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Abstract

In this work, we propose a new randomized algorithm for computing a low-rank
approximation to a given matrix. Taking an approach different from existing liter-
ature, our method first involves a specific biased sampling, with an element being
chosen based on the leverage scores of its row and column, and then involves
weighted alternating minimization over the factored form of the intended low-
rank matrix, to minimize error only on these samples. Our method can leverage
input sparsity, yet produce approximations in spectral (as opposed to the weaker
Frobenius) norm; this combines the best aspects of otherwise disparate current
results, but with a dependence on the condition number κ = σ1/σr. In particu-
lar we require O(nnz(M) + nκ2r5

ε2 ) computations to generate a rank-r approx-
imation to M in spectral norm. In contrast, the best existing method requires
O(nnz(M) + nr2

ε4 ) time to compute an approximation in Frobenius norm. Be-
sides the tightness in spectral norm, we have a better dependence on the error ε.
Our method is naturally and highly parallelizable.
Our new approach enables two extensions that are interesting on their own. The
first is a new method to directly compute a low-rank approximation (in efficient
factored form) to the product of two given matrices; it computes a small random
set of entries of the product, and then executes weighted alternating minimization
(as before) on these. The sampling strategy is different because now we cannot
access leverage scores of the product matrix (but instead have to work with input
matrices). The second extension is an improved algorithm with smaller commu-
nication complexity for the distributed PCA setting (where each server has small
set of rows of the matrix, and want to compute low rank approximation with small
amount of communication with other servers).

1 Introduction

Finding a low-rank approximation to a matrix is fundamental to a wide array of machine learning
techniques. The large sizes of modern data matrices has driven much recent work into efficient
(typically randomized) methods to find low-rank approximations that do not exactly minimize the
residual, but run much faster / parallel, with fewer passes over the data. Existing approaches involve
either intelligent sampling of a few rows / columns of the matrix, projections onto lower-dimensional
spaces, or sampling of entries followed by a top-r SVD of the resulting matrix (with unsampled
entries set to 0).

∗Extended abstract to appear in the proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA15).
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We pursue a different approach: we first sample entries in a specific biased random way, and then
minimize the error on these samples over a search space that is the factored form of the low-rank
matrix we are trying to find. We note that this is different from approximating a 0-filled matrix; it is
instead reminiscent of matrix completion in the sense that it only looks at errors on the sampled en-
tries. Another crucial ingredient is how the sampling is done: we use a combination of `1 sampling,
and of a distribution where the probability of an element is proportional to the sum of the leverage
scores of its row and its column.

Both the sampling and the subsequent alternating minimization are naturally fast, parallelizable,
and able to utilize sparsity in the input matrix. Existing literature has either focused on running in
input sparsity time but approximation in (the weaker) Frobenius norm, or running in O(n2) time
with approximation in spectral norm. Our method provides the best of both worlds: it runs in input
sparsity time, with just two passes over the data matrix, and yields an approximation in spectral
norm. It does however have a dependence on the ratio of the first to the rth singular value of the
matrix.

Our alternative approach also yields new methods for two related problems: directly finding the
low-rank approximation of the product of two given matrices, and distributed PCA.

Our contributions are thus three new methods in this space:

• Low-rank approximation of a general matrix: Our first (and main) contribution is a new
method (LELA, Algorithm 1) for low-rank approximation of any given matrix: first draw a
random subset of entries in a specific biased way, and then execute a weighted alternating
minimization algorithm that minimizes the error on these samples over a factored form of
the intended low-rank matrix. The sampling is done with only two passes over the matrix
(each in input sparsity time), and both the sampling and the alternating minimization steps
are highly parallelizable and compactly stored/manipulated.
For a matrix M , let Mr be the best rank-r approximation (i.e. the matrix corresponding to
top r components of SVD). Our algorithm finds a rank-r matrix M̂r in time O(nnz(M) +
nκ2r5

ε2 ), while providing approximation in spectral norm: ‖M − M̂r‖ ≤ ‖M −Mr‖ +
ε‖M−Mr‖F , where κ = σ1(M)/σr(M) is the condition number ofMr. Existing methods
either can run in input sparsity time, but provide approximations in (the weaker) Frobenius
norm (i.e. with || · || replaced by || · ||F in the above expression), or run in O(n2) time
to approximate in spectral norm, but even then with leading constants larger than 1. See
Table 1 for a detailed comparison to existing results for low-rank approximation.
• Direct approximation of a matrix product: We provide a new method to directly find a

low-rank approximation to the product of two matrices, without having to first compute the
product itself. To do so, we first choose a small set of entries (in a biased random way) of
the product that we will compute, and then again run weighted alternating minimization on
these samples. The choice of the biased random distribution is now different from above,
as the sampling step does not have access to the product matrix. However, again both the
sampling and alternating minimization are highly parallelizable.
• Distributed PCA: Motivated by applications with really large matrices, recent work has

looked at low-rank approximation in a distributed setting where there are s servers – each
have small set of rows of the matrix – each of which can communicate with a central
processor charged with coordinating the algorithm. In this model, one is interested in find
good approximations while minimizing both computations and the communication burden
on the center.
We show that our LELA algorithm can be extended to the distributed setting while guar-
anteeing small communication complexity. In particular, our algorithm guarantees the
same error bounds as that of our non-distributed version but guarantees communication
complexity of O(ds + nr5κ2

ε2 log n) real numbers for computing rank-r approximation to
M ∈ Rn×d. For n ≈ d and large s, our analysis guarantees significantly lesser commu-
nication complexity than the state-of-the-art method [15], while providing tighter spectral
norm bounds.

Notation: Capital letter M typically denotes a matrix. M i denotes the i-th row of M , Mj denotes
the j-th column of M , and Mij denotes the (i, j)-th element of M . Unless specified otherwise,
M ∈ Rn×d and Mr is the best rank-r approximation of M . Also, Mr = U∗Σ∗(V ∗)T denotes the
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Reference Frobenius norm Spectral norm Computation time
BJS14 (Our Algorithm) (1 + ε)‖∆‖F ‖∆‖+ ε‖∆‖F O(nnz(M) + nr5κ2 log(n)

ε2 )

CW13[5] (1 + ε)‖∆‖F (1 + ε)‖∆‖F O(nnz(M) + nr2

ε4 + r3

ε5 )

BG13 [3] (1 + ε)‖∆‖F c‖∆‖+ ε‖∆‖F O(n2( r+log(n)
ε2 ) + n r

2 log(n)2

ε4 )

NDT09[19] (1 + ε)‖∆‖F c‖∆‖+ ε
√
n‖∆‖ O(n2 log( r log(n)

ε ) + nr2 log(n)2

ε4 )

WLRT08[21] (1 + ε)‖∆‖F ‖∆‖+ ε
√
n‖∆‖ O(n2 log( rε ) + nr4

ε4 )

Sar06[20] (1 + ε)‖∆‖F (1 + ε)‖∆‖F O(nnz(M) rε + n r
2

ε2 )

Table 1: Comparison of error rates and computation time of some low rank approximation algo-
rithms. ∆ = M −Mr.

SVD of Mr. κ = σ∗1/σ
∗
r denotes the condition number of Mr, where σ∗i is the i-th singular value of

M . ‖u‖ denotes the L2 norm of vector u. ‖M‖ = max‖x‖=1 ‖Mx‖ denotes the spectral or operator

norm of M . ‖M‖F =
√∑

ijM
2
ij denotes the Frobenius norm of M . Also, ‖M‖1,1 =

∑
ij |Mij |.

dist(X,Y ) = ‖XT
⊥Y ‖ denotes the principal angle based distance between subspaces spanned by

X and Y orthonormal matrices. Typically, C denotes a global constant independent of problem
parameters and can change from step to step.

Given a set Ω ⊆ [n] × [d], PΩ(M) is given by: PΩ(M)(i, j) = Mij if (i, j) ∈ Ω and 0 otherwise.
RΩ(M) = w. ∗ PΩ(M) denotes the Hadamard product of w and PΩ(M). That is, RΩ(M)(i, j) =

wijMij if (i, j) ∈ Ω and 0 otherwise. Similarly let R1/2
Ω (M)(i, j) =

√
wijMij if (i, j) ∈ Ω and 0

otherwise.

2 Related results

Low rank approximation: Now we will briefly review some of the existing work on algorithms
for low rank approximation. [11] introduced the problem of computing low rank approximation
of a matrix M with few passes over M . They presented an algorithm that samples few rows and
columns and does SVD to compute low rank approximation, and gave additive error guarantees.
[7, 8] have extended these results. [1] considered a different approach based on entrywise sampling
and quantization for low rank approximation and has given additive error bounds.

[14, 20, 9, 6] have given low rank approximation algorithms with relative error guarantees in
Frobenius norm. [21, 19] have provided guarantees on error in spectral norm which are later
improved in [13, 3]. The main techniques of these algorithms is to use a random Gaussian or
Hadamard transform matrix for projecting the matrix onto a low dimensional subspace and com-
pute the rank-r subspace. [3] have given an algorithm based on random Hadamard transform that
computes rank-r approximation in time O(n

2r
ε2 ) and gives spectral norm bound of ‖M − M̂r‖ ≤

c‖M −Mr‖ + ε‖M −Mr‖F . Recently [5] gave an algorithm using sparse subspace embedding
that runs in input sparsity time with relative Frobenius norm error guarantees.

We presented some results in this area as a comparison with our results in table 1. This is a heavily
subsampled set of existing results on low rank approximations. There is a lot of interesting work
on very related problems of computing column/row based(CUR) decompositions, matrix sketching,
low rank approximation with streaming data. Look at [18, 13] for more detailed discussion and
comparison.

Distributed PCA: In distributed PCA, one wants to compute rank-r approximation of a n×dmatrix
that is stored across s servers with small communication between servers. One popular model is
row partition model where subset of rows are stored at each server. Algorithms in [10, 17, 12, 16]
achieve O(dsrε ) communication complexity with relative error guarantees in Frobenius norm, under
this model.

Recently [15] have considered the scenario of arbitrary splitting of a n × d matrix and given an
algorithm that has O(dsrε ) communication complexity with relative error guarantees in Frobenius
norm.
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3 Low-rank Approximation of Matrices

In this section we will present our main contribution: a new randomized algorithm for computing
low-rank approximation of any given matrix. Our algorithm first samples a few elements from the
given matrix M ∈ Rn×d, and then rank-r approximation is computed using only those samples.
Algorithm 1 provides a detailed pseudo-code of our algorithm; we now comment on each of the
two stages:

Sampling: A crucial ingredient of our approach is using the correct sampling distribution. Recent
results in matrix completion [4] indicate that a small number (O(nr log2(n))) of samples drawn in
a way biased by leverage scores1 can capture all the information in any exactly low-rank matrix.
While this is indicative, here we have neither access to the leverage scores, nor is our matrix
exactly low-rank. We approximate the leverage scores with the row and column norms (||M i||2
and ||Mj ||2), and account for the arbitrary high-rank nature of input by including an L1 term in the
sampling; the distribution is given in eq. (2). Computationally, our sampling procedure can be done
in two passes and O(m log n+ nnz(M)) time.

Weighted alternating minimization: In our second step, we express the low-rank approximation M̂r

as UV T and then iterate over U and V alternatingly to minimize the weighted L2 error over the
sampled entries (see Sub-routine 2). Note that this is different from taking principal components of
a 0-filled version of the sampled matrix. The weights give higher emphasis to elements with smaller
sampling probabilities. In particular, the goal is to minimize the following objective function:

Err(M̂r) =
∑

(i,j)∈Ω

wij

(
Mij − (M̂r)ij

)2

, (1)

where wij = 1/q̂ij when q̂ij > 0, 0 else. For initialization of the WAltMin procedure, we compute
SVD of RΩ(M) (reweighed sampled matrix) followed by a trimming step (see Step 4, 5 of Sub-
routine 2). Trimming step sets (Û0)i = 0 if ‖(Û0)i‖ ≥ 4‖M i‖/‖M‖F and (Û0)i = (U0)i

otherwise; and prevents heavy rows/columns from having undue influence.

We now provide our main result for low-rank approximation and show that Algorithm 1 can provide
a tight approximation to Mr while using a small number of samples m = E[|Ω|].
Theorem 3.1. Let M ∈ Rn×d be any given matrix (n ≥ d) and let Mr be the best rank-r ap-
proximation to M . Set the number of samples m = C

γ
nr3

ε2 κ
2 log(n) log2(‖M‖ζ ), where C > 0 is

any global constant, κ = σ1/σr where σi is the i-th singular value of M . Also, set the number of
iterations of WAltMin procedure to be T = log(‖M‖ζ ). Then, with probability greater than 1 − γ
for any constant γ > 0, the output M̂r of Algorithm 1 with the above specified parameters m,T ,
satisfies:

‖M − M̂r‖ ≤ ‖M −Mr‖+ ε ‖M −Mr‖F + ζ.

That is, if T = log( ‖M‖
ε‖M−Mr‖F ), we have:

‖M − M̂r‖ ≤ ‖M −Mr‖+ 2ε ‖M −Mr‖F .

3.1 Computation complexity:

In the first step we take 2 passes over the matrix to compute the sampling distribution (2) and
sampling the entries based on this distribution. It is easy to show that this step would require
O(nnz(M) + m log(n)) time. Next, the initialization step of WAltMin procedure requires
computing rank-r SVD of RΩ0

(M) which has at most m non-zero entries. Hence, the pro-
cedure can be completed in O(mr) time using standard techniques like power method. Note
that we need top-r singular vectors of RΩ0(M) only upto constant approximation. Further
t-th iteration of alternating minimization takes O(2|Ω2t+1|r2) time. So, the total time com-
plexity of our method is O(nnz(M) + mr2). As shown in Theorem 3.1, our method requires

1If SVD of Mr = U∗Σ∗(V ∗)T then leverage scores of Mr are ||(U∗)i||2 and ||(V ∗)j ||2 for all i, j.
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Algorithm 1 LELA: Leveraged Element Low-rank Approximation
input matrix: M ∈ Rn×d, rank: r, number of samples: m, number of iterations: T

1: Sample Ω ⊆ [n] × [d] where each element is sampled independently with probability: q̂ij =
min{qij , 1}

qij = m ·
(‖M i‖2 + ‖Mj‖2

2(n+ d)‖M‖2F
+
|Mij |

2‖M‖1,1

)
. (2)

/*See Section 3.1 for details about efficient implementation of this step*/
2: Obtain PΩ(M) using one pass over M
3: M̂r = WAltMin(PΩ(M),Ω, r, q̂, T )

output M̂r

Sub-routine 2 WAltMin: Weighted Alternating Minimization
input PΩ(M), Ω, r, q̂, T

1: wij = 1/q̂ij when q̂ij > 0, 0 else, ∀i, j
2: Divide Ω in 2T + 1 equal uniformly random subsets, i.e., Ω = {Ω0, . . . ,Ω2T }
3: RΩ0

(M)← w. ∗ PΩ0
(M)

4: U (0)Σ(0)(V (0))T = SV D(RΩ0(M), r) //Best rank-r approximation of RΩ0(M)

5: Trim U (0) and let Û (0) be the output (see Section 3)
6: for t = 0 to T − 1 do
7: V̂ (t+1) = argminV ‖R1/2

Ω2t+1
(M − Û (t)V T )‖2F , for V ∈ Rd×r.

8: Û (t+1) = argminU ‖R1/2
Ω2t+2

(M − U(V̂ (t+1))T )‖2F , for U ∈ Rn×r.
9: end for

output Completed matrix M̂r = Û (T )(V̂ (T ))T .

m = O(nr
3

ε2 κ
2 log(n) log2( ‖M‖

ε‖M−Mr‖F )) samples. Hence, the total run-time of our algorithm is:

O(nnz(M) + nr5

ε2 κ
2 log(n) log2( ‖M‖

ε‖M−Mr‖F )).

3.2 Proof Overview:

The key steps in our proof of Theorem 3.1 are to show that 1)the initialization procedure (step 4
of Sub-routine 2) provides an accurate enough estimate of Mr and then 2)at each step, we show
a geometric decrease in distance to Mr. Our proof differs from the previous works on alternating
minimization in two key aspects: a) existing proof techniques of alternating minimization assume
that each element is sampled uniformly at random, while we can allow biased and approximate
sampling, b) existing techniques crucially use the assumption that Mr is incoherent, while our proof
avoids this assumption using the weighted version of AltMin. Complete proof is given in the full
version [2].

3.3 Direct Low-rank Approximation of Matrix Product

In this section we present a new algorithm for the following problem: suppose we are given two ma-
trices, and desire a low-rank approximation of their product AB; in particular, we are not interested
in the actual full matrix product itself (as this may be unwieldy to store and use, and thus wasteful
to produce in its entirety). One example setting where this arises is when one wants to calculate the
joint counts between two very large sets of entities; for example, web companies routinely come
across settings where they need to understand (for example) how many users both searched for a
particular query and clicked on a particular advertisement. The number of possible queries and ads
is huge, and finding this co-occurrence matrix from user logs involves multiplying two matrices –
query-by-user and user-by-ad respectively – each of which is itself large.

We give a method that directly produces a low-rank approximation of the final product, and involves
storage and manipulation of only the efficient factored form (i.e. one tall and one fat matrix) of
the final intended low-rank matrix. Note that as opposed to the previous section, the matrix does
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not already exist and hence we do not have access to its row and column norms; so we need a new
sampling scheme (and a different proof of correctness).

Algorithm: Suppose we are given an n1 × d matrix A and another d × n2 matrix B, and we wish
to calculate a rank-r approximation of the product A ·B. Our algorithm proceeds in two stages:

1. Choose a biased random set Ω ⊂ [n1] × [n2] of elements as follows: choose an intended
number m (according to Theorem 3.2 below) of sampled elements, and then independently
include each (i, j) ∈ [n1]× [n2] in Ω with probability given by q̂ij = min{1, qij} where

qij := m ·
( ‖Ai‖2
n2‖A‖2F

+
‖Bj‖2
n1‖B‖2F

)
, (3)

Then, find PΩ(A ·B), i.e. only the elements of the product AB that are in this set Ω.
2. Run the alternating minimization procedure WAltMin(PΩ(A · B),Ω, r, q̂, T ), where T is

the number of iterations (again chosen according to Theorem 3.2 below). This produces
the low-rank approximation in factored form.

The computation complexity of the algorithm is O(|Ω| · (d + r2)) = O(m(d + r2)) = O(nr
3κ2

ε2 ·
(d+ r2)) (suppressing terms dependent on norms of A and B ), where n = max{n1, n2}. We now
present our theorem on the number of samples and iterations needed to make this procedure work
with at least a constant probability.

Theorem 3.2. Consider matrices A ∈ Rn1×d and B ∈ Rd×n2 and let m = C
γ ·

(‖A‖2F +‖B‖2F )2

‖AB‖2F
·

nr3

(ε)2κ
2 log(n) log2(‖A‖F +‖B‖F

ζ ), where κ = σ∗1/σ
∗
r , σ∗i is the i-th singular value of A · B and

T = log(‖A‖F +‖B‖F
ζ ). Let Ω be sampled using probability distribution (3). Then, the output

ÂBr = WAltMin(PΩ(A ·B),Ω, r, q̂, T ) of Sub-routine 2 satisfies (w.p. ≥ 1− γ): ‖A ·B −
ÂBr‖ ≤ ‖A ·B − (A ·B)r‖+ ε‖A ·B − (A ·B)r‖F + ζ.

4 Distributed Principal Component Analysis

Modern large-scale systems have to routinely compute PCA of data matrices with millions of data
points embedded in similarly large number of dimensions. Now, even storing such matrices on a
single machine is not possible and hence most industrial scale systems use distributed computing
environment to handle such problems. However, performance of such systems depend not only on
computation and storage complexity, but also on the required amount of communication between
different servers.

In particular, we consider the following distributed PCA setting: Let M ∈ Rn×d be a given matrix
(assume n ≥ d but n ≈ d). Also, let M be row partitioned among s servers and let Mrk ∈ Rn×d be
the matrix with rows {rk} ⊆ [n] of M , stored on k-th server. Moreover, we assume that one of the
servers act as Central Processor(CP) and in each round all servers communicate with the CP and the
CP communicates back with all the servers. Now, the goal is to compute M̂r, an estimate of Mr,
such that the total communication (i.e. number of bits transferred) between CP and other servers is
minimized. Note that, such a model is now standard for this problem and was most recently studied
by [15].

Recently several interesting results [10, 12, 16, 15] have given algorithms to compute rank-r ap-
proximation of M , M̃r in the above mentioned distributed setting. In particular, [15] proposed a
method that for row-partitioned model requires O(dsrε + sr2

ε4 ) communication to obtain a relative
Frobenius norm guarantee.

In contrast, a distributed setting extension of our LELA algorithm 1 has linear com-
munication complexity O(ds + nr5

ε2 ) and computes rank-r approximation M̂r, with
||M − M̂r|| ≤ ||M − Mr|| + ε||M − Mr||F . Now note that if n ≈ d and if s scales with
n (which is a typical requirement), then our communication complexity can be significantly better
than that of [15]. Moreover, our method provides spectral norm bounds as compared to relatively
weak Frobenius bounds mentioned above.
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Algorithm: The distributed version of our LELA algorithm depends crucially on the following
observation: given V , each row of U can be updated independently. Hence, servers need to commu-
nicate rows of V only. There also, we can use the fact that each server requires only O(nr/s log n)
rows of V to update their corresponding Urk . Urk denote restriction of U to rows in set {rk} and 0

outside and similarly V̂ck
, Ŷck

denote restriction of V, Ŷ to rows {ck}.
We now describe the distributed version of each of the critical step of LELA algorithm. See [2] for
a detailed pseudo-code.

Sampling: For sampling, we first compute column norms ‖Mj‖,∀1 ≤ j ≤ d and communicate to
each server. This operation would require O(ds) communication. Next, each server (server k) sam-
ples elements from its rows {rk} and stores RΩk(Mrk) locally. Note that because of independence
over rows, the servers don’t need to transmit their samples to other servers.

Initialization: In the initialization step, our algorithm computes top r right singular vector ofRΩ(M)

by iterations Ŷ (t+1) = RΩ(M)TRΩ(M)Y t =
∑
k RΩk(M)TRΩk(M)Y t. Now, note that comput-

ing RΩk(M)Y t requires server k to access atmost |Ωk| columns of Y t. Hence, the total com-
munication from the CP to all the servers in this round is O(|Ω|r). Similarly, each column of
RΩk(M)TRΩk(M)Y t is only |Ωk| sparse. Hence, total communication from all the servers to CP
in this round is O(|Ω|r). Now, we need constant many rounds to get a constant factor approxima-
tion to SVD ofRΩ(M), which is enough for good initialization in WAltMin procedure. Hence, total
communication complexity of the initialization step would be O(|Ω|r).

Alternating Minimization Step: For alternating minimization, update to rows of U is computed at
the corresponding servers and the update to V is computed at the CP. For updating Û (t+1)

rk at server
k, we use the following observation: updating Û (t+1)

rk requires atmost |Ωk| rows of V̂ (t). Hence,
the total communication from CP to all the servers in the t-th iteration is O(|Ω|r). Next, we make
a critical observation that update V̂ (t+1) can be computed by adding certain messages from each
server. Message from server k to CP is of size O(|Ωk|r2). Hence, total communication complexity
in each round is O(|Ω|r2) and total number of rounds is O(log(‖M‖F /ζ)).

We now combine the above given observations to provide error bounds and communication com-
plexity of our distributed PCA algorithm:
Theorem 4.1. Let the n× d matrix M be distributed over s servers according to the row-partition
model. Let m ≥ C

γ
nr3

ε2 κ
2 log(n) log2( ||Mr||

ζ ). Then, the distributed LELA algorithm on completion

will leave matrices Û (t+1)
rk at server k and V̂ (t+1) at CP such that the following holds (w.p. ≥ 1−γ):

||M − Û (t+1)(V̂ (t+1))T || ≤ ||M −Mr||+ ε||M −Mr||F + ζ, where Û (t+1) =
∑
k Û

(t+1)
rk . This

algorithm has a communication complexity of O(ds + |Ω|r2) = O(ds + nr5κ2

ε2 log2( ||Mr||
ζ )) real

numbers.

As discussed above, each update to V̂ (t) and Û (t) are computed exactly as given in the WAltMin
procedure (Sub-routine 2). Hence, error bounds for the algorithm follows directly from Theorem 3.1.
Communication complexity bounds follows by observing that |Ω| ≤ 2m w.h.p.

5 Simulations

In this section we present some simulation results on synthetic data to show the error performance
of the algorithm 1. We consider random matrices of size 1000 by 1000 and rank-5. Mr is a rank
5 matrix with all singular values 1. We consider two cases one in which Mr is incoherent and
other in which Mr is coherent. Recall that a n × d rank-r matrix Mr is an incoherent matrix if
‖(U∗)i‖2 ≤ µ0r

n ,∀i and ‖(V ∗)j‖2 ≤ µ0r
d ,∀j, where SVD of Mr is U∗Σ∗(V ∗)T .

To generate matrices with varying incoherence parameter µ0, we use the power law matrices model
[4]. The input to algorithms is the matrix M = Mr + Z, where Z is a Gaussian noise matrix with
||Z|| = 0.01, 0.05 and 0.1. Correspondingly Frobenius norm of Z is ||Z|| ∗

√
1000/2, which is

0.16, 0.79 and 1.6 respectively.

In the first plot we compare the error ||Mr − M̂r|| of our algorithm LELA 1 with the random
projections based algorithm [13, 3]. We use the matrix with each entry an independent Gaussian
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Figure 1: Figure plots how the error ||Mr − M̂r|| decreases with increasing number of sam-
ples m for different values of noise ||M − Mr||, for incoherent and coherent matrices respec-
tively. Algorithm LELA 1 is run with m samples and Gaussian projections algorithms is run with
corresponding dimension of the projection l = m/n. Computationally LELA algorithms takes
O(nnz(M) + m log(n)) time for computing samples and Gaussian projections algorithm takes
O(nm) time. (a):For same number of samples both algorithms have almost the same error for in-
coherent matrices. (b): For coherent matrices clearly the error of LELA algorithm (solid lines) is
much smaller than that of random projections (dotted lines).
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Figure 2: (a):Figure plots the error ||(Y Y T )r − ̂(Y Y T )r|| for LELA direct 3.3 and Stagewise
algorithm for incoherent matrices. Stagewise algorithm is first computing rank-r approximation Ŷr
of Y using algorithm 1 and setting the low rank approximation ̂(Y Y T )r = ŶrŶ

T
r . Clearly directly

computing low rank approximation of Y Y T has smaller error. (b):Error ||(AB)r − (̂AB)r|| for
LELA direct 3.3 and Stagewise algorithm.

random variable as the sketching matrix, for the random projection algorithm. Other choices are
Walsh-Hadamard based transform [21] and sparse embedding matrices [5].

We compare the error of both algorithms as we vary number of samples m for algorithm 1, equiva-
lently varying the dimension of random projection l = m/n for the random projection algorithm.

In figure 1 we plot the error ||Mr − M̂r|| with varying number of samples m for both the algo-
rithms. For incoherent matrices we see that LELA algorithm has almost the same accuracy as the
random projection algorithm 1(a). But for coherent matrices we notice that in figure 1(b) LELA has
significantly smaller error compared to random projections.

Now we consider the setting of computing low rank approximation of Y Y T given Y using algorithm
LELA direct discussed in section 3.3 with sampling (3). In figure 2(a) we compare this algorithm
with a stagewise algorithm, which computes low rank approximation Ŷr from Y first and the rank-
r approximation is ŶrŶ Tr . As discussed in section 3.3 direct approximation of Y Y T has less error
than that of computing ŶrŶ Tr . Similarly in 2(b) we consider the case whereA andB are two rank 2r
matrices with AB being a rank r matrix. Here the top r dimensional row space of A is orthogonal
to the top r dimensional column space of B. Hence stagewise algorithm, that computes rank r
approximation of A and B first and then multiply will have high error as compared to that of LELA
direct.
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