Course overview

(Mainly) noncooperative game theory.

Noncooperative:
Focus on individual players’ incentives
(note these might lead to cooperation!)

Game theory:
Analyzing the behavior of rational, self interested players
What’s in a game?

1. **Players**: Who?
2. **Strategies**: What actions are available?
3. **Rules**: How? When? What do they know?
4. **Outcomes**: What results?
5. **Payoffs**:
 How do players evaluate outcomes of the game?
Example: Chess

1. **Players**: Chess masters
2. **Strategies**: Moving a piece
3. **Rules**: How pieces are moved/removed
4. **Outcomes**: Victory or defeat
5. **Payoffs**:
 - Thrill of victory,
 - Agony of defeat
Rationality

Players are *rational* and *self-interested*:

They will *always* choose actions that maximize their payoffs, given everything they know.
Static games

We first focus on *static games*.

(one-shot games, simultaneous-move games)

For any such game, the rules say:

All players must simultaneously pick a strategy.

This immediately determines an outcome, and hence their payoff.
Knowledge

• All players know the *structure of the game*: players, strategies, rules, outcomes, payoffs
Common knowledge

- All players know the structure of the game
 - All players know all players know the structure
 - All players know all players know all players know the structure
 and so on... ⇒

We say: the structure is *common knowledge*. This is called *complete information*.
PART I: Static games of complete information
Representation

- N: # of players
- S_n: strategies available to player n
- Outcomes:
 Composite strategy vectors
- $\Pi_n(s_1, \ldots, s_N)$:
 payoff to player n when player i plays strategy s_i, $i = 1, \ldots, N$
Example: A routing game

MCI and AT&T:

A Chicago customer of MCI wants to send 1 MB to an SF customer of AT&T.

A LA customer of AT&T wants to send 1 MB to an NY customer of MCI.

Providers minimize their own cost.

Key: MCI and AT&T only exchange traffic ("peer") in NY and SF.
Example: A routing game

Costs (per MB): Long links = 2; Short links = 1
Example: A routing game

Players: MCI and AT&T \((N = 2) \)

Strategies: Choice of traffic exit
\[S_1 = S_2 = \{ \text{nearest exit, furthest exit} \} \]

Payoffs:
Both choose furthest exit: \(\Pi_{MCI} = \Pi_{AT&T} = -2 \)
Both choose nearest exit: \(\Pi_{MCI} = \Pi_{AT&T} = -4 \)
MCI chooses near, AT&T chooses far:
\[\Pi_{MCI} = -1, \; \Pi_{AT&T} = -5 \]
Example: A routing game

Games with $N = 2$, S_n finite for each n are called *bimatrix games*.

<table>
<thead>
<tr>
<th></th>
<th>AT&T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>near</td>
<td>(-4,-4)</td>
<td>(-1,-5)</td>
</tr>
<tr>
<td>far</td>
<td>(-5,-1)</td>
<td>(-2,-2)</td>
</tr>
</tbody>
</table>

MCI

AT&T

far

near

(-2,-2)
Example: Matching pennies

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>(1,-1)</td>
<td>(-1,1)</td>
</tr>
<tr>
<td>T</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
</tr>
</tbody>
</table>

This is a zero-sum matrix game.
Dominance

\(s_n \in S_n \) is a (weakly) dominated strategy if

there exists \(s_n^* \in S_n \) such that

\[\Pi_n(s_n^*, s_{-n}) \geq \Pi_n(s_n, s_{-n}), \]

for any choice of \(s_{-n} \), with

strict ineq. for at least one choice of \(s_{-n} \).

If the ineq. is always strict, then \(s_n \) is a strictly dominated strategy.
Dominance

\[s_n^* \in S_n \text{ is a } \text{weak dominant strategy} \text{ if} \]
\[s_n^* \text{ weakly dominates all other } s_n \in S_n. \]

\[s_n^* \in S_n \text{ is a } \text{strict dominant strategy} \text{ if} \]
\[s_n^* \text{ strictly dominates all other } s_n \in S_n. \]

(Note: dominant strategies are unique!)
Dominant strategy equilibrium

\[s \in S_1 \times \cdots \times S_N \text{ is a strict (or weak) dominant strategy equilibrium} \]

if \(s_n \) is a strict (or weak) dominant strategy for each \(n \).
Back to the routing game

<table>
<thead>
<tr>
<th></th>
<th>AT&T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>near</td>
<td>(-4,-4)</td>
<td>(-1,-5)</td>
</tr>
<tr>
<td>far</td>
<td>(-5,-1)</td>
<td>(-2,-2)</td>
</tr>
</tbody>
</table>

Nearest exit is strict dominant strategy for MCI.
Back to the routing game

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>AT&T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>near</td>
<td>(-4,-4)</td>
<td>(-1,-5)</td>
</tr>
<tr>
<td>far</td>
<td>(-5,-1)</td>
<td>(-2,-2)</td>
</tr>
</tbody>
</table>

Nearest exit is strict dominant strategy for AT&T.
Back to the routing game

<table>
<thead>
<tr>
<th></th>
<th>AT&T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>near</td>
<td>far</td>
</tr>
<tr>
<td>near</td>
<td>(-4,-4)</td>
<td>(-1,-5)</td>
</tr>
<tr>
<td>MCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>far</td>
<td>(-5,-1)</td>
<td>(-2,-2)</td>
</tr>
</tbody>
</table>

Both choosing nearest exit is a strict dominant strategy equilibrium.
Example: Second price auction

- N bidders
- Strategies: $S_n = [0, \infty); \ s_n = \text{“bid”}$
- Rules & outcomes:
 High bidder wins, pays second highest bid
- Payoffs:
 - Zero if a player loses
 - If player n wins and pays t_n, then
 $$\Pi_n = v_n - t_n$$
 - v_n : valuation of player n
Example: Second price auction

- **Claim**: *Truthful bidding* ($s_n = v_n$) is a weak dominant strategy for player n.

- **Proof**:

 If player n considers a bid $> v_n$:

 Payoff may be lower when n wins, and the same (zero) when n loses.
Example: Second price auction

- **Claim:** *Truthful bidding* \((s_n = v_n) \) is a weak dominant strategy for player \(n \).

- **Proof:**
 - If player \(n \) considers a bid \(< v_n \):
 - Payoff will be same when \(n \) wins, but may be worse when \(n \) loses.
Example: Second price auction

• We conclude:

Truthful bidding is a (weak) dominant strategy equilibrium for the second price auction.
Example: Matching pennies

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>(1,-1)</td>
<td>(-1,1)</td>
</tr>
<tr>
<td>T</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
</tr>
</tbody>
</table>

No dominant/dominated strategy exists!
Moral: *Dominant strategy eq. may not exist.*
Iterated strict dominance

Given a game:

• Construct a new game by *removing* a strictly dominated strategy from one of the strategy spaces S_n.

• Repeat this procedure until no strictly dominated strategies remain.

If this results in a unique strategy profile, the game is called *dominance solvable*.
Iterated strict dominance

- Note that the bidding game in Lecture 1 was dominance solvable.

- There the unique resulting strategy profile was (6,6).
Example

<table>
<thead>
<tr>
<th>Player 1</th>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Middle</td>
</tr>
<tr>
<td>Up</td>
<td>(1,0)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>Down</td>
<td>(0,3)</td>
<td>(0,1)</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
</tr>
<tr>
<td>Up</td>
<td>(1,0)</td>
</tr>
<tr>
<td>Down</td>
<td>(0,3)</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Left: (1,0)</td>
</tr>
<tr>
<td>Down</td>
<td>Left: (0,3)</td>
</tr>
</tbody>
</table>
Example

Thus the game is dominance solvable.
Example: Cournot duopoly

- Two firms ($N = 2$)
- *Cournot competition*: each firm chooses a quantity $s_n \geq 0$
- Cost of producing s_n: $c_s n$
- *Demand curve*:
 \[
 \text{Price} = P(s_1 + s_2) = a - b \ (s_1 + s_2)
 \]
- Payoffs:
 \[
 \text{Profit} = \Pi_n(s_1, s_2) = P(s_1 + s_2) \ s_n - c \ s_n
 \]
Example: Cournot duopoly

• Claim:
 The Cournot duopoly is dominance solvable.

• Proof technique:
 First construct the best response for each player.
Best response

Best response set for player n to s_{-n}:

$$R_n(s_{-n}) = \arg \max_{s_n \in S_n} \Pi_n(s_n, s_{-n})$$

[Note: $\arg \max_{x \in X} f(x)$ is the set of x that maximize $f(x)$]
Example: Cournot duopoly

Calculating the best response given s_n:

$$\max_{s_n \geq 0} [(a - bs_n - bs_{-n})s_n - cs_n] \implies$$

Differentiate and solve:

$$a - c - bs_{-n} - 2bs_n = 0$$

So:

$$R_n(s_{-n}) = \left[\frac{a - c}{2b} - \frac{s_{-n}}{2} \right]^+$$
Example: Cournot duopoly

For simplicity, let \(t = (a - c)/b \)
Example: Cournot duopoly

Step 1: Remove strictly dominated s_1.

All $s_1 > t/2$ are strictly dominated by $s_1 = t/2$
Example: Cournot duopoly

Step 2: Remove strictly dominated s_2.

All $s_2 > t/2$ are strictly dominated by $s_2 = t/2$...
Example: Cournot duopoly

Step 2: Remove strictly dominated s_2.

All $s_2 > t/2$ are strictly dominated by $s_2 = t/2$...

...and all $s_2 < t/4$ are strictly dominated by $s_2 = t/4$.
Example: Cournot duopoly

Step 3: Remove strictly dominated s_1.

$$R_1(s_2)$$

$$R_2(s_1)$$
Example: Cournot duopoly

Step 4: Remove strictly dominated s_2.

\[
R_1(s_2) \\
R_2(s_1)
\]
Example: Cournot duopoly

The process converges to the intersection point: \(s_1 = t/3, \ s_2 = t/3 \)

<table>
<thead>
<tr>
<th>Step #</th>
<th>Undominated (s_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[0, (t/2)]</td>
</tr>
<tr>
<td>3</td>
<td>[(t/4), (3t/8)]</td>
</tr>
<tr>
<td>5</td>
<td>[(5t/16), (11t/32)]</td>
</tr>
<tr>
<td>7</td>
<td>[(21t/64), (43t/128)]</td>
</tr>
</tbody>
</table>
Example: Cournot duopoly

Lower bound =

\[t \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^{2k} = t/3. \]

Upper bound =

\[t \left(1 - \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^{2k-1} \right) = t/3. \]
Dominance solvability: comments

- Order of elimination doesn’t matter
- Just as most games don’t have DSE, most games are not dominance solvable
Rationalizable strategies

Given a game:

- For each player n, remove strategies from each S'_n that are not best responses for any choice of other players’ strategies.
- Repeat this procedure.

Strategies that survive this process are called *rationalizable strategies*.
In a two player game, a strategy s_1 is rationalizable for player 1 if there exists a chain of justification

$$s_1 \rightarrow s_2 \rightarrow s_1' \rightarrow s_2' \rightarrow \ldots \rightarrow s_1$$

where each is a best response to the one before.
Rationalizable strategies

• If s_n is rationalizable, it also survives iterated strict dominance. (Why?)

\Rightarrow For a dominance solvable game, there is a unique rationalizable strategy, and it is the one given by iterated strict dominance.
Rationalizability: example

Note that M is not *rationalizable*, but it survives iterated strict dominance.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(1,0)</td>
</tr>
<tr>
<td>B</td>
<td>(1,5)</td>
</tr>
</tbody>
</table>
Rationalizable strategies

Note for later:

When “mixed” strategies are allowed, rationalizability = iterated strict dominance for two player games.