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Abstract—Diode-laser-pumped monolithic nonplanar ring oscilla-
tors (NPRO’s) in an applied magnetic field can operate as unidirec-
tional traveling-wave lasers. The diode laser pumping, monolithic con-
struction, and unidirectional oscillation lead to narrow linewidth
radiation. In this paper, we present a comprehensive theory of the ei-
genpolarizations of a monolithic NPRO. We explain how the properties
of the integral optical diode that forces unidirectional operation de-
pend on the choice of the gain medium, the applied magnetic field, the
output coupler, and the geometry of the nonplanar ring light path.
Using optical equivalence theorems to gain insight into the polarization
characteristics of the NPRO, we offer a strategy for designing NPRO’s
with low thresholds and large loss nonreciprocities. We present an
analysis of the eigenpolarizations for one such NPRO, consider alter-
native optimization approaches, and discuss briefly the prospects for
further reducing the linewidths of these lasers.

I. INTRODUCTION

d:YAG lasers emitting frequency stable, narrow

linewidth radiation have long been sought for appli-
cations such as coherent communication, injection lock-
ing, spectroscopy, remote sensing, and precision metrol-
ogy. Technical noise has made it difficult to achieve laser
linewidths narrower than several hundred kilohertz [1]-
[3]. The recent invention of the monolithic nonplanar ring
oscillator (NPRO) [4], [5], a diode-laser-pumped ring
laser with an integral optical diode [6] that forces unidi-
rectional traveling-wave operation, has overcome several
technical noise problems. The principal sources of line-
width broadening and frequency instability in Nd: YAG
lasers [7] are: 1) fluctuations in optical path length caused
by vibration and temperature instabilities, 2) fluctuations
caused by unstable optical pumping, 3) multiaxial mode
oscillation caused by spatial hole burning, and 4) insta-
bility induced by extracavity optical feedback. The
NPRO, by virtue of its diode-laser-pumped monolithic
ring design, overcomes these four limitations.

First, the NPRO resonator is small (5 X 4 X 2 mm’
for our recent designs) and rigid since it consists of a
monolithic block of Nd: YAG or a similar material. Sec-
ond, diode laser pumping can be extremely stable in both
wavelength and power, and diode laser pumping greatly
reduces the thermal loading of the resonator compared to
lamp pumping [8]. Third, the integral optical diode forces
unidirectional traveling-wave operation of the laser and
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thereby eliminates spatial hole burning, so the laser os-
cillates in a single axial mode. By properly focusing the
diode laser pump radiation into the mode volume of the
NPRO, TEM,, transverse mode operation is obtained as
well. Fourth, the ring geometry reduces the sensitivity of
the laser to extracavity optical feedback because output
radiation reflected back into the NPRO cavity arrives in a
high loss polarization state for its direction of propagation
and is also frequency shifted from the resonant frequency
for that direction (see Section II). Thus, the reflected light
does not strongly couple to the oscillating mode.

Heterodyne experiments performed with a pair of free-
running, diode-laser-array-pumped Nd:YAG NPRO’s
have demonstrated that the short-term linewidth of the
output radiation can be as narrow as 3 kHz under favor-
able environmental conditions [9]. Recently, NPRO’s
with single-stripe diode laser pumps [10], [11] have been
investigated, and these lasers may have even narrower
linewidths.

The key to the operation of the NPRO as a unidirec-
tional traveling wave laser is its integral optical diode.
Discrete-element Faraday effect optical diodes have long
been used to enforce stable unidirectional operation of
solid-state [12]-[14], He-Ne [15], and ring dye lasers
[16], [17]. The optical diode creates a polarization-de-
pendent difference in loss for the eigenmodes of the two
directions of propagation around a ring. The loss differ-
ence is produced by a combination of a reciprocal polar-
ization rotator such as c-axis quartz, a nonreciprocal ro-
tator such as a Faraday rotator, and a polarizer. Ideally,
one arranges the reciprocal and nonreciprocal rotations to
cancel for one direction of propagation and to add for the
other. For the direction in which the rotations cancel, the
eigenpolarizations are the low and high loss linear polar-
ization states aligned with the principal axes of the partial
polarizer. For the direction in which the rotations add, the
eigenpolarizations are in general linear or elliptical polar-
ization states with losses intermediate between the maxi-
mum and minimum possible values.

The NPRO combines the elements of the optical diode
in the monolithic solid-state gain medium itself.' The

'It is interesting to note that Clobes and Brienza [13] obtained unidirec-
tional oscillation in a discrete element ring in which the Nd: YAG laser
rod alone served as the differential loss element. A magnetic field applied
to the rod provided Faraday rotation. Thermally induced stress birefrin-
gence caused by pumping the rod with a 1500 W tungsten lamp served as
the reciprocal waveplate. Brewster-angled endfaces on the rod served as
the partial polarizer. The mirrors of the resonator served only to define a
ring path for the light and to provide output coupling.
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NPRO uses a four-reflector nonplanar ring resonator as
its reciprocal polarization rotator [18]-[20]. (See also Ap-
pendix A.) A magnetic field applied to the gain medium
causes nonreciprocal Faraday rotation. A multilayer di-
electric mirror used at oblique incidence is the partial po-
larizer. The NPRO is a unidirectional ring laser with no
discrete intracavity elements, which means that the reso-
nator can have low internal loss and small intracavity cou-
pling of counterpropagating modes. Fig. 1 shows a sche-
matic of the diode laser pump and the monolithic
Nd: YAG resonator with its nonplanar ring light path. The
small permanent magnet shown in Fig. 1 applies a mag-
netic field to the Nd: YAG crystal to force unidirectional
oscillation as shown.

In this paper, we present a comprehensive formalism
for analyzing the eigenpolarizations of a monolithic
NPRO. We explain how the properties of the integral op-
tical diode depend on the choice of the gain medium, the
applied magnetic field, the geometry of the nonplanar ring
light path, and the output coupler. Using optical equiva-
lence theorems to gain insight into the behavior of the
NPRO, we discuss a design strategy for producing low
threshold devices with strong intracavity optical diodes.
We conclude with a detailed analysis of the eigenpolari-
zations for one such NPRO, and we discuss the prospects
for further reducing the linewidths of these unique lasers.

II. THEORY oF THE NPRO

We present in this section the eigenpolarization theory
for a monolithic, optically isotropic, nonplanar ring laser
based on the Jones matrix calculus. Extensive discussion
of the Jones calculus can be found in Jones’s original pa-
pers [21], [22] and in Azzam and Bashara [23]. Applica-
tions of the Jones calculus to finding eigenpolarizations
of anisotropic laser resonators are found in [24]-[32] and
references therein. In this section, we first review the
Jones calculus, describe the geometry of the light path in
the nonplanar ring, and introduce the coordinate systems
used in our analysis. Then we give the explicit forms of
the Jones matrices for the polarization-influencing ele-
ments of the resonator, and we find the round trip Jones
matrices for the two directions of propagation around the
ring. From the round trip matrices we solve for the eigen-
values, from which we derive the round trip losses and
the frequency differences of the polarization eigenmodes.
We conclude with a brief discussion of the eigenpolari-
zations themselves and a description of the parameters
used to specify the NPRO.

A. Review of Jones Matrix Calculus

Consider a monochromatic TEM plane wave propagat-
ing along the z axis in a lossless, isotropic medium. The
polarization of the light at a point in space is defined by
the behavior of the electric field E at that point as a func-
tion of time. For a uniform plane wave we write the elec-
tric field as

E(z,t) = Re {EO exp [i(wr + ¢)] exp (—ikz)}. (1)
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Fig. 1. Schematic of diode-laser-pumped monolithic nonplanar ring oscil-
lator (NPRO). The laser operates unidirectionally because the combi-
nation of the nonplanar ring light path in the crystal, the Faraday rotation
caused by the applied magnetic field, and the oblique angle of incidence
on the output coupler produces a loss difference between the two direc-
tions of propagation around the ring.

Here E; is a complex vector amplitude, E, =
E.y where E, and E, are complex.

The Cartesian Jones vector (the Jones vector expressed
with respect to the linear polarization basis states # and
¥) for the above electric field contains the information on
the state of polarization and suppresses the propagation
terms. The Cartesian Jones vector E is given by [23]

E.x +

Unless one is interested in the amplitude and absolute
phase of the electric field, it suffices to characterize the
state of polarization by the ratio of the components of the
Jones vector,

X=2 =€’ (3)

with § = arg (E,) — arg (E,).

From the complex number x we find the azimuth
(—7/2 = 6 < 7/2), and ellipticity parameter e ( —7 /4
< € < w/4) of the elliptical polarization state by

tan (20) = 2R () (4)
L= |x]|

sin (2¢) =21m—(X)2. (5)
1 + ’)(|

The azimuth is the acute angle between the major axis
of the ellipse and the x axis of the coordinate system. Let
the semimajor (semiminor) axis of the ellipse be a(b).
The ratio of the axes b/a where 0 < b/a < 1 is called
the ellipticity. The helicity of the elliptically polarized
light is the sign of the projection of the angular momen-
tum of the light onto the direction of propagation. Helicity
relates to the sense in which the ellipse is traced in time
by the electric field vector. If the ellipse is traced in the
counterclockwise (clockwise) sense as seen by an ob-
server looking toward the light source, the helicity is pos-
itive (negative). Thus, positive helicity corresponds to the
traditional optics convention for left-handed light, and
negative helicity corresponds to right-handed light. The
helicity and the ellipticity are combined into a single el-
lipticity parameter e such that |tan (e)| = b/a, with e
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positive for right-handed light and negative for left-handed
light.

The Jones matrix of an optical element is the 2 X 2
complex matrix M that maps the input Jones vector into

the output Jones vector, that is
|:Ex:| [Mn MIZ:H:EX]
Ejdow LMy My ILE o

¥

(6)

The Jones matrix calculus is straightforward mathe-
matically, but there are many pitfalls involving polariza-
tion conventions, coordinate system conventions, and
forms of the Jones matrices themselves. We have adopted
the polarization conventions recommended by Bennett and
Bennett in the Handbook of Optics [33] and used by Az-
zam and Bashara [23]. We will exhibit our coordinate sys-
tems and the explicit forms of the Jones matrices as we
proceed.

B. Geometry of Light Path

A general NPRO resonator is shown in top and side
views in Fig. 2. The monolithic, nonplanar ring resonator
is a single block of optically isotropic gain medium (e.g.,
Nd: YAG) with a ring path defined by four reflecting sur-
faces whose normals are not coplanar. The facets contain-
ing points B, C, and D are optically polished flat surfaces
at which total internal reflection (TIR) occurs. The output
coupler at A is a convex spherical surface with a multi-
layer dielectric mirror coating that is partially transmit-
ting. The curvature of the surface at A determines the
properties of the spatial modes of the resonator.

The ray geometry of the light path within the resonator
is shown in Fig. 3. Fig. 3(a) shows the light path with
unit propagation vectors along each leg, and (b) intro-
duces the notation for the angles that specify the light path.
The light path is the perimeter of a three-dimensional geo-
metric figure formed by joining two isosceles triangles
(ABD and BCD) along a common base (BD). The di-
hedral angle between the two planes of the triangles is
denoted by 3. For any value of 3 other than O or =, the
light path is nonplanar. The light path has a plane of re-
flection symmetry (ACE ). A uniform magnetic field B is
applied parallel to AE as shown in Fig. 3(b). We denote
the angles of incidence at A, B, C, and D by 6,, 05, 0,
and 05, (= 6p), respectively.

The geometry of the light path has four degrees of free-
dom: two parameters for the first iSosceles triangle, a sin-
gle parameter for the second isosceles triangle (since the
triangles share a common base), and one parameter to
characterize the nonplanarity. The light path is fully spec-
ified by, for example, the lengths AE and CE of the isos-
celes triangles, together with the two angles 6, and 3. We
choose these parameters due to their physical signifi-
cance. The angle of incidence on the output coupler 6,
determines both the astigmatism of the resonator and the
difference between the s and p Fresnel reflection coeffi-
cients. The dihedral angle 3 measures the nonplanarity of
the resonator. The length AE determines the amount of
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B C
A
Fig. 2. Top and side views of the monolithic laser crystal with the non-
planar ring light path indicated (bold line). Total internal reflection oc-

curs at B, C, and D. Output coupling occurs at 4, a partially transmit-
ting, multilayer dielectric coated spherical surface.

Fig. 3. (a) A perspective view of the nonplanar ring light path with unit
propagation vectors for CCW propagation shown on each leg. (b) No-
tation for characterizing the nonplanar ring. The angles of incidence at
A, B, C,and Dare 0, 05, 8., and 8, ( = 65), respectively. The dihedral
angle § characterizes the nonplanarity: it is the angle between planes
ABD and BCD. Point E is an auxiliary point useful in defining lengths
and directions in the ring, because plane AEC is a plane of mirror sym-
metry for the geometry. An external magnetic field B is applied parallel
to AE.

Faraday rotation that occurs along legs AB and DA since
AE is the projection of those legs parallel to the applied
magnetic field. Similarly, CEcos(8) determines the

amount of Faraday rotation that occurs along legs BC and
CD.

C. Coordinate System Conventions

There are two ways to traverse the ring: counterclock-
wise (CCW) and clockwise (CW) as viewed from above
the light path (upper view of Fig. 2). Fig. 3(a) shows the
unit vectors for propagation along each leg in the CCW
direction 4 = B > C — D — A. In Figs. 4 and 5 we
introduce the coordinate systems used in analyzing CCW
propagation. There are four reflections in a round trip
through the resonator. We describe the incident and re-
flected waves in the principal axis system (basis vectors
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Fig. 4. (a) The two coordinate systems used for describing propagation of
light along leg AB are related by a rotation about AB. The figure on the
left is drawn from the point of view of an observer at B looking toward
A, and the figure on the right is a perspective view. Positive rotation of
system 1 by 6,5 rotates the normal to the plane of incidence at 4, ¥,, into
the normal to the plane of incidence at B, y,. (b) Two views of the co-
ordinate systems used to describe reflection from a planar interface be-
tween two isotropic media. The figure on the left is used in defining the
phases of the Fresnel coefficients. The figure on the right shows a per-
spective view of the two coordinate systems associated with a total in-
ternal reflection at B. (c) To transform from the principal axis system for
reflection at B into the principal axis system for reflection at C requires
a negative rotation about axis BC through the angle 6. as shown here.
For simplicity only the basis vectors in the two planes of incidence are

shown.

perpendicular and parallel to the plane of incidence) for
the given reflector. Since the resonator is nonplanar, the
planes of incidence for successive reflections do not co-
incide. For example, to transform from the principal axis
system for reflection at A into the principal axis system
for reflection at B requires a rotation about the axis AB by
the angle 0 ,g, which is the dihedral angle between planes
ABD and ABC. We show two views of this transformation
in Fig. 4(a). The left-hand side of Fig. 4(a) is drawn from
the point of view of an observer at B looking toward 4,
and the right-hand side is a perspective view.

There are many different conventions for the coordinate
systems used to describe reflection, and the phases of the
Fresnel coefficients depend on the coordinate systems. Our
coordinate systems are shown on the left in Fig. 4(b). The
orthogonal unit vectors for the incident and reflected co-
ordinate systems are chosen as follows. Set Z parallel to
the propagation direction k. Choose ¥ perpendicular to the

plane of incidence and common to both coordinate sys-
tems, and choose % in the plane of incidence such that £
X y = Z. The incident and reflected coordinate systems
thus share a common § and are related by a rotation about
y through an angle = — 28;,. where §;,. denotes the angle
of incidence. In this set of coordinate systems, the com-
plex Fresnel amplitude coefficients for reflection from a
planar interface between two nonmagnetic, lossless, op-
tically isotropic media are [34]

- Ey(ref) —sin (0inc - otrans)

, Bl (7)
E.(inc)  sin (Binc + Biany)
E f t Binc - Orans

;= ,(.re)z an ( trans ) (8)
Ex(]nc) tan (0inc + 0trans)

where subscripts s and p mean perpendicular and parallel
to the plane of incidence, respectively; E(inc) and E(ref)
are the incident and refiected electric field amplitudes, 6;,,
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Fig. 5. Successive views of the nonplanar ring light path showing the eight
coordinate systems used to describe counterclockwise propagation of
light, beginning at the point labeled 4* in (a). The successive planes of
incidence are the shaded planes of the small figures on the left. The basis
vectors are always chosen such that £ is in a local plane of incidence, y
is perpendicular to a local plane of incidence, and £ is in the local direc-
tion of propagation.

is the angle of incidence, and 6, is the angle of refrac-
tion related to 8;,. by Snell’s law. Note that 8, is com-
plex for the case of total internal reflection.

The right-hand side of Fig. 4(b) shows a perspective
view of the two coordinate systems associated with re-
flection from B. To describe reflection from C, we must
once again rotate coordinate systems. Fig. 4(c) shows the
rotation through 6 that moves £ from the plane of inci-
dence at B into the plane of incidence at C. Finally, Fig.
5 shows all of the coordinate systems for a round trip in
the CCW direction. The shaded planes shown on the left
of the figure are the successive planes of incidence for the
reflections that define the light path. We begin our anal-
ysis of the CCW propagation at the point labeled A" in
Fig. 5(a). Since there are two coordinate systems per re-
flection and four reflections in a round trip, we have eight
different coordinate systems, labeled 1 - - - 8 in Fig. 5.
The two coordinate systems associated with reflection at
a vertex are related by rotation about their common ¥, and
along a given leg the two coordinate systems are related
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by a rotation about their common Z. Note that the £ vec-
tors in Fig. 5 lie in the indicated shaded planes, as de-
scribed previously.

To obtain the coordinate systems used for analysis of
the CW propagation, we simply rotate each of the local
CCW coordinate systems by « about its y axis. This ro-
tation places the local £ along the new direction of prop-
agation, preserves the choice of the perpendicular ( y) to
the local plane of incidence, and reverses the direction of
X to keep the coordinate system right handed.

The motivation for introducing this collection of 16 lo-
cal coordinate systems is that they are the principal axis
systems for the reflections, and the Jones matrices are
most simply expressed in the principal axis coordinate
systems. Additionally, the distinction between CCW and
CW coordinate systems makes possible a simple proof of
the need for the nonplanar geometry in establishing uni-
directional operation (see Section II-F.1). We believe that
these conventions best separate the physics of the problem
from the complications of the nonplanar geometry.

D. Explicit Forms of Jones Matrices

We assume three properties for the solid-state gain me-
dium from which the resonator is constructed: homoge-
neous broadening of the laser transition, optical isotropy,
and Faraday rotation in an applied magnetic field. We fur-
ther assume that the pumped medium is optically iso-
tropic, i.e., we neglect the small thermal birefringence
induced by the diode laser pumping, and we do not con-
sider nonlinear saturation effects. Within a monolithic
resonator made from such a medium (e.g., Nd: YAG, a
cubic crystal with a nonzero Verdet constant), the polar-
ization of light is modified by reflections and by propa-
gation along an applied magnetic field. Thus, Jones ma-
trices for reflection and rotation appear in our analysis.
We express the Jones matrices for reflections in their prin-
cipal axis systems, so those matrices are diagonal. Here
we give, for each polarization-influencing effect in the
resonator, the explicit Jones matrices for CCW (super-
script +) and CW (superscript —) propagation.

1) Jones Matrices for Reflection from the Output Cou-
pler at A: The Jones matrices for reflection from the out-
put coupler at A are identical for CCW and CW propa-

gatIOIl alld are gl\/en by
P j| 9
( )

Fs

M}=M;={

where 7, and 7, are the Fresnel amplitude reflection coef-
ficients for the mirror at A. These coefficients are complex
numbers with unequal moduli due to the oblique angle of
incidence on the dielectric mirror. We can extract and ne-
glect any common phase factor from 7, and 7, and rewrite
the matrix as

. e oo o
Mi=mp=| a8/ (10)
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where r, = |F,|, ry, = ||, and A is the relative phase
shift on reflection, defined by

A=35,—8, (11)

In principle, the phase shift on reflection from a dielec-
tric mirror can be calculated by the method of character-
istic matrices [35]. The phase shift that occurs in practice
will depend on the complicated details of the thin film
coating process used to make the dielectric stack. Exper-
imentally, therefore, one must measure the phase shift on
reflection from a multilayer dielectric mirror ellipsomet-
rically. For theoretical simplicity, our analysis assumes
that a quarter-wave dielectric stack with the standard rel-
ative phase shift A = = is used. We assume that r, > 7,
as is typical for high reflectors, and we factor out r, from
the Jones matrix to emphasize only the anisotropy. For
such a reflector we can write the Jones matrix in the sim-
pler form

(12)

where we have introduced the parameter p = r,/r, that
characterizes the amplitude anisotropy of reflection from
the output coupler.? Note that p = 1 implies equal reflec-
tion for s and p components, and p = O implies that the
reflector only reflects the s component of incident light.
We refer to the parameter p as the partial polarizer strength
of the output coupler, with smaller p corresponding to a
stronger polarizer. The Jones matrix for the output cou-
pler with a relative phase shift A = x [(12)] is equal to
the product of three terms: 1) the modulus of the ampli-
tude reflection coeflicient for s-polarized light r,, 2) the
Jones matrix for a linear partial polarizer with partial po-

larlZCI StICllgth P,

and 3) the Jones matrix for a half-wave plate,

o =il

2) Jones Matrices for Total Internal Reflection (TIR) at
B, C, and D: The Jones matrices for total internal reflec-
tion are identical in form to the Jones matrices for reflec-
tion from a dielectric mirror, except that the moduli r, and
r, are both unity, and we have a simple formula for cal-
culating the relative phase shift A. The Jones matrix for
TIR at vertex j = B, C, or D is written as

ei(A,/Z) 0
0 e—i(Aj/Z)

M =M = [ (13)
where the relative phase shift 4A; is related to the index of

refraction n and the angle of incidence 6; by [36]

?Note that the parameter p defined here is the modulus of the usual el-
lipsometric parameter bearing the same symbol [23].
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Here it is assumed that the external medium has an in-
dex of refraction equal to one. For a bare surface A is
positive and lies in the range 0 < A < A_,,, where the
upper limit A,,, < = depends on the index n according
to tan (Ap/2) = (n* — 1)/2n. The Jones matrix for
TIR is identical in form to the Jones matrix for a lossless,
linear birefringent waveplate. Indeed, Fresnel rhombs are
examples of TIR-based retarders.

The angles of incidence at B, C, and D can be calcu-
lated in terms of the parameter set used to specify the ge-
ometry of the nonplanar ring light path, AE, CE, 6,, and
8. We give the relevant equations in Appendix B. The
requirement that TIR occur at B, C, and D imposes re-
strictions on the permissible geometries for the light path
because each of 85, 6, and 6, must exceed the critical
angle of incidence for the medium 8., = sin™' (1/n).

3) Matrices for Rotations of Coordinate Sys-
tems: Successive mirror reflections involve different prin-
cipal axis systems related by rotation about their common
Z. Since the Jones matrices are expressed in their principal
axis systems, we must introduce rotation matrices for
transformation of the Jones vector between successive
principal axis systems. We write rotation matrices as

cos (6;) sin’ (6) — =

sin’ (6,) (14)

cos (o) —sin ()

cos (a)].

The operator that projects a Jones vector into a new co-
ordinate system related to the old one by a positive rota-
tion of the coordinate axes about their common £ by angle
a is the rotation matrix R( —«). The minus sign appears
on o because we write the rotation operator in the active
sense: physically rotating the vector in the positive sense
by « in a fixed coordinate system is represented by R(«).
Consider the coordinate system transformations involved
on leg AB. For CCW propagation (from A4 to B) we must
rotate the CCW coordinate system at A by 6 5 in the pos-
itive sense about IEAB to get the CCW coordinate system
at B [see Fig. 4(a)]. For CW propagation (from B to A)
we must rotate the CW coordinate system at B also by 6,5
in the positive sense about kg, to get the CW coordinate
system at A. The sign of the required rotation angle does
not change, because we use different coordinate systems
for the two directions of propagation. Thus, we have for
the changes of coordinate systems on a given leg joining
vertex j to adjacent vertex k

Rj+—'k(0jk) = Rk_—*j(ojk)'

R = | (15)

sin (a)

(16)

Equations for calculating the two required coordinate
system rotation angles 6,5 and 6z in terms of the ring
parameters AE, CE, 0,, and 8 are given in Appendix B.

4) Jones Matrices for Faraday Rotation: Light prop-
agating in an otherwise optically isotropic medium in an



NILSSON er al.: THEORY OF RING OSCILLATORS

applied magnetic field experiences Faraday rotation. The
azimuth of the polarization state is rotated by an angle

(17)

in propagating a distance L in the medium. Here, V is the
Verdet constant of the medium, k is a unit vector in the
direction of propagation, and B is the applied magnetic
field. The corresponding Jones matrix is again a rotation
matrix, given by

v =VLk - B

cos ()
sin ()

—sin ('y)} (18)

=R = | cos ()

Note that for a given V, L, and B, the sign of the Far-
aday rotation angle depends on the direction of propaga-
tion with respect to the field B. Consider propagation
along a given leg, say AB, and assume the magnetic field
is applied parallel to AE. Then for CCW propagation from
A to B the Faraday rotation Jones matrix is R(vy,z),
whereas for CW propagation from B to A the sign of the
angle changes because the direction of propagation k has
been reversed, and the Jones matrix is R( —vy,5). Rever-
sal of direction of propagation changes the signs of the
Faraday rotation angles in our coordinate system conven-
tion but does not change the signs of the geometric rota-
tion angles. This sign difference is the manifestation of
the nonreciprocal nature of the Faraday effect. The phys-
ical direction of polarization rotation due to the Faraday
effect is determined only by the direction of the magnetic
field and does not depend on the direction of propagation.
Coordinate systems and sign conventions enter into the
determination of the algebraic signs of the Faraday rota-
tion angles. Therefore,

M = R(vx)

Mi.; = R(vy) = R(—vx).

By extracting common phase factors from the Fresnel
amplitude reflection coefficients, we have expressed the
Jones matrices for all but the reflection from the output
coupler as two-dimensional unitary matrices with deter-
minant + 1, which defines these Jones matrices as mem-
bers of the special unitary group SU,. The output cou-
pler’s Jones matrix cannot be unitary in general because
energy is lost through the output coupler, and the output
coupler acts as a partial polarizer. The group properties
of SU, are helpful both analytically and numerically since
they reduce the work involved in evaluating and checking
products. The most general element of SU, can be written

in the form
{a —b*
U= ]
b ax.

with a and b complex numbers such that (aa* + bb*) =
1. In evaluating a product of two elements of SU, it thus
suffices to find just the two entries of a row or column in
order to know the entire matrix.

(19a)
(19b)

(20)
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E. Round Trip Jones Matrices for CCW and CW
Propagation

In steady-state laser operation, the polarization state at
any point along the beam axis of the resonator must repeat
itself after a round trip. We have assumed that the pumped
medium is optically isotropic, so the main effect of the
gain is to maintain the amplitude of the electric field. The
allowed polarizations of the cavity are determined by the
anisotropy of the unpumped cavity, so we will solve for
the eigenpolarizations of the unpumped cavity. First, we
must derive the expressions for the round trip Jones ma-
trices in terms of the individual Jones matrices described
in Section II-D.

A convenient starting point for the analysis is the point
labeled A" in Fig. 5(a). The ring may be traversed in two
ways starting from A*. The CCW path 4* - B —» C —
D = A — A” is denoted by a superscript (+). The CW
path A* - 4 - D - C - B — A" is denoted by a
superscript (—). The round trip Jones matrices for these
two paths are

M™ = M,R(645 — vap) MpR(—05c — vac)
* McR(0gc + vac) MpR(—045 + vag), (21)
M = R(*BAB - ’YAB) MBR(HBC - 'YBC)

* McR(—0pc + vpc) MpR(045 + vap) M.
(22)

We have combined the Faraday and geometric rotations
that occur along a given leg since rotations about the same
axis are additive. We have also used the existence of the
plane of symmetry ACE to replace the rotation angles
along AD (CD) with those of AB (BC). Looking at M*
and M~ we see the polarization effects accompanying
propagation along each leg: rotation due to the Faraday
effect (7y), a rotation associated with the change of coor-
dinate system (), and phase and amplitude shifts on re-
flection (M;, j = A, B, C, or D).

Close examination of M* and M~ reveals several sym-
metry relations. First, if we know one of the round trip
Jones matrices, we can find the other one by 1) reversing
the order of the individual operators, and 2) changing the
sign of each Faraday rotation angle. These two rules have
simple physical interpretations. Reversing the direction of
propagation from a given point reverses the order in which
the polarization-influencing elements are encountered.
Since the round trip Jones matrices are written as opera-
tor-ordered products, reversing the propagation direction
inverts the product ordering. The change of sign of the
Faraday rotations is the expression (in our coordinate sys-
tem convention) of the nonreciprocity of the Faraday ef-
fect.

Let us introduce some additional notation for conve-
nience. Define the following sums (o) and differences (§)
of geometric () and Faraday () angles on legs 4B and
BC:

048 = Oap — Yap (23a)
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04 = 045 + YVap (23b)
dpc = Osc — Va0 (243)
ogc = Opc + Vac- (24b)

We can rewrite M and M, making use of (23) and (24)
and noting that M, = Mp by symmetry, as

M* = M,R(8,5) MgR(—05c) McR(0pc)

* MgR(—8,8), (25)
M~ = R(—045) MgR(8pc) McR(—dp¢)
- MgR(045) M. (26)

In terms of the new angles, conversion of M* to M~ (and
vice versa) requires inversion of the product ordering and
letting 6 = o and o — 0.

F. Eigenvalues

The eigenvalues of the round trip Jones matrices are of
primary interest to us. (Recall that the eigenvalue equa-
tion for a matrix M is ME = AE where A is an eigenvalue,
and E is an eigenvector.) From the eigenvalues we find
the losses and frequency splittings of the polarization ei-
genmodes of the resonator. Since M " and M~ are of rank
two, each matrix has two complex eigenvalues and two
eigenvectors. The modulus of an eigenvalue represents the
factor by which the amplitude of the electric field of the
eigenmode is reduced after a round trip through the un-
pumped cavity, and the phase of the eigenvalue contains
information about the round trip phase shift of the field.

We find the two eigenvalues for a given round trip Jones
matrix M(M = M~ or M ™) by solving the quadratic char-
acteristic equation

A = NTr (M) + det (M) =0 (27)

where Tr (M ) denotes the trace of the matrix and det (M)
denotes the determinant. The special forms of the indi-
vidual Jones matrices permit us to make some analytical
statements about the coefficients in the characteristic
equations. Recall that all of the individual Jones matrices
except for the output coupler matrix M, are in the special
unitary group SU,. Consequently, the two round trip Jones
matrix products can be written as

M"Y =MU",
M~ = UM,
where U*, U™ € SU,, and
U™ = R(845) MgR(—05c) McR(0pc) MpR(—648),
(30)
U™ = R(—045) MpR(85c) McR(—dpc) MpR(04p).
(31)

The determinant of a product is the product of the de-
terminants, so

det (M*) = det (M) = det (M) = r,r,.
P

(28)
(29)

(32)
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We note that the determinant is a positive real number
0 < r,r, < 1. The only complex coefficients in the char-
acteristic equations are the traces of the round trip matri-
ces. Since the determinants of M™ and M~ are the same,
the characteristic equations and thus the eigenvalues for
CCW and CW propagation differ only if Tr (M) # Tr
(M™).

The sum of the two roots of (27) equals the trace of M,
and the product of the two roots equals the determinant
of M. These two rules have important physical conse-
quences, as we shall see in part 2) of this section.

1) Round Trip Losses: There are four eigenvalues for
the resonator, two for each of the two directions of prop-
agation around the ring. In general, these four eigenval-
ues are nondegenerate and can be sorted according to their
moduli. The round trip power loss of the mode with ei-
genvalue \; is

(Loss for eigenmode i) = 1 — \)\ilz. (33)

The eigenmode with the lowest loss reaches laser os-
cillation threshold first. Since the Nd: YAG laser transi-
tion is homogeneously broadened, the first traveling-wave
mode to oscillate saturates the gain uniformly and pre-
vents the higher loss modes from reaching threshold. In
this way, unidirectional, single-axial-mode operation of
the ring laser is established and maintained.

In contrast stable unidirectional oscillation will not oc-
cur if the losses for CCW propagation are equal to those
for CW propagation. Examination of cases in which the
CCW and CW eigenvalue pairs are equal gives insight
into the need for both a nonplanar ring geometry and an
applied magnetic field for establishing unidirectional op-
eration in an optically isotropic, monolithic medium. In
the following two sections, we prove that stable unidirec-
tional oscillation will not occur for either a) a planar ring
with an arbitrary applied magnetic field, or b) a nonplanar
ring with no applied magnetic field.

a) Planar Ring with Applied Magnetic Field: Consider
an arbitrary planar ring light path in a monolithic, opti-
cally isotropic medium in an applied magnetic field. Since
for a planar ring all the reflecting surfaces have coplanar
normals, there are no rotations of coordinate systems
about the direction of propagation to consider. The most
general Jones matrix for a CCW traversal of the ring can
be written in the form [37]

N
M= ,H] D;0:(v:) (34)
where D; represents a diagonal matrix (reflection matrix),
and O; represents a proper orthogonal matrix (Faraday ro-
tation or the unit matrix). Applying the rule for obtaining
M~ from M", we reverse the order of multiplication of
the matrices and change the signs of all the Faraday ro-
tation angles, giving

1
M = 1=IN Oi(_’Yi)Di~ (35)
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Recall that the most general proper orthogonal matrix
can be written in the form of a rotation matrix. The trans-
pose of a 2 X 2 rotation matrix is obtained by changing
the sign of the rotation angle. Diagonal matrices are un-
changed under transposition. Recalling that the transpose
of a product of matrices is the product of the transposes
in reverse order, we see that M~ and M* are transposes
of one another. Since a matrix and its transpose have iden-
tical eigenvalues, there is no loss difference between the
two directions of propagation, hence no preferred direc-
tion of propagation around the ring.

The nonplanar geometry circumvents this proof by in-
troducing additional rotations whose angles do not change
signs when the direction of propagation is reversed, thus
making it impossible to generate the other round trip Jones
matrix by transposition. In simple terms a monolithic,
planar, optically isotropic medium offers no means of pro-
ducing reciprocal rotation.

b) Nonplanar Ring with No Applied Magnetic
Field: Next consider the case of a nonplanar ring with no
applied magnetic field and hence no Faraday rotation. For
concreteness let us restrict our attention to the NPRO case.
Then the round trip Jones matrices are

M* = M,R(845) MgR(—0pc) McR(05¢)

- MgR(—0,3), (36)
M~ = R(—0,5) MgR(0pc) McR(—05c)
* MgR(8,5)M,. (37)

We have already seen in (32) that the determinants of
M* and M~ are equal. We now prove that the traces of
the matrices of (36) and (37) are also equal, which implies
that the CCW eigenvalues are equal to the CW eigenval-
ues according to (27). Recalling that cyclic permutation
of matrices in a product does not change the trace of the
product, we can permute the terms of M~ cyclically to
get

Tr (M™) = Tr { MyR(—0,5) MgR(65c) McR(—85c)
* MaR(045) }. (38)

The rotation matrix R(«) is related to the rotation matrix
R(—a) by the following transformation

R(—a) = TR(a)T (39)
where T is the reflection operator
-1 0

T:{ 0 1}' (40)

By inspection we can then write
Tr (M™) = Tr {M,TR(8,3) T MyTR(—03¢) T
© McTR(8c) T My TR(—6,5)T ). (41)

Another cyclic permutation and use of the associativity of
matrix products gives us
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Tr(M™) = Tr {[TM,T]1 R(0,45) [ TM3T]
' R( _BBC)[TMCT] R(eBC)[TMBT]
" R(—045)}. (42)

For a diagonal matrix D we have TDT = D, so (42) re-
duces to

Tr(M™) =Tr {MAR(BAB) MgR(—05c) McR(65c)
* MaR(~6,5) }
=Tr(M"). (43)

The round trip matrices (36) and (37) for a nonplanar
ring with no applied magnetic field thus have identical
traces and determinants, hence by (27) they also have
identical eigenvalues. We conclude that, in the absence
of an applied magnetic field, the nonplanar ring geometry
alone cannot produce stable unidirectional operation. The
absence of the Faraday rotation makes the entire system
reciprocal, so there can be no loss difference between the
two directions of propagation.

The two degenerate cases described above can be ex-
plained intuitively. An optical diode requires reciprocal
rotation, nonreciprocal rotation, and a polarizer. An op-
tically isotropic monolithic medium has no reciprocal ro-
tation if it is planar and has no nonreciprocal rotation if
there is no applied magnetic field. Thus, to establish an
optical diode in an NPRO we require both a nonplanar
ring geometry and an applied magnetic field.

2) Frequency Splitting: So far we have considered only
the losses of the eigenpolarization modes of the NPRO
resonator. Equally important for our purposes are the ei-
genfrequencies, which are related to the round trip phase
shifts. Since we eliminated isotropic phase shifts and re-
tained only anisotropies in writing the Jones matrices, the
phases of the eigenvalues explicitly yield the frequency
differences among the eigenmodes.

If the resonator is isotropic, the four eigenfrequencies
are identical because each eigenmode has the same optical
path length around the ring. Phase anisotropy lifts this
degeneracy. Recall that the product of the two eigenval-
ues for one direction of propagation must equal the deter-
minant of the round trip Jones matrix. From (32) we know
that the determinant is a real number. Let \; and ), be the
two eigenvalues for, say, CCW propagation. Since the
product A\, is real and since the eigenfrequencies are
degenerate for the case of an isotropic resonator, the
phases of A, and A\, must be equal in magnitude and op-
posite in sign. Physically, the consequence is that phase
anisotropy in the resonator causes the two eigenfrequen-
cies for one direction of propagation to lie equally spaced
above and below the degenerate frequency corresponding
to an isotropic resonator.

We now consider all four eigenvalues. The frequency
shift Av; of the ith eigenmode away from the initially four-
fold degenerate resonant frequency is

Av; = (c/nL)(4;/27) (44)
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where ¢; = arg (\;) in radians, c is the speed of light, L
is the round trip path length of the ring, and » is the aver-
age index of refraction of the ring path. From a pair as-
sociated with a given direction of propagation, one fre-
quency is shifted upward and the other downward by an
equal amount. The magnitudes of the shifts for the two
directions of propagation are in general different.

A general NPRO resonator has four possible eigenfre-
quencies for its four eigenpolarizations. The existence of
four different frequencies in a nonplanar ring resonator
has been explored in connection with multioscillator ring
laser gyroscopes (MRLG) [20] based on the He-Ne laser
(see Appendix A). The MRLG resonators are painstak-
ingly engineered to ensure that the four eigenpolarizations
are circular and that all four modes oscillate simulta-
neously, which is possible because of the inhomogeneous
broadening of the gas laser transitions. With such a spec-
trum of oscillating modes, it is possible to arrange that
two oppositely biased ring laser gyros coexist and share
the same optical path. Taking the difference between the
outputs of the two coresident ring laser gyros permits the
cancellation of the bias and doubles the scale factor for
the gyroscope.

In the homogeneously broadened gain medium of the
NPRO, only the lowest loss mode oscillates. Still, that
the four possible eigenfrequencies of an NPRO are gen-
erally distinct has some important consequences for op-
tical feedback effects. Consider the mode with the largest
modulus eigenvalue. This mode oscillates first, as we ex-
plained previously. Imagine that this mode propagates in
the CCW direction and that there is some backscatter in
the resonator or some extracavity optical feedback. Not
only does the mode with the largest CW eigenvalue suffer
more loss than the oscillating CCW mode, there is gen-
erally a frequency shift between them as well. Thus, light
from the oscillating CCW mode couples weakly into its
closest CW competitor. Unidirectional oscillation estab-
lished on the basis of differential loss between the modes
gains additional stability due to the frequency splitting be-
tween the counterpropagating modes.

G. Eigenvectors

With each eigenvalue is associated an eigenvector. The
eigenvector is the Jones vector of the light at the point A*
(see Fig. 5). The eigenvector changes as it propagates
through the resonator, but it reproduces itself (modulo an
overall amplitude reduction and phase shift) after a round
trip. If we specify the state of polarization by x as in (3),
then we find x directly in terms of the elements of the
round trip Jones matrix as [38]

M22 - M” i \/Tr (M)2 _ 4 det (M)
M, '

In general, the two eigenvectors for a given direction
of propagation are nonorthogonal, elliptical states of po-

larization with different round trip losses. The nonortho-
gonality and loss difference are caused by the amplitude

Xi1,2 = (45)

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 25, NO. 4. APRIL 1989

anisotropy (p # 1) of the partial polarizer. A resonator
with no amplitude anisotropy can be represented by a spe-
cial unitary round trip Jones matrix once the isotropic am-
plitude reduction is factored out. Such a resonator has or-
thogonal elliptical eigenstates with identical losses.

Special design efforts are required to produce specific
eigenpolarizations in an NPRO resonator. We will solve
an important special case in Section IV and show that it
is possible to find linearly polarized eigenstates even in
the presence of the polarization rotations in the cavity.
Another special case yielding circular eigenpolarizations
is described in Appendix A in connection with the multi-
oscillator ring laser gyros.

H. Specification and Evaluation of the NPRO

Within the assumptions of our model a complete spec-
ification of an NPRO resonator requires the following in-
formation: 1) the index of refraction n and the Verdet con-
stant V of the gain medium at the wavelength of the laser
transition, 2) the uniform magnetic field B applied to the
gain medium parallel to AE, 3) the moduli r, and r, and
the relative phase shift A of the Fresnel amplitude reflec-
tion coefficients of the output coupler, and 4) the param-
eters that specify the geometry of the resonator { AE, CE,
64, and B}.

Using the formalism developed so far we can simply
choose a set of parameters for a proposed NPRO resona-
tor, calculate the eigenvalues, and deduce the output cou-
pling losses of the four possible eigenmodes. In general,
the four losses will be different. For each direction of
propagation there is a high loss mode and a low loss mode.
To evaluate an NPRO design we focus our attention on
the lower loss mode for each direction of propagation.
The lowest loss mode is the one that will oscillate, and
the threshold of the resonator can be calculated in terms
of the loss of the lowest loss mode. The strength of the
intracavity optical diode is equal to the difference between
the losses of the two lowest loss modes (one for CCW
operation, one for CW operation). We refer to this im-
portant quantity simply as the loss difference of the reso-
nator. The two most important quantities for evaluating
an NPRO design are the loss of the lowest loss mode,
which determines threshold requirements and slope effi-
ciency [10], and the loss difference of the resonator.

III. SiMPLIFIED ANALYSIS OF THE NPRO RESONATOR

The algebraic complexity of the round trip Jones ma-
trices of (21) and (22) makes it difficult to use intuition in
the design of monolithic nonplanar ring oscillators. Since
there are so many parameters required to specify the res-
onator, we need to have some guiding principles for our
design efforts. Fortunately, we can use an optical equiv-
alence theorem of Hurwitz and Jones [22] to reduce the
resonator theory to a simpler equivalent form. In this sec-
tion, we introduce the optical equivalence theorem and
use it to simplify the interpretation of the round trip Jones
matrices for the NPRO.
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A. Optical Equivalence Theorem

The optical equivalence theorem of interest to us here
involves analysis of lossless polarization-influencing sys-
tems. We have seen in Section II-D that such a system is
represented by a special unitary Jones matrix. Mathemat-
ically, any matrix ¥ € SU, can be written as a product of
two rotation matrices and a diagonal element of SU,,

V= R(a) G(¥) R(B) (46)

where R(«) and R(B) are rotation matrices as in (15),
and the diagonal matrix G () has the form

o[ ]

As explained by Hurwitz and Jones, this theorem has
an optical interpretation: a system containing any number
of linear retarders (waveplates) and rotators (any devices
whose Cartesian Jones matrices are rotation matrices) can
be represented by a special unitary Jones matrix and thus
is equivalent to a system containing just one linear retar-
der (with retardance 2y and orientation angle o) and one
rotator (with rotation angle « + (). The constructive
proof of the theorem given by Hurwitz and Jones explic-
itly gives the parameters a, 3, and ¥ in terms of the ma-
trix elements of V [22].

(47)

B. Application of Optical Equivalence Theorem to
NPRO

We have seen in (28) and (29) that the round trip Jones
matrix M* (M ™) is a product of a special unitary matrix
U* (U7) and the nonunitary matrix M,. The special uni-
tary product U* and U~ represent the complicated net
effects of all the TIR phase shifts and Faraday rotations.
The optical equivalence theorem applied to U™ and U~
yields important insight into the polarization properties of
the NPRO resonator. In Appendix C we give analytical
expressions for the matrix elements of U" and U™, and
we explicitly solve for the rotation angles « and 3 and the
retardance parameter y that appear in (46). We find that
o = —f3 in each case, so we can write

U' =R(a") G(Y") R(~a")
U =R(a™)G(y ) R(—a").

(48)
(49)

We can therefore interpret U* (U™ ) simply: the system
represented by the Jones matrix U* (U7™) is optically
equivalent to a single waveplate with retardance 2y *
(2¢ ) whose principal axes subtend an angle o™ (o)
with respect to the principal axes of the output coupler;
no additional rotator appears in the optically equivalent
system. This important result enables us to form a simple
mental picture of how the NPRO resonator affects polar-
ization. Instead of trying to imagine how the Faraday ro-
tations, geometric rotations, and TIR phase shifts sepa-
rately influence the polarization of the intracavity
radiation, we envision two different resonators. For a
given direction of propagation around the ring, the NPRO
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resonator is optically equivalent to a waveplate and the
output coupler. The principal axes of the waveplate are in
general rotated with respect to those of the output coupler.
The output coupler is itself optically equivalent to a half-
wave plate and a partial polarizer.

The nonreciprocal effects of Faraday rotation manifest
themselves as differences between the retardances 2y *
and 2y ~ and orientation angles «* and «~ of the effective
CCW and CW waveplates. We discuss these effects fur-
ther in Appendix C, and we will show examples in Table
I of Section IV-E.

IV. A SpeciaL CLass oF NPRO’s witH Low
THRESHOLD AND LARGE Loss DIFFERENCE

With the formalism of Section II and the optical equiv-
alence model of Section III in mind we now address the
question of how to design an NPRO resonator. Many con-
siderations enter into the design, including resistance to
optical feedback, sensitivity to environmental effects,
magnetic field requirements for unidirectional operation,?
threshold and slope efficiency, output beam quality and
polarization, and frequency tunability.

We have been motivated by our goal of achieving nar-
row linewidth operation to consider small, low threshold
NPRO’s with good resistance to optical feedback. The low
threshold design enables us to use low power single stripe
diode lasers to end-pump the NPRO’s [10], and good re-
sistance to optical feedback is important for isolating the
NPRO from frequency perturbations caused by retrore-
flected radiation. Arguing that output radiation reflected
back into the resonator can be treated as an external signal
injected into a regenerative amplifier [39], we have con-
cluded that increasing the loss difference between the two
directions of propagation is important in reducing the sen-
sitivity to optical feedback {40].

We are thus led to consider a special class of NPRO'’s
that simultaneously have low output coupling and a large
loss difference. Trutna er al. [10] have previously dis-
cussed the problem of designing such an NPRO in
Nd: YAG; however, they neglected the effects of Faraday
rotation on legs BC and CD. In this section, we present a
general strategy for finding NPRO’s with low output cou-
pling and a large loss difference in any gain medium with
refractive index n and Verdet constant V. For a given ap-
plied magnetic field B parallel to AE our task is to choose
the geometry of the resonator (specified by 0,, CE, AE,
and 8) and the parameters of the output coupler ( specified
by r, and r,, or by ry and p = r,/r;) to produce a low
threshold NPRO with a large loss difference.

A. Rotator and Partial Polarizer

In Section III we proved that for each direction of prop-
agation the NPRO resonator is optically equivalent to a

*The loss difference required to overcome internal coupling between the
two directions of propagation and thereby establish unidirectional opera-
tion in a discrete-element ring has been estimated to be 0.01 percent [13].
In monolithic NPRO’s a smaller loss difference should suffice since the
internal coupling is reduced.
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ring comprising a waveplate rotated with respect to the
output coupler, which is itself modeled as an aligned
combination of a half-wave plate and a linear partial po-
larizer. The retardances and orientation angles of the
equivalent CCW and CW waveplates are coupled together
in a complicated way by the constraints of the monolithic
nonplanar geometry and by the amount of Faraday rota-
tion available in typical media (see Appendix C). A rig-
orous discussion with all of the constraints included is
complicated, so to gain some insight into how to design
an NPRO with low threshold and large loss difference,
imagine that we could freely choose the retardances and
orientation angles of the equivalent optical systems for the
two directions of propagation. Let us assume that we want
the NPRO to run unidirectionally in the CCW direction.
We want to have linear, s-polarized light as an eigenstate
at the output coupler for CCW propagation, because that
assures us of having the lowest output coupling, 1 — r2,
for the given reflector. We achieve this result by forcing
the optically equivalent waveplate for CCW propagation
to have its principal axes aligned (a* = 0) with those of
the output coupler, regardless of the actual retardance 2y *
of the waveplate.

Next we want to choose the retardance and orientation
angle of the CW waveplate to maximize the loss differ-
ence. Here we make one concession to the coupling of the
two directions of propagation by noting that the choice
a’ = 0 implies, for resonators with total Faraday rotation
I', that &~ cannot exceed I (see Appendix C). Our anal-
ysis of this problem shows that for a given orientation
angle o~ and partial polarizer, the loss difference is max-
imized by choosing the retardance 2y~ of the CW wave-
plate to be 180°, i.e., we should choose the CW wave-
plate to be a half-wave plate. Recall that two half-wave
plates with an angle o~ between their fast axes are opti-
cally equivalent to a rotator with Jones matrix R(2a ™).
Therefore, with @ = 0 and a given orientation angle o~
the loss difference of the resonator is maximized by ar-
ranging the CW system to be optically equivalent to a ring
containing a rotator with rotation angle 2«~ and a partial
polarizer.

The properties of a ring composed of a rotator and a
partial polarizer are well known [19], [41] and we review
them in Appendix D. The most important point to make
here is that for a given rotation angle, there is a best choice
for the partial polarizer in order to maximize the loss dif-
ference. Note that the choice of the partial polarizer
strength p of the output coupler is independent of the
problem of choosing an appropriate geometry for the res-
onator, and the choice of r, is dictated by the desired val-
ues for threshold and slope efficiency.

Our analysis of the rings in which we are free to choose
the waveplates and orientation angles independently for
the two directions of propagation motivates the following
strategy for designing an NPRO resonator with a low
threshold and a large loss difference. For a given medium
in a given magnetic field 1) identify the subset of all pos-
sible NPRO geometries leading to aligned CCW wave-
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plate equivalents (™ = 0) to establish the minimal out-
put coupling eigenstate, 2) within this subset search for
geometries having half-wave plate equivalents (2y~ =
180°) for the CW waveplate, 3) within the subset with
o’ = 0and 2y~ = 180° identify the acceptable systems
having the largest orientation angle o~ for the CW half-
wave plate, 4) choose the partial polarizer for the system
found in 3) in order to maximize the loss difference. To
satisfy all of these requirements imposes many restric-
tions on the possible media and NPRO geometries, as we
shall see.

B. CCW Waveplate Aligned with Output Coupler; CW
Waveplate a Rotated Half-Wave Plate

Equations for the equivalent retardances and principal
axis orientation angles of the CCW and CW unitary prod-
ucts U™ and U~ are derived in Appendix C. We want the
CCW unitary product to be optically equivalent to a
waveplate with its principal axes aligned with those of the
output coupler, and we want the CW unitary product to
be optically equivalent to a half-wave plate, so we sub-
stitute ™ = 0 into (C.16) and (C.17) and 2y~ = 180°
into (C.18-C.20). We arrive at the following two con-
straint equations:

0 = cos (Ap) cos (Ac/2)
— sin (Ag) sin (A¢/2) cos (285¢) (50)
0 = [sin (Ag) cos (Ac/2) + cos (Ag) sin (Ag/2)

- cos (205c)] sin (28,5)
— [sin (Ac/2) sin (205¢)] cos (26,43). (51)

From (50) we begin to find constraints imposed on the
resonator. We can rewrite (50) as

1

tan (Ap) tan (Ac/2) = cos (2on0)

(52)

Note that the right-hand side is greater than one for
nonzero égc. We have no solution unless the left-hand
side is also greater than one, which puts a restriction on
the phase shifts due to TIR. There is an additional con-
straint imposed by the geometry. We choose 6,, AE, CE,
and 3. Having done so fixes 65 and 6. The index of re-
fraction n and the angles of incidence 6 and 6 determine
the phase shifts Ag and A as in (14). With these rules
one can show that the requirement that the left-hand side
of (52) exceed one is

20, + Ac > 180. (53)

This rule has an important consequence for the choice
of the gain medium. In Appendix E we prove that (53)
[and thus (52)] has no solution unless the index of refrac-
tion of the gain medium is greater than /3. Therefore, for
media such as Nd: YAG (n = 1.82) and Nd: GGG (n =
1.945) we can find the desired NPRO geometries. For
media such as Nd:glass (n 1.5) different approaches
are required, such as changing the geometry and increas-
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ing the number of total internal reflection bounces to five.
We will discuss these more general designs in a future
publication. For now we restrict ourselves to three TIR
bounces and one reflection from the output coupler per
round trip.

So far we have seen that the gain medium must have a
sufficiently large index of refraction if we are to find the
desired NPRO geometry. The remainder of the problem
consists of finding geometries that satisfy the constraints
(50) and (51). Let us count the available degrees of free-
dom at this point. We require four parameters to specify
the geometry of the resonator, and we only have two con-
straint equations. We therefore must choose two param-
eters and solve for the remaining two. We choose a value
of the length AE and an angle of incidence 6, at the output
coupler, then solve the constraint equations to find the
length CE and the dihedral angle 3. Since the Verdet con-
stant ¥ and the applied magnetic field are already speci-
fied, the choice of AE pins down the amount of Faraday
rotation v 5 on the legs AB and AD. ( Note that what really
matters here is the product VB (AE), so for a given Verdet
constant V we can trade length for magnetic field in the
product B(AE).) With AE and 6, given, we have full
knowledge of the isosceles triangle ABD. We therefore
search for the family of isosceles triangles BCD that lead
to solutions of the constraint equations. These solutions
are best found by numerically solving the transcendental
constraints (50) and (51).

In the course of characterizing solutions, we have found
some limitations on the possible ranges of the angles of
the resonator. For example, the smallest angle of inci-
dence on the output coupler that still leads to solutions in
Nd:YAG is roughly 28.15°. This result is important be-
cause one might be inclined to try to reduce the astigma-
tism of the resonator by reducing 6, but the constraints
impose a lower limit on 6. Formally, we can continue to
find solutions for values of the angle of incidence exceed-
ing the critical angle, but these solutions are not of inter-
est to us since we do not want total internal reflection at
the output coupler. For Nd: YAG, then, the range of ac-
ceptance 0, is approximately 28.15-33.33°. Other mate-
rials would similarly have limited ranges of acceptable .

C. Choice of Partial Polarizer

Once we know how to solve for the geometry of the
resonator for a given magnetic field and a given index of
refraction and Verdet constant of the gain medium, we
still need to know how to choose the output coupler. We
have restricted ourselves to consideration of output cou-
plers that act in reflection like a combination of a partial
polarizer and a half-wave plate, so the problem reduces
to choosing the parameters r; and p of the partial polar-
izer.

The choice of r, is dictated by the considerations of
threshold and slope efficiency. The problem at hand is to
choose the partial polarizer strength p so that the loss dif-
ference between the two directions of propagation is made
as large as possible. Given the value of the CW equivalent
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rotation angle 2a~, we want to choose the partial polar-
izer to give the largest possible loss difference. This prob-
lem has been solved by Kruzhalov and Kozhevnikov [41],
and we derive the solution in Appendix D. For small ro-
tation angles (2o~ << 1 radian), the largest loss differ-
ence is obtained by choosing the partial polarizer such
that p = 1 — 4a”, and the resulting loss difference is
4r§a", with o~ in radians.

As a practical matter one cannot choose arbitrary values
of the partial polarizer parameter p because the partial po-
larizer is the multilayer dielectric mirror used at oblique
incidence. For quarter-wave stack designs involving high
index/low index layer pairs we find that r, and p both rise
as the number of layer pairs is increased. Thus, the re-
quirement of high reflectivity means that the output cou-
pler acts as a weak partial polarizer. If the available ro-
tation angle 2o~ becomes large, the value of p consistent
with having reasonable reflectivity for the s component
will generally be larger than the value that maximizes the
loss difference. We discuss a practical example in the fol-
lowing section.

D. An Example of NPRO Design for Nd: YAG

In this section, we work through an example of design-
ing an NPRO that simultaneously offers low output cou-
pling and a large loss difference. To make the discussion
concrete, we restrict our attention to Nd : YAG as the gain
medium, with n = 1.82 and ¥ = 103° T"' m™"' at 1.06
pm. We assume a magnetic field B = 0.5 T in order that
the desired field can be obtained by a suitable arrangement
of small permanent magnets. In the interest of small size
and low threshold operation, we take the characteristic
length AE = 4.0 mm. We choose the angle of incidence
at the output coupler to be 6, = 30.00°, a value in the
center of the acceptable range. These values of AE and 6,
are close to those chosen by Trutna er al. [10], which
makes possible a direct comparison of the designs.

Numerically solving the constraints (50) and (51) gives
us two choices for the resonator geometry: 1) 8 = 1.4329°
and CE = 1.553 mm, or2) 8 = 1.0489° and CE = 2.333
mm. Both choices ultimately lead to loss differences in
excess of 3.3 percent, but the solution with the smaller 3
yields the larger loss difference. We therefore choose the
one with 8 = 1.0489° and CE = 2.333 mm and find that
a” = 0.5409°, and 2y = 179.9857°. It is interesting
to compare the magnitude of o™ to the total Faraday ro-
tation angle I" = 2(y,43 + vgc) = 0.6531°. We find that,
in this example, approximately 82.8 percent of the total
Faraday rotation appears as the difference between the
magnitudes of the orientation angles of the CCW and CW
equivalent waveplates (see Appendix C).

The next problem is finding the best value of the partial
polarizer strength p. Using the results of Appendix D we
find the optimal choice of p = 0.96294. All that remains
in principle is to choose a target value for the threshold
of the resonator under diode-laser end-pumping, and then
to select r; to satisfy the threshold condition. The exact
value of r, is not crucial, so let us choose r, to give a
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TABLE 1
CALCULATED OPTICAL EQUIVALENTS OF THE FARADAY ROTATIONS AND TOTAL REFLECTIONS OF ALL
PuBLISHED NPRO DESIGNS AND ONE OF OUR RECENT DESIGNS. FOR CCW (CW) PROPAGATION THE
COLLECTIVE EFFECT OF ALL THE FARADAY ROTATIONS AND TOTAL INTERNAL REFLECTIONS IS OPTICALLY
EQUIVALENT TO A WAVEPLATE WITH RETARDATION 2y " (2¢~ ) WHOSE PRINCIPAL AXES ARE ROTATED BY AN
ANGLE ot (™) wiTH RESPECT TO THOSE OF THE OUTPUT COUPLER. THE DIHEDRAL ANGLE 8
CHARACTERIZING THE NONPLANARITY OF THE RING 1S SHOWN FOR EACH DESIGN. THE LOSS DIFFERENCES
SHOWN IN THE LAST COLUMN CANNOT BE COMPARED DIRECTLY BECAUSE LOSS DIFFERENCES DEPEND ON THE
CHOICE OF THE OUTPUT COUPLING MIRROR, BUT THE LOSS DIFFERENCES ARE INDICATIVE OF THE RESULTS
OBTAINED WITH VARIOUS RESONATOR DESIGNS

Calculated Parameters of Optical Equivalents of NPRO Designs

Loss Difference

NPRO a” (degree) 2y " (degree) o (degree) 2y (degree) (%)
Kane and Byer* 15.208 96.565 —22.737 96.565 0.02
8 = 90.000°
Kane et al.® 22.181 78.231 —24.346 78.231 0.01
B8 = 90.000°
Trutna er al.® 0.002 180.984 —0.451 180.994 0.60
B8 = 1.250°
This work* 0.000 179.986 —0.541 180.000 3.70
B = 1.049°

#[5]—NPRO parameter set: 3 = 90.00°, 6, = 7.80°, AE = 36.50 mm, CE = 1.80 mm. Mirror param-
eters r, = 0.99398, r, = 0.99599. B = [.00 T.

"[9]—NPRO parameter set: 8 = 90.00°, 6, = 15.95°, AE = 10.50 mm, CE = 1.50 mm. Mirror
parameters r, = 0.98995, r, = 0.99599. B = 1.00 T.

°[10}]—NPRO parameter set: 8 = 1.25°, 8, = 30.00°, AE = 4.23 mm, CE = 1.77 mm. Mirror param-
eters r, = 0.92195, r, = 0.99950. B = 0.43 T. Note that the design of Trutna et al. was not chosen to
maximize the loss difference. Fig. 3(b) of their paper shows a calculated loss difference exceeding 6 percent
for a design with an applied magnetic field of 0.9 T and a dihedral angle of approximately 5°.

YNPRO parameter set: § = 1.049°, 4, = 30.00°, AE = 4.00 mm, CE = 2.33 mm. Mirror parameters
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r, = 0.96198, r, = 0.99900 (optimal mirror parameters). B = 0.50 T.

power reflection coefficient of order 99.8 percent. Can we
find a standard quarter-wave dielectric stack to give us
such an output coupler? If we consider stacks formed of
alternating quarter-wave optical thickness layers of TiO,
(n = 2.251) and SiO, (n = 1.435), we find that the stack
design YAG[HL]’ Air results in a mirror with partial po-
larizer strength p = 0.9683 and a power reflection coef-
ficient for the s component of 99.87 percent. For the re-
mainder of the paper we will continue to use the optimal
value of partial polarizer strength for our calculations.

E. Comparison of Several NPRO Designs

We have proposed a specific algorithm for finding
NPRO’s with small output coupling and a large loss dif-
ference. Let us see how our example of Section D com-
pares with previously published designs for Nd:YAG
NPROs. In Table I we present the numerically calculated
optical equivalents of all currently published NPRO de-
signs, together with the design presented in Section D.
Results are quoted to several decimal places in order to
facilitate comparison with future calculations, despite the
impracticality of implementing such precision in an actual
device. The table shows the retardances 2y* and 2y~ of
the equivalent CCW and CW waveplates together with
the orientation angles o™ and «~ of the principal axes of
the waveplates with respect to the principal axes of the
output coupler. For each design we have given a complete
specification of the parameters required to calculate the
results shown in Table I.

The nonplanar geometry originally used by Kane and

Byer [5] had a dihedral angle 8 of 90°. Such a large di-
hedral angle leads to a resonator with a small loss differ-
ence. The loss difference in such a resonator increases
monotonically with increasing applied magnetic field be-
tween 0 and 1 T. In Table I we have calculated the loss
differences from the two designs with 3 = 90° assuming
an applied field of 1.0 T, even though such a field is dif-
ficult to obtain with simple permanent magnets. Table I
shows that the NPRO’s with a dihedral angle of 90° have
optical equivalents that are far from the desired half-wave
plate solutions discussed above, as Trutna et al. [10] have
also noted.

The design of Trutna et al. is closer to the desired so-
lution. Our analysis of their resonator shows that the
equivalent CCW waveplate is aligned with the principal
axes of the output coupler when the applied magnetic field
is 0.43 T. The CW equivalent waveplate is rotated by
approximately half a degree, and its retardance is about
181°. Ideally, one wants the minimum output coupling
point to coincide with the maximum loss difference point.
The design of Trutna er al. does not accomplish this co-
incidence because their design approach required a com-
promise between loss difference and output coupling.

Our design is shown as the last entry in the table. The
equivalent CCW waveplate is exactly aligned with the
principal axes of the output coupler for an applied field of
0.5 T. The equivalent CW waveplate is exactly a half-
wave plate, and its axes are rotated by more than half a
degree. With an optimal choice of partial polarizer param-
eters in the output coupler, our design shows that a loss
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difference of approximately 3.7 percent is possible while
simultaneously maintaining the lowest output coupling for
this resonator, about 0.2 percent. We present a detailed
analysis of the eigenmodes of our design below.

V. EIGENPOLARIZATIONS OF SPECIAL NPRO
RESONATORS

In Section II we showed how to find the eigenvalues
and eigenvectors of the round trip Jones matrices of a gen-
eral NPRO resonator, and in Section IV we introduced a
special kind of NPRO in which, for a given value of the
applied magnetic field, the CCW resonator is equivalent
to a waveplate aligned with the output coupler while the
CW resonator is equivalent to a rotator and a partial po-
larizer. Here we examine in detail the eigenvalues and
eigenpolarizations of the special Nd: YAG NPRO design
of Section IV-D. This particular NPRO is designed to
produce optimal results in an applied magnetic field of 0.5
T. The resonator has 6, = 30.00°, AE = 4.00 mm, CE
= 2.33 mm, and 8 = 1.049°. The mirror has Fresnel
amplitude reflection coefficients with moduli r, = 0.96198
and r; = 0.99900, and the mirror produces a relative phase
shift of = between the p and s components of the electric
field. We have calculated the loss difference, output cou-
plings, frequency shifts, azimuths, and ellipticity angles
of all four possible eigenpolarizations for this NPRO as a
function of applied magnetic fields ranging from0to 2 T,
and the results are plotted in Fig. 6(a)-(e). These results
are easily interpreted in terms of the rotator/partial polar-
izer system analyzed in Appendix D. We approximate the
behavior of the NPRO as a rotator/partial polarizer (the
rotation angle depends on the direction of propagation)
for both CCW and CW propagation. The approximation
is valid in this case because the Faraday rotation is so
small that the CCW and CW optically equivalent wave-
plates differ from half-waveplates by less than 0.02 per-
cent for applied magnetic fields in the range 0-2 T. The
primary manifestation of the Faraday rotation in the op-
tically equivalent rotator/partial polarizer systems is the
difference in the rotation angles associated with CCW and
CW propagation.

A. Losses and Loss Difference

The loss difference between the two directions of prop-
agation as a function of applied magnetic field for our
NPRO design is shown in Fig. 6(a). The distinctive
shark’s fin shape of this loss difference curve is typical of
such NPRO’s. At B = 0 there is no loss difference be-
cause the resonator is reciprocal. As the field is turned up
the loss difference climbs rapidly to a cusped peak at the
design point for the applied magnetic field, B = 0.5 T.
Beyond the peak, the loss difference falls rapidly and lev-
els off.

This result and the existence of a cusp in the loss dif-
ference curve are explained by Fig. 6(b), which shows the
round trip losses for all four polarization eigenmodes ver-
sus the applied magnetic field. First examine the losses of
the eigenpolarizations for a given direction of propagation
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Fig. 6. Calculated magnetic field dependence of the eigenpolarization
properties of a Nd: YAG NPRO resonator designed to emulate a rotator
and partial polarizer. (a) Difference between the round trip losses in per-
cent of the low-loss eigenpolarizations for CCW and CW propagation.
(b) Round trip losses of the four eigenpolarizations. The low-loss eigen-
polarizations are labeled CCW, and CW,. The minimal loss occurs for
the CCW, eigenpolarization at B = 0.5 T. (c¢) Azimuths of the eigen-
polarizations. (d) Ellipticity angles of the eigenpolarizations. Recall that
the ellipticity angle e is related to the ratio of the axes of the polarization
ellipse by tan (¢) = +b/a. (¢) Frequency shifts of the four eigenpolar-
izations with respect to the initial four-fold degenerate frequency that
occurs in the absence of phase anisotropy. At B = O T there is a small
splitting (220 kHz, too small to see in this figure ) between right-handed
eigenpolarizations and left-handed eigenpolarizations. Note that the fre-
quencies associated with a given direction of propagation split symmet-
rically.

around the ring. There is a high-loss mode and a low-loss
mode. As the magnetic field increases the losses change.
For CW propagation the losses rapidly approach one an-
other until they nearly coalesce for B = 0.5 T. The losses
behave differently for CCW propagation. As the field is
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increased from B = 0, the losses initially separate, reach
a maximum separation, then rapidly approach each other,
ultimately coalescing at B = 1.5 T.

The most striking feature of Fig. 6(b) is the approxi-
mate coalescence of the losses at different characteristic
values of the applied magnetic field depending on the di-
rection of propagation. Recall that for B = 0.5 T we rig-
orously forced the CW resonator to be optically equiva-
lent to a rotator and a partial polarizer. The CCW
resonator is then nearly a rotator/partial polarizer system
as well, because the retardance 2y " is nearly 180°. If we
approximate the behavior of the NPRO over the entire
range of magnetic field values by the rotator and partial
polarizer system for both directions of propagation, then
the coalescences of the losses become comprehensible.
The characteristic equation of the rotator and partial po-
larizer system is a quadratic equation with real coeffi-
cients. As discussed in Appendix D this means that the
eigenvalues for a given direction of propagation become
complex conjugates for sufficiently large rotation angles.
Complex conjugate eigenvalues have the same modulus,
hence the corresponding eigenmodes have the same round
trip loss. Moreover, the magnitude of the loss becomes
independent of rotation angle above the critical point (see
Appendix D). The losses for a given direction thus co-
alesce and clamp at a critical value of applied magnetic
field.

The loss difference for the resonator at a given value of
applied magnetic field [Fig. 6(a)] is the difference be-
tween the two low-loss curves of Fig. 6(b). The cusp in
the loss difference curve originates from the sudden
clamping of the CW loss for B = 0.5 T while the CCW
loss continues to rise.

B. Eigenpolarizations

In Fig. 6(c) and (d) we show the azimuths and elliptic-
ity angles (see Section II) of the eigenpolarizations. Re-
call that the azimuths are restricted to the range —90 <
§ < 90°, so the break in the curve labeled CCW, is only
an artifact of the range restriction. The interesting behav-
ior in both Fig. 6(c) and (d) occurs at the critical points
B =0.5Tand B = 1.5 T discussed in connection with
the losses of the modes. We can see that the azimuths of
the polarization eigenstates coalesce to 6 = +45° at the
critical points. The ellipticities remain small below the
critical points, then suddenly increase. The rotator and
partial polarizer approximation again accounts for these
effects. When the amplitude anisotropy of the partial po-
larizer dominates over the rotation, the resulting eigen-
states are linearly polarized with azimuths that depend on
the amount of rotation. When the rotation dominates over
the amplitude anisotropy, the eigenstates become ellipti-
cally polarized, the azimuths remain near +45°, and the
losses become identical.

C. Frequency Splitting

Because the resonant frequencies of the polarization ei-
genmodes depend on the amount of Faraday rotation, the

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 25, NO. 4, APRIL 1989

magnetic field can be used to tune the frequency of the
laser, as Kane and Byer [5] noted. Fig. 6(e) shows the
frequency shifts of the four polarization eigenmodes ver-
sus the applied magnetic field. On the scale of this figure
there appears to be a four-fold degeneracy in the frequen-
cies for B = 0 T. Actually, the reciprocal phase anisot-
ropy of the resonator in the absence of an applied mag-
netic field produces a splitting between the right-handed
eigenpolarizations and the left-handed eigenpolarizations.
The B = O splitting for this particular resonator is only
220 kHz, so it cannot be seen in Fig. 6(e). As the mag-
netic field is turned on the initial two-fold degeneracies
split, yielding four distinct eigenfrequencies for the four
possible eigenpolarizations. For each direction of propa-
gation we see that one eigenfrequency is upshifted while
the other is downshifted by the same amount, as we ex-
plained in Section II-F.2. At B = 0.5 T the frequency
splitting between the oscillating CCW eigenpolarization
and its low-loss CW competitor is approximately 300 kHz,
still not visible on the scale of Fig. 6(e). Just above B =
0.5 T, however, the eigenfrequencies of the pair of CW
modes begin to tune rapidly. The analogous point for the
CCW modes occurs at B = 1.5 T. Focusing attention on
the low loss CCW eigenmode that will oscillate unidirec-
tionally, we infer its tuning rate from the slope of the fre-
quency curve. The tuning rate around the assumed bias
point of 0.5 T is 240 kHz/T. Near the critical point at
1.5 T the tuning rate jumps to 12.6 MHz/T.

The sudden changes in tuning rate occur at the same
critical values discussed in connection with loss coales-
cence. Again, the rotator and partial polarizer model ex-
plains this occurrence. For low values of magnetic field
the loss anisotropy of the partial polarizer dominates over
the rotation, and the resulting eigenstates are linearly po-
larized and frequency degenerate. (For our case this anal-
ysis is only approximate, so the eigenpolarizations are
slightly elliptical, and the frequency degeneracy is lifted.)
The origin of the frequency tuning is the change in effec-
tive optical path length due to the circular birefringence
caused by the Faraday effect. Linearly polarized light does
not experience any change in optical path length; the ef-
fect appears only for elliptically polarized light. At the
critical points in the frequency splitting curves the modes
in a given direction suddenly increase in ellipticity and
thus experience the changing optical path length.

D. Loss Difference and the Choice of the Partial
Polarizer

Fig. 7 shows how the loss difference for the NPRO res-
onator of Section IV-D depends on the strength of the par-
tial polarizer. The largest loss difference for this system,
3.7 percent, occurs for a partial polarizer with p
0.96294. The loss difference remains greater than half the
peak value for partial polarizers with 0.955 < p < 0.980.
Note that the functional dependence of the loss difference
depends on whether the polarizer is too strong ( p < Popt)
or too weak (p > pop ). When the polarizer is too weak
the functional dependence is simply a straight line con-
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Fig. 7. The calculated loss difference of an NPRO resonator designed to
emulate a rotator and partial polarizer versus the strength of the partial
polarizer, defined by p = r,/r,. This curve is generated by holding r,
and all other resonator parameters fixed and varying only r,. Note the
sharply peaked maximum showing that the loss difference is maximized
by choosing a partial polarizer with an optimal polarizing strength de-
termined by the amount of rotation available.

necting the maximal loss difference at p = p, to the zero
loss difference at p = 1.0, where there is no amplitude
anisotropy.

E. Consequences of Errors in Relative Phase Shift on
Reflection from the Output Coupler

Our assumption of exactly 180° relative phase shift on
reflection from the output coupler is difficult to realize in
practice, so it is important to understand the consequences
of phase shift errors on performance. Fig. 8 shows the
loss difference for the resonator as a function of the phase
shift on reflection from the output coupler in the vicinity
of the design point of 180°, assuming that the optimal
partial polarizer strength is achieved. All of the resonator
parameters except for the phase shift on reflection from
the output coupler are held fixed for this calculation. The
full width at half maximum of the loss difference versus
phase shift curve is less than 2°, so the tolerance require-
ments are tight. Similar curves can be calculated for other
sources of round trip phase shift error, such as imprecise
knowledge of the index of refraction. We will present an
analysis of the geometric, phase shift, and magnetic field
tolerances of the NPRO in a future paper.

VI. OPTIMIZATION SCHEMES

In Section IV we considered a particular form of opti-
mization of NPRO design in which we sought to produce
NPRO’s that simultaneously achieve low output coupling
and a large loss difference at a specific value of the ap-
plied magnetic field. The theory of Sections II and III
makes possible many different optimization approaches,
however, and in this section we discuss some results of
alternative schemes.

Consider the general problem of attempting to choose
NPRO designs to maximize some particular figure of
merit. If the figure of merit is sufficiently complicated,
the intuitive approaches that have proved useful to date
may become difficult to apply. In that case, a natural and
powerful alternative is to apply Simplex optimization to
the problem [42]. The primary barrier to getting useful
and believable results from the Simplex approach is the

783

LOSS DIFFERENCE (%)

0 1

] I
178 180 182

MIRROR PHASE SHIFT (deg)

Fig. 8. The calculated loss difference of an NPRO resonator designed to
emulate a rotator and partial polarizer versus the phase shift on reflection
from the output coupler at A. All resonator parameters except for the
phase shift on reflection from the output coupler at A are held fixed for
the calculation of this curve, and the partial polarizer strength that max-
imizes the loss difference for a phase shift of 180° is used.

large number of parameters that enter into an NPRO de-
sign, together with the difficulty of picturing the figure of
merit surface. In addition one must generally constrain
the parameters to some useful region. Angles of incidence
at the output coupler exceeding the critical angle fre-
quently occur in unconstrained searches, for example.

As a specific example of applying Simplex techniques
we consider the problem of maximizing the loss differ-
ence of a Nd: YAG NPRO with fixed characteristic length
AE = 4.00 mm and angle of incidence 8, = 30.00° in a
magnetic field of 0.5 T. For simplicity we set r, =
0.99900 so the NPRO is specified by the set { CE, 8, p }.
We have examined two types of maximization of the loss
difference for such an NPRO. In the first case we fixed p
= 0.96294 and allowed the Simplex to vary CE and (8 to
find the best result. This calculation affords us a direct
comparison with the approach used in Section IV-D to
design the minimal output coupling/large loss difference
resonator. In the second case we let the Simplex vary the
partial polarizer strength p as well.

The result of Simplex optimization of loss difference
for this NPRO resonator is essentially identical to the re-
sult of Section IV-D. In other words, the Simplex opti-
mization arrives at the same design that our intuitive al-
gorithm produced. We conclude that, at least for this
example, the loss difference produced by our intuitive al-
gorithm and the optimally chosen partial polarizer is the
largest loss difference available for such an NPRO.

The result of allowing the Simplex to vary p as well is
quite different. In this case, the loss difference surface has
local minima in it, which makes it difficult to decide when
the best result has been achieved. For the case at hand,
we have found that the geometry that leads to a maximal
loss difference differs dramatically from previously con-
sidered designs, and the maximal loss difference is ac-
companied by large output coupling. The best result found
by the Simplex algorithm has a loss difference of 9.357
percent and an output coupling of 6.399 percent. These
results are obtained with a partial polarizer with p =
0.84245 and r; = 1.00. Unfortunately, the large output
coupling puts such a design out of the range of interest
for laser diode pumping, and the extreme amplitude an-
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isotropy of the output coupler is not compatible with
highly reflecting quarter-wave stack designs.

One could clearly include more parameters in the Sim-
plex searches as desired. We have only performed con-
strained optimization studies as discussed above, but we
believe that our constraints are well chosen. The point we
emphasize is that our theory, together with Simplex or
analogous techniques, makes it possible to study and op-
timize the desired properties of general NPRO’s.

VII. EXTENSIONS OF THE THEORY

In Sections I-VI we have presented an eigenpolariza-
tion theory that applies to monolithic, optically isotropic
resonators with four reflections arrayed in a nonplanar ring
geometry. Three of the reflectors are total internal reflec-
tions, one is an oblique reflection from a standard quarter-
wave multilayer stack. If we change any of these assump-
tions, there are new effects to consider. In this section,
we outline some of the interesting possibilities for ex-
tending our formalism to new devices.

Anisotropic Media: We have only considered optically
isotropic gain media thus far. A rich class of problems
based on uniaxial and biaxial media remains to be ex-
plored. Several difficulties arise in connection with prop-
agation in anisotropic media, however, including bire-
flection at interfaces, Poynting vector walk-off, and
thermally sensitive birefringence. For the same reason,
we have not modeled the effects of stress applied to ini-
tially isotropic media, although photoelastic tuning ap-
pears to be a promising approach for frequency tuning a
monolithic NPRO [43]. Applied stress breaks the isotropy
of the medium. We believe that planar, unidirectional
rings are possible in anisotropic media. The reciprocal po-
larization effect required for the optical diode can be pro-
vided by the birefringence of the anisotropic medium.

Composite Cavities: One of the great advantages of the
NPRO is its monolithic construction. Composite cavities
introduce new interfaces, which lead to increased cou-
pling between the two directions of propagation. Com-
posite cavities are also less rugged than monolithic cavi-
ties. Still, there are many reasons for examining composite
cavities. Among them are the possibility of making cav-
ities with reduced thermal sensitivity by using two or more
materials that compensate for each other’s thermooptic
behaviors, the possibility of incorporating strong Faraday
rotators into the cavity, and the prospect of using an elec-
trooptic medium in part of the cavity. If an electrooptic
medium can be incorporated, then electrooptic tuning of
the frequency of the laser will be possible. We are cur-
rently investigating some of these possibilities.

Exotic Mirrors: So far our theory has assumed that the
four intracavity reflections are total internal reflections
from three bare surfaces and one reflection from a stan-
dard quarter-wave stack mirror. The TIR phase shifts,
which play a major role in our choice of optimal geometry
for a given medium, can be varied by the use of coatings
on the TIR surfaces. Similarly, the phase shift on reflec-
tion from the output coupler can be varied by changing
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the dielectric stack design. These degrees of freedom will
open up a much wider class of geometries for considera-
tion. Controlling the precise phase shifts on reflection by
the manipulation of dielectric films is an expensive prop-
osition, however, and we have not modeled the possibil-
ities.

Our discussion of mirrors has thus far excluded mag-
netooptic effects. Magnetic Kerr effect mirrors offer an
additional means of inducing nonreciprocal rotation, as
has been explored in connection with the MRLG schemes
[44]. If magnetooptic mirrors are used, the Faraday ro-
tation requirements of the gain medium may be reduced.

Different Geometries: As we mentioned in Section
IV-B there are some advantages to considering geometries
with more total internal reflection bounces than the three
used in the NPRO’s discussed here, particularly for a
monolithic gain medium with an index of refraction
smaller than v3. Even for materials with a sufficiently
high index of refraction, the extra phase shifts accumu-
lated on additional total internal reflections can be used to
relax some of the constraints on the allowable angles of
incidence at the output coupler, for example. We will dis-
cuss these more complicated nonplanar geometries in a
future publication.

VIII. CONCLUSION

We have presented a comprehensive theory of the ei-
genpolarizations of the monolithic nonplanar ring oscil-
lator (NPRO). The explicit round trip Jones matrices de-
rived in Section II make it possible to perform numerical
evaluations of the eigenpolarizations, losses, and fre-
quency splittings for any NPRO. The use of the optical
equivalence theorem in Section III provides an intuitive
understanding of the resonator. Armed with intuition and
the analytical expressions, the design of NPRO’s with
specific properties becomes possible. In Sections IV and
V we designed and numerically analyzed a type of NPRO
whose inherent optical diode best emulates the ideal dis-
crete-element format of a rotator and a partial polarizer.
This resonator has linearly polarized output, low round
trip loss for the oscillating mode, and a large loss differ-
ence. For such a resonator we showed that there is a best
choice for the partial polarizer strength of the output cou-
pler, leading to maximal loss nonreciprocity.

We proved analytically that stable unidirectional oper-
ation of the NPRO requires both the nonplanar ring ge-
ometry and an applied magnetic field. We also proved that
NPRO’s with resonators analogous to the rotator and par-
tial polarizer model do not exist for media with an index
of refraction less than /3 , and we mentioned that non-
planar rings involving a larger number of total internal
reflections can overcome this restriction.

We now conclude with a discussion of the prospects for
further narrowing the linewidth of the NPRO. Experi-
mentally, free-running linewidths of less than 3 kHz have
been observed to date [9]. This linewidth should be com-
pared with the Schawlow-Townes quantum limit [45],
[46] of less than 1 Hz for a Nd: YAG NPRO with a round
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trip path of 1 cm, round trip loss of | percent, and output
power of 1 mW. Clearly, there is much room for improve-
ment in making narrow linewidth NPRO’s. At some point
efforts to improve the passive stability of the NPRO will
cease to be useful, and active locking of the NPRO fre-
quency to an external standard will be essential. Servo
loops that use the temperature of the laser crystal, the ap-
plied magnetic field, or applied stress as control variables
will enable us to lock the NPRO to a passive Fabry—Perot
resonator. Such an actively stabilized system should ex-
hibit improved short-term frequency stability.

Long-term control of the frequency may be possible by
locking the second harmonic of the Nd: YAG NPRO ra-
diation to hyperfine spectral features of molecular iodine
[47], or perhaps by locking the 1.06 um fundamental di-
rectly to hyperfine spectral features of Cs, [48]. Looking
still further into the future, it may one day be possible to
lock the NPRO to a spectral feature of a single atom or
ion in a trap [49]. The NPRO technology makes the pos-
sibility of a solid-state laser operating with a quantum-
limited linewidth seem less a remote dream and more an
area for active research.

APPENDIX A
NONPLANAR RINGS

In this Appendix we review the literature on nonplanar
ring lasers and discuss how the monolithic NPRO relates
to previous discrete-element nonplanar ring designs. Non-
planar rings with an even number of reflections cause re-
ciprocal polarization rotation analogous to natural optical
activity and have been most thoroughly investigated in
connection with clear-path multioscillator ring laser gy-
roscopes (MRLG) based on the He-Ne Zeeman laser. This
work has been described in recent publications [20], [50]-
[52] and is related to our own. The goal of the MRLG
work is rotation sensing, which requires that counterprop-
agating modes coexist in the resonator, whereas we want
unidirectional, single-mode oscillation. Both the MRLG
and the NPRO use reciprocal rotation arising from the
nonplanar ring geometry and nonreciprocal rotation estab-
lished by applying a longitudinal magnetic field to the gain
medium to achieve the desired performances. The MRLG
resonator is designed to have no amplitude anisotropy.
The goal is to establish four coresident circularly polar-
ized eigenmodes with equal losses and different frequen-
cies. In our work, on the other hand, we design the
monolithic solid-state resonator so that only one of four
possible modes will oscillate. The homogeneous broaden-
ing of the Nd:YAG gain medium makes this process
straightforward. We use the loss differences to force uni-
directional oscillation, and the frequency differences are
chosen to help reduce the effects of intracavity and extra-
cavity optical feedback on the stability of the single os-
cillating mode.

To our knowledge, the earliest proposed application of
nonplanar ring resonators is that of Arnaud [18], who ap-
plied the idea of image rotation to the design of optical
cavities in which an arbitrary ray retraces its own path
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after a single round trip. The first application of nonplanar
ring concepts to laser gyroscopes was reported by Jacobs
[53], [54]. He used six mirrors arrayed in two planes to
form an isotropic cavity for a CO, laser gyro. The goal
was to balance out the anisotropy of three mirrors in one
plane with the anisotropy of the three mirrors in the sec-
ond plane. A similar concept involving the MRLG has
recently been patented by Sanders and Anderson [55].

Nonplanar rings have also been investigated outside of
the laser gyroscope context. In 1979, Biraben [19] sug-
gested using the reciprocal polarization rotation of a non-
planar ring as a component of an optical diode to improve
the performance of unidirectional, traveling-wave, CW
dye ring lasers. The same idea is applied in the NPRO in
a monolithic setting. Discrete-element Nd: YAG non-
planar rings have been investigated by Smyshlyaev er al.
{56], Golyaev et al. [57]-[59], and Nanii and Shelaev
[60].

A large body of theoretical work on the properties of
nonplanar ring lasers has been developed. The theory of
stability of the optical axis of nonplanar rings is described
in references [61]-[67]. Calculations of spatial mode
properties are presented in [20], [68], and [69]. Polariza-
tion theory similar to what we present here is found in
[18]-[20], [51], [52].

APPENDIX B
NONPLANAR RING GEOMETRY

We have chosen to specify the geometry of the non-
planar ring light path by the lengths AF and CE and the
two angles 0, and 3 [see Fig. 3(b)]. In this Appendix, we
give the transcendental equations from which we find the
angles of incidence 6. and 6z( = 6;) and the coordinate
system rotation angles 8,5 and 6z¢.

First, we solve for the angle of incidence at C. Since
isosceles triangles ABD and BCD share the common base
BD, we have

AE
tan (0c) CE 2" (64).
The reflection at C is required to be a total internal reflec-
tion bounce, so 6, must exceed the critical angle of inci-
dence determined by the index of refraction of the NPRO
medium from the formula sin(8.) = 1/n. For
Nd: YAG with index of refraction equal to 1.82 for ra-
diation of wavelength 1.06 um, the critical angle is ap-
proximately 33.33°,
Once we have found 6., we can solve for the remaining
three angles using the following equations:

(B.1)

cos (205)
= sin (0,) sin (6¢c) — cos (8,) cos (6¢) cos (B)
(B.2)
cos (0,5)
_ sin (6c) cos (6,4) + cos (Oc) sin (6,) cos (B)

sin (26)
(B.3)
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cos (0zc)

_sin (8,) cos (6c) + cos (8,) sin (6c) cos (B)
a sin (205) '

(B.4)

We require total internal reflection at B and D, so
05 (= 0p) must also exceed the critical angle.

APPENDIX C
DERIVATION OF MATRIX ELEMENTS oF U anp U~;
OpticaAL EQUIVALENCE THEOREM

In this Appendix, we apply the optical equivalence
theorem of Hurwitz and Jones to the special unitary ma-
trices U" and U~ of (30) and (31). We seek expressions
for the matrix elements of U™ (U™ ), and from these we
want to solve for the rotation angles a* (o™ )and 8*(87)
and the retardance 2y (2y¢7) of the optically equivalent
system. We explicitly derive these parameters for the ma-
trix U*. The result for U™ is then found by the substitu-
tions 6 & —a, ¢ = —§, as can be seen by inspection of
(30) and (31). Since U™ is in SU, we need only evaluate
Uj, and U5,. Recall the expression for U* from (30):

Ut = R(5AB){MB[R( _UBC)MCR(UBC)]MB}R( _5,43)-
(C.1)

This product is most easily evaluated by starting in the
middle at M. M, undergoes an orthogonal transforma-
tion by the rotation matrix R(opc). The resulting matrix
is premultiplied and postmultiplied by the diagonal matrix
Mp. Finally, this product undergoes an orthogonal trans-
formation by the rotation matrix R( —0,p). Using the ex-
plicit expressions for the individual Jones matrices given
in Section II-D, we arrive at the following results for the
real and imaginary parts of the matrix elements
Ui, and Ujy:

Re Uf, = {cos (Ag) cos (A¢/2) — sin (Ag)
- sin (A¢/2) cos (2UBC)} (C.2)
Im Uy, = [sin (Ag) cos (Ac/2) + cos (Ag) sin (A¢/2)
- cos (20pc) ] cos (26,3)
+ [sin (A¢/2) sin (20pc)] sin (28,5) (C.3)
Re U3, = 0 (C.4)
Im Uy, = [sin (Ap) cos (Ac/2) + cos (Ag) sin (Ac/2)
* cos (205¢)] sin (28,45) — [sin (A¢/2)
- sin (20p¢) ] cos (284p). (C.5)

According to the optical equivalence theorem (46) we can
write U" in the form

U" = R(a™)G(Y")R(B"). (C6)
Multiplying out the right-hand side of (C.6) we find
Re Uf, = cos (™ + 8%) cos (¢*) (C.7)
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Im Uj; = cos («" — B%)sin (y*) (C.8)
Re Uj; = =sin (a” + 8% ) cos (v*) (C.9)
Im U;; = = sin (¥ — %) sin (7). (C.10)

Equating the different expressions for the matrix ele-
ments Uj; and U3, gives us four real equations:

cos (o™ + %) cos (¥7)
= {cos (Ag) cos (Ac/2) — sin (Ap)
- sin (A¢/2) cos (ZUBC)}
cos (e — B¥) sin (¥*)
= [sin (Ag) cos (Ac/2) + cos (Ap) sin (Ac/2)
- cos (205¢)] cos (28,4) + [sin (Ac/2)
- sin (20p¢)] sin (2645)
sin (™ + 8%) cos (y*) =0
sin (™ — 8%) sin (¢)
= [sin (Ap) cos (Ac/2) + cos (Ap) sin (Ac/2)
- ¢cos (205¢)] sin (2845) — [sin (Ac/2)
+ sin (20p¢)] cos (28,5). (C.14)

From (C.11) and (C.13) we see that * = —B*. Equation
(C.13) reduces to an identity, and we are left with three
equations:

cos (¥7)
= {cos (Ag) cos (Ac/2) — sin (Ap)
- sin (A¢/2) cos (ZGBC)}
cos (2a™) sin ()
= [sin (Ag) cos (A¢/2) + cos (Ag) sin (A¢/2)
* cos (2a5¢)] cos (26,45) + [sin (Ac/2)
+ sin (20p¢)] sin (26 45)
sin (2a™) sin (¢ )
= [sin(Ag) cos (A¢/2) + cos (Ag) sin (Ac/2)
* cos (20p¢)] sin (28,45) — [sin (Ac/2)
+ sin (205¢) ] cos (28,45).

(C.11)

(C.12)
(C.13)

(C.15)

(C.16)

(C.17)

There is just one rotation angle and one retardance
parameter required for the optical equivalent of U*, which
means that U™ is optically equivalent to a single wave-
plate having retardance 2y, with its principal axes ro-
tated by angle a* with respect to the principal axes of the
output coupler. No additional rotator is required.

The three equations for the optical equivalent of U™ are
found directly from the equations for U" by the substi-
tutions 6 =+ —o and ¢ = —4 in (C.15)-(C.17):
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cos (¢7)
= {cos (Ag) cos (A¢/2)
— sin (Ap) sin (Ac/2) cos (285¢) }
cos (27 ) sin (Y7)
= [sin (Ag) cos (Ac/2) + cos (Ap) sin (Ac/2)
+ cos (26pc)] cos (20,4) + [sin (Ac/2)
+ sin (26¢)] sin (20,45)
sin (2a7) sin (Y 7)
= —[sin (Ag) cos (Ac/2) + cos (Ag) sin (Ac/2)

(C.18)

(C.19)

* cos (28p¢)] sin (2045) + [sin (A¢/2)
- sin (285¢)] cos (2045). (C.20)

Examination of (C.15) and (C.18) reveals that the re-
tardances associated with the CCW and CW propagation
directions do not depend on 8,5 or v,z and the retar-
dances differ only through the replacement of og- by 8p¢.
These results have a simple explanation. Consider the
product that defines U™, (C.1). The outermost rotation
matrices involving o,z perform a similarity transforma-
tion on the product inside the brackets. The product in
brackets is itself a product of retardation and rotation ma-
trices and is optically equivalent to a similarity transfor-
mation of the Jones matrix of a single waveplate. We thus
see that the retardation parameter ¥ is completely deter-
mined by the product in the brackets of (C.1) and does
not depend on 6,5 or vy ,45. Similar comments apply to U™,
the only difference being the replacement of gz by 8¢
inside the brackets because of the nonreciprocity of the
Faraday effect.

Observe that oz = dp¢ if there is no applied magnetic
field or if the dihedral angle 3 is 90°, because then g
= 0. When o = 6p¢, the retardances of the equivalent
waveplates for CCW and CW propagation are identical.
Examples of this effect appear in Table I for the two ge-
ometries with 8 = 90°. For these geometries the non-
reciprocity appears only in the orientation of the equiva-
lent waveplates with respect to the principal axes of the
output coupler. In general, however, the retardance pa-
rameters for CCW and CW propagation differ slightly, as
the entries in Table I with 8 # 90° show. For such res-
onators the nonreciprocity appears in both the retardances
and the orientations of the equivalent waveplates.

For most cases of interest the angles ¢ and 6 will be
small, and we can expand (C.15)-(C.20) to first order in
these angles. For the special case in which we have found
geometries leading to ¥ = 0 and 2y~ = 7, we can de-
rive useful approximations for the differences between the
retardances and orientation angles. In the following
expressions, all angles are in radians:

(2y" =m)=2y"
=q — 16 sin (AB) sin (AC/Z)GBC’YBC (C21)
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(@t =0) = o~

=~ 2(yq + sin (Ac/2)vpe)- (C.22)

These approximate expressions reveal two important
behaviors that are hard to see in the exact results. In the
small angle limits, the CCW and CW retardances are
nearly identical, and the difference between the magni-
tudes of the orientation angles is smaller than the total
Faraday rotation I' = 2 (43 + vp¢). The Faraday rota-
tion on legs AB and AD contributes fully to the orientation
angle difference, but the Faraday rotation on legs BC and
CD has its contribution reduced by the factor sin (As/2).

APPENDIX D
ROTATOR AND PARTIAL POLARIZER

Here we review the polarization eigenmodes of a ring
resonator containing a rotator and a partial polarizer [19],
[28], [41], [70]. We first derive and discuss the eigenval-
ues of the system. In particular, we derive the loss differ-
ence for an optical system consisting of a partial polarizer
and a rotator in which the magnitude of the rotation angle
depends on the direction of propagation. We assume that
the CCW rotator is arranged to be a null rotator and that
the CW rotator rotates the azimuth of an incident polar-
ization state by the angle ¢~ in the positive sense.

The round trip matrices for CCW (superscript + ) and
CW (supercript — ) propagation are

M™ = P(p)R(¢™ =0) = P(p) (D.1)
M~ =R(¢7)P(p) (D.2)

where the Jones matrix P( p) for the linear partial polar-
izer used here is given by

0
ror=o[?

and the Jones matrix R(¢) for a rotator is given by

B {cos (¢) —sin (d))}
~ Lsin (¢) cos (o) ]

By inspection of (D.1) we see that the eigenvectors of
the CCW system containing a null rotator and a partial
polarizer are simply the linear polarization states aligned
with the principal axes of the partial polarizer. We rep-
resent the partial polarizer by a digonal matrix with di-
agonal elements r,( = pr;) and r,, and we assume that r,
> r,. The larger eigenvalue for CCW propagation is thus
rxz, and the round trip loss for CCW propagation is 1 —
r

(D.3)

(D.4)

For CW propagation we find the eigenvalues of the
round trip Jones matrix by solving the characteristic equa-
tion A — A Tr (M™) + det (M~ ) = 0. The trace of the
CW roundtrip Jones matrix is (1 + p) cos (¢~ ), and
the determinant is rfp. Note that both of these coefficients
in the quadratic characteristic equation are real for this
system, so we immediately know that the eigenvalues for
CW propagation fall into three categories: 1) real and
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nondegenerate,- 2) real and degenerate, or 3) complex
conjugates. Explicitly, the CW eigenvalues are given by

Moo= {(l + p)cos (¢7)

B[S

-+

\/(1 + ,o)2 cos® (¢) — 4p} (D.5)

where p = r,/r,,and 0 < p < 1.

The eigenvalues are real and nondegenerate when the
radicand is positive, real and degenerate when the radi-
cand is zero, and complex conjugates when the radicand
is negative. The eigenpolarizations associated with real
eigenvalues are linearly polarized and have the same ei-
genfrequency. The eigenpolarizations associated with
complex conjugate eigenvalues are elliptical, and they
have the same loss. A further important property of the
complex conjugate eigenvalues appears when we examine
the square of their modulus, which is simply r2p. Note
that this result is independent of the rotation angle ¢~ .
Consider the behavior of the eigenvalues as the CW ro-
tation angle ¢~ is slowly increased from 0. At first, the
CW ecigenvalues are real and nondegenerate. At a critical
value of rotation determined by the strength of the partial
polarizer, i.e., when cos (¢~ ) = 2\/;/(1 + p), the CW
eigenvalues are real and degenerate. For larger rotation
angles the CW eigenvalues are complex conjugates and
hence have identical moduli, and the moduli are indepen-
dent of the rotation angle until the radicand of the char-
acteristic equation again becomes nonnegative. Plots of
eigenvalues for such systems are shown in [41].

To apply the above results to the problem of minimiz-
ing the CCW output coupling and then maximizing the
loss difference of the NPRO resonator subject to the min-
imal output coupling constraint, recall that we have a fixed
upper bound to the amount of polarization rotation avail-
able for the CW direction of propagation. (See Appendix
C.) We want to make the larger modulus of the CW ei-
genvalues as small as possible by our choice of the partial
polarizer strength p, given a fixed ¢ ™. Inspection of (D.5)
reveals that the best choice of p is the one that makes the
radicand exactly zero. Therefore, we want to choose p
such that

P’ + <2 —ﬁ),ﬁ 1 =0. (D.6)

The CW rotation angle ¢~ is typically small in the
problems of interest to us since it is determined by the
amount of Faraday rotation available in the gain medium.
We can therefore solve for p to first order in the small
angle ¢ :

p=1+2¢". (D.7)
Since we require p < 1, the admissible solution is p = 1
— 2¢~. The corresponding eigenvalue is

AN=r(1—-¢7). (D.8)

The loss difference is given by 2r2¢ ™. In the interest of
low threshold operation r? is nearly one, so the loss dif-

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 25, NO. 4, APRIL 1989

ference available in a system that is optically equivalent
to a rotator and an optimally chosen partial polarizer de-
pends primarily on the available rotation. For our system
the amount of rotation is limited by the small Faraday
rotations accessible with small crystals and reasonable
magnetic fields.

APPENDIX E
DERIVATION OF MINIMAL REFRACTIVE INDEX
CONSTRAINT

In this Appendix we prove that the minimal refractive
index for which we can solve

1

tan (Ag) tan (Ac/2) = cos (28¢)

(E.1)
IS Ny = V3. The restriction arises from the existence of
a maximum TIR phase shift for a given index of refrac-

tion:
. Ama\ 7 — 1
an > =5

Note that the right-hand side of (E.1) is greater than
one if 6 is nonzero. To have any hope of a solution, we
at least require the left-hand side to exceed one. Since the
tangent functions are monotonic, we can derive a cutoff
value of the TIR phase shifts that might lead to solutions
of (E.1) as follows. Set each of Ay and Ac equal to A,
to make the left-hand side as large as possible. Then
equate the left-hand side to one in order to find the small-
est admissible index of refraction. The resulting equation
is

(E.2)

2t (Ag/2) |
1 - tan’ (Amax/2) o

Solving, we find tan (Ana,/2) = 1/+3. Plugging this
result for tan (A, /2) back into (E.2) enables us to solve
for ny;,. The equation is

I
min \/3

The roots of this equation are —1/\/5 and V3. The
negative index of refraction is not physically permissible,
which leaves us with the result n,,,;, = /3. This result can
be given a more mnemonic interpretation. The minimum
index of refraction required to give a cumulative TIR
phase shift of 180° in three bounces is n,,;, = V3.

We have as yet made no use of the constraints imposed
by the geometry. The nonplanar ring light path requires
that the inequality

(E.3)

Min — 1 = 0. (E.4)

min

6, + 205 + 0. < 180 (E.5)

must hold, with the equality true only for the case 3 = 0.
For n = /3 the maximum TIR phase shift in one bounce
is 60° and occurs for an angle of incidence 45°. Setting
6g = 0c = 45°, the constraint on 8, is §, < 45°. In fact
we can derive a relation between 6, and (8 since we know
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6 and 6. The relation is

tan (6,) = cos (B)

which has allowed solutions for 8 between 0 and 90°.

(E.6)
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