Management Science and Engineering 336
Dynamics and Learning in Games

(Catalog title: Topics in Game Theory with Engineering Applications)

Fridays, 2:15-4:45 PM
Terman Engineering Center, Room 453
3 units

Instructor:

Ramesh Johari
Assistant Professor
Management Science and Engineering
Electrical Engineering (by courtesy)
Terman Engineering Center, Room 319
E-mail: ramesh.johari@stanford.edu
Office hours: Fridays, 4:45-5:45 PM, Terman 319
   Additional office hours by appointment

Lecture dates:

On April 11, 2008, the fifth Bay Algorithmic Game Theory Symposium will be held at Google, Inc. In lieu of lecture, I’ve decided to strongly encourage all of you to attend. (Obviously I can’t quite require it, but if you are attending this class then your Friday would be well spent at BAGT!) It’s a great place to meet other researchers in this field in the Bay Area, and also learn about some interesting research related to topics of this course.

I’ve asked for an extended registration deadline for students in 336; register according to instructions on this page:

   http://research.microsoft.com/research/sv/games/BAGT/meeting5/

Finally, note that there will be no lecture on May 30, 2008. My intention is to schedule a makeup lecture at some point during the quarter.
Course webpage: http://eeclass.stanford.edu/msande336

Course description:
Game theoretic methods are prevalent in operations research, computer science, and electrical engineering. However, most engineers are typically exposed only to static game theoretic concepts, such as Nash equilibrium. In practice, engineering problems often require attention to dynamic behavior of the system under consideration, and game theoretic methods are notably less developed in this area.

This course studies the interaction of multiple decision makers in dynamic settings, i.e., dynamics and learning in games. The following is a tentative list of topics to be covered:

1. Definition and notions of equilibria for dynamic games; bounded rationality vs. equilibrium; and the general definition of a stochastic game.
2. Reputation.
4. Dynamics of supermodular games.
5. Adaptive game playing strategies.

The course will be taught using a mix of lecture format and seminar-style guided discussion. These are active research areas, so much of the reading material will be drawn from relevant papers in the literature; this material will be available from the course website. The focus will be on encouraging discussion of both open theoretical questions and modeling issues. This is particularly important because many areas of the university have active research programs that draw on elements of learning and dynamics in games (computer science, electrical engineering, operations research, and economics). The course should provide a unique forum for a lively exchange of ideas across these boundaries.

Given the advanced nature of the material, it is emphasized that the course should be viewed as a research seminar by prospective students.

**Grading**

The grade will be based 75% on a project to be completed at the end of the quarter, and 25% on two problem sets to be assigned during the course of the quarter. The choice of topics for the final project will be quite broad: students can choose to either discuss and present recent research results in the field, or develop their own problem statement and analysis.

**Prerequisites**

The listed prerequisite is a basic course in optimization, such as MS&E 211 or equivalent. However, the material in the course is mathematically advanced, so in addition real analysis at the level of Mathematics 115 is a requirement; students without this background may register credit/no credit. Finally, the course will require a background in probability as well, since many of the modules have a significant stochastic component.
Regarding game theory: this course assumes that registering students have had prior exposure to the basics of static and dynamic game theory, at the level of MS&E 246 or Econ 203.

Intending students who are not comfortable with the prerequisites listed above should expect to audit the course; any questions or concerns can be directed to Prof. Johari at the e-mail address above.

**Textbooks**

There will be no required textbook for this course. However, you may find some of the following books helpful.

*Game theory books:*

1. *Game Theory*, Fudenberg and Tirole. This reference should be on the shelf of every game theorist, but it is not necessarily the easiest book to learn from.

2. *A Course in Game Theory*, Osborne and Rubinstein. This is a good introductory level text in game theory, that still is quite rigorous. Although many game theory books are out there, I have found that this one is a good introduction for engineers.

3. *Game Theory: Analysis of Conflict*, Myerson. This is a more mathematically sophisticated treatment of the subject.

4. *Microeconomic Theory*, Mas-Colell, Whinston, and Green. This very large textbook is an encyclopedic reference on the subject, and likely very useful for many parts of this course.

5. *Game Theory for Applied Economists*, Gibbons. This is a basic undergraduate level text in game theory, appropriate if you have never seen the subject before; it provides an elementary treatment of most of the major topics.

*Specific topics:*

1. *Prediction, Learning, and Games*, Cesa-Bianchi and Lugosi. This recent text has a chapter on learning in games, which covers a significant subset of what we will do in class. They also make nice connections to online learning, forecasting, and prediction.

2. *The Theory of Learning in Games*, Fudenberg and Levine. This book is somewhat older now, but still a useful survey of various topics on learning in games.

3. *Repeated Games and Reputations*, Mailath and Samuelson. A recent text that covers most models of reputation studied in economics. It can be somewhat hard to navigate, but otherwise is a very good reference for this area.