has APIs that allow users to create mapper and reducer functions which compute the parameters of the model when
given well-defined data input and intermediary variables. Once the algorithm is integrated in the platform, users simply
need to specify how input, outputs and intermediary results are used by these functions in a high level specification
language, such as YAML. Using this information the system automatically handles task generation, scheduling, data
movement, privacy requirements, etc. In particular, we have implemented in our platform the distributed nonnegative
matrix factorization algorithm described in Section 4.2 .

4 Algorithm

Notation: Matrices will be denoted in boldface. The matrix Id is the d × d identity matrix; the subscript will be
omitted when the dimension is obvious. The notation [n] = {1, 2, . . . , n}.
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4.1 Nonnegative matrix factorization

Let the data be X ∈ Rd×N where d is the number of dimensions of each data point andN is the number of individuals.
The data is assumed to be bounded and nonnegative, so that X ∈ [0, 1]d×N .

Orthogonal NMF seeks to perform a decomposition of the data matrix X into a product of two nonnegative matrices:

X = AS (1)

where A ∈ Rd×m is a matrix whose columns are basis vectors, S ∈ Rm×N is a matrix of coefficients, and the two
matrices satisfy the following:

A>A = Im (2)
Aij ≥ 0 (i, j) ∈ [d]× [k] (3)
Sij ≥ 0 (i, j) ∈ [k]× [N ] (4)

Because the data is bounded, the two matrices A and S are also bounded.

The orthogonal NMF algorithm is alternates the following two steps [3]:

S← S� A>X

A>AS
(5)

A← A� XS>

ASX>A
(6)

where � and matrix division are taken element-wise (Hadamard).

4.2 Distributed NMF

We assume the total data X is partitioned into K sites so that X = [X1 X2 · · · XK ]. The distributed NMF algorithm
can be decomposed into two stages corresponding to Map and Reduce phases of the MapReduce framework for large-
scale learning. The Map phase involves learning the columns of matrix S corresponding to the current estimate of A.
Since the objective is parallelizable across the columns, each site can compute the corresponding columns of S given
the corresponding data columns of X.

Formally, the Map step for each site k we do the following update based on the local data Xk and the global variable A:

Sk ← Sk �
A>Xk

A>ASk
(7)

Each site k produces two matrices, Sk and XkS
>
k . For the Reduce step, each site k transmits its estimate XkS

>
k to a

trusted central server which computes the sum

C←
K∑
k=1

XkS
>
k . (8)

The Reduce step is given by:

A← A� C

AC>A
(9)

The matrix A is then sent to the individual sites. In this paper we develop a system for implementing this distributed
NMF algorithm as well a differentially private version of the A update.

5 Experiments

We use a combined data from four separate schizophrenia studies conducted at Johns Hopkins University (JHU),
the Maryland Psychiatric Research Center (MPRC), the Institute of Psychiatry, London, UK (IOP), and the Western
Psychiatric Institute and Clinic at the University of Pittsburgh (WPIC) (the data used in [15]). The combined sample
comprised 198 schizophrenia patients and 191 matched healthy controls and contained both first episode and chronic
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Figure 2: Shown are 9 features learnt using orthogonal NMF on a structural MRI dataset of 382 subjects with equal
number of healthy controls and schizophrenic patients. The number of reduce steps is 10. We split the data evenly
across two sites.

patients [15]. At all sites, whole brain MRIs were obtained on a 1.5T Signa GE scanner using identical parameters
and software.

The distributed infrastructure consisted of two sites: (i) Rutgers Federation site: The Rutgers federation site is
deployed on a cluster-based infrastructure with 32 nodes. Each node has 8 CPU cores at 2.6 GHz, 24 GB memory,
146 GB storage and Gigabit Ethernet connection. The measured latency on the network is 0.227 ms on average;
and (ii) FutureGrid Federation site: The FutureGrid federation site is deployed on a cloud infrastructure based on
OpenStack. In particular, we have used the infrastructure located at San Diego Supercomputer Center. We have used
instances of type medium, where each instance has 2 cores and 4 GB of memory, and small, where each instance has
1 core and 2 GB of memory. The networking infrastructure is DDR Infiniband and the measured latency of the cloud
virtual network is 0.706 ms on average.

We ran the distributed NMF algorithm from Section 4.2 on the JHU dataset. The rank of the factorization was set to 9.
The learnt features are shown in Figure 2.

6 Discussion and future extensions

Overcoming the “small N” problem is key to making breakthroughs in medical research, particularly in elucidating
the etiology of complex conditions such as mental health disorders. There is a disconnect between contemporary ap-
proaches to healthcare research and the rapid advances made in computing, data management, and machine learning.
Researchers cannot become expert in these technologies, so it is imperative that we design platforms and interfaces
that allow them to leverage additional data and powerful computational methods to process them in a transparent and
automated manner. In this paper, we presented a platform for multi-site collaboration using distributed machine learn-
ing algorithms with differential-privacy guarantees. In particular, we showed a distributed version of the orthogonal
NMF algorithm applied to sMRI data spread across different hospitals (sites).

The C3 platform is a step towards realizing that future. By augmenting this framework with additional functionalities,
privacy protections, and ability to easily access distributed datasets, we can provide researchers in a variety of settings
the tools they need to uncover the causes and cures for complex diseases.

6



Differentially private distributed algorithms: One important extension of this framework is to incorporate metrics
for privacy-preserving data processing. In particular, designing differentially private [6, 7] updates would allow a
more rigorous quantification of the privacy risk. Consider an algorithm M that takes the data X as one input and
outputs a result M(X). In our NMF update rule we have two such algorithms: MS(X;A,S) that updates S in (5) and
MA(X;A,S) that updates A in (6). Differential privacy is a property of randomized algorithms—the randomization
introduces uncertainty in the output that provides privacy protections. The goal of differential privacy is to mask the
presence or absence of a particular individual’s data in the data set. Let X′ ∈ Rd×N be a data set in which N − 1
columns are identical to the data X and one column is different. We call any such X′ a neighbor of the data matrix X.

An algorithm M guarantees (ε, δ)-differential privacy if for any pair (X,X′) of data matrices that are neighbors,

P (M(X) ∈ T ) ≤ eεP (M(X′) ∈ T ) + δ. (10)

for any set T of outcomes. That is, the chance that M produces an output in T is similar for both X and X′.

In our system, we consider a scenario where the individual sites trust the central server but they do not trust each
other. This means we will not consider differentially private versions MS(Xk;A,Sk) of the update (7), but instead
focus on differentially private methods MA(Xk;A,Sk) for the Reduce step of the distributed NMF algorithm. Data-
independent post-processing the output of a differentially private algorithm cannot degrade the privacy guarantee, so
we our approach is to make a differentially private computation of the matrix C in (8). This is a simple sum of matrices,
each of which is based on the private data of the local sites. The challenge here is to analyze the sensitivity [7] of
the individual terms in the sum in terms of a change in the data at one site from Xk to X′k. Over the course of the
iterations, the entries in the matrices XkS

>
k may have a larger range than the original data. The key to this analysis is

developing a perturbation analysis of distributed NMF; we leave this for future work.

Differentially private methods for machine learning are still under active research development [9, 10], and design-
ing practical methods for distributed systems can be quite challenging [8, 21]. Designing domain-specific algorithms
can often yield better performance than off-the-shelf solutions, and experience from implementation may yield dif-
ferent differentially private aggregation rules [22]. One system-level implementation which has shown promise is
GUPT [17]—incorporating design concepts from that system may improve performance under CometCloud.

Enabling a suite of algorithms: Distributed machine learning is an active field of research that includes work on
Spark [24] and GraphLab [13]. Our approach is different from the previous ones in the sense we go beyond a single
data-center and target federated cyber-infrastructure that is geographically distributed. We are currently experimenting
with other machine learning algorithms such as LASSO, SVM and ICA. We are also working on extending the API to
make the integration of novel machine learning algorithms in the distributed framework seamless.

Augmenting CometCloud with policies: CometCloud allows the definition of various types of users’ requirements
by means of policies. These policies translate these requirements into low level operations that determine how the
algorithms are executed. For example, we could have a privacy budget policy that limits how much information can
be leaked from every site at every iteration of the algorithm during communication. This policy guides the system
to constrain which one of those sites can participate at each iteration depending on the available privacy budget. The
budget is adjusted after every iteration.
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