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of KDP, KD*P, BaB,0,, LilO;, MgO:LiNbOs,
and KTP Measured by Phase-Matched
Second-Harmonic Generation
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Abstract—Both absolute and relative measurements of the nonlinear
optical coefficients of six nonlinear materials were measured by second-
harmonic generation. A single-mode, injection-seeded, Q-switched
Nd:YAG laser with spatially filtered output was used to generate the
1.064 pm fundamental radiation. The following results were obtained:
dss(KDP) = 0.38 pm/V, dis (KD*P) = 0.37 pm/V, | dy; (BaB;0,) | =
2.2pm/V, dy, (LilO;) = —4.1 pm/V, d3; (5% MgO : LiNbO;) = —4.7
pm/V, and d. (KTP) = 3.2 pm/V. The accuracy of these measure-
ments is estimated to be better than 10%.

1. INTRODUCTION

AREFUL measurements of the nonlinear optical coef-

ficients of several nonlinear crystals of current tech-
nical interest are presented. These measurements were
made by phase-matched second-harmonic generation using
a Q-switched Nd: YAG laser operating at 1.064 pum as the
source of fundamental radiation. The laser was injection
seeded to operate in a single longitudinal mode, and the
output was spatially filtered to produce a Gaussian-like
transverse distribution. Characterization of the pump pulse
and calibration of the apparatus indicated that these mea-
surements should be accurate to better than 10%.

This measurement was originally intended to be only a
determination of the nonlinear coefficient of barium me-
taborate (BaB,0,), an interest that was motivated by ob-
servations of optical parametric oscillator thresholds that
were below expected values [1]. The measurement grew
to include several other nonlinear optical materials that
are commonly used for second-harmonic generation
pumped by 1.06 um radiation. The additional materials
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were measured because of a current controversy concern-
ing the absolute magnitude of nonlinear coefficients.

Our observations use both absolute and relative mea-
surements of nonlinear coefficients. The absolute mea-
surements yielded values consistent with other second-
harmonic measurements. Measurements performed with
high-power well-characterized lasers and potassium di-
hydrogen phosphate [2] have yielded the value d3s(KDP)
= 0.39 pm/V, which has become accepted in the appli-
cation of high-power harmonic conversion for fusion re-
search [3]. Earlier CW measurements of 633 to 316 nm
harmonic generation in ammonium dihydrogen phosphate
gave a value of dss(ADP) = 0.57 pm/V [4], [5]. Com-
bining this with relative measurements between KDP and
ADP yields dss(KDP) = 0.41 pm/V [6]. We measured
dys(KDP) = 0.38 pm/V, in good agreement with both
earlier harmonic measurements. Values for ds (KDP) de-
termined by the technique of parametric fluorescence [7],
[8] tend to be higher. Previously, the value for 1.06 pm-
532 nm harmonic generation in lithium iodate ds; (LilOs)
= —7.1 pm/V based on parametric fluorescence had been
accepted as standard [9]. (No attempt was made to mea-
sure signs of the nonlinear coefficients; however, when
the signs are known [6], they are included.) On the par-
ametric fluorescence LilO; scale, the coefficient for po-
tassium dihydrogen phosphate is dzs(KDP) = 0.63 pm/V
for second-harmonic generation pumped by 1.06 um ra-
diation [7]. Clearly, there is a discrepancy in the accepted
values for nonlinear optical coefficients.

The crystals included in the measurements reported here
are KDP, LilO;, BaB,O,, potassium dideuterium phos-
phate (KD*P), potassium titanyl phosphate (KTP), and
magnesium  oxide-doped  lithium  niobate (5%
MgO:LiNbO;). The ratio of dzs(KDP) to d3, (LilO3)
obtained in these measurements is in agreement with ear-
lier measurements [7]. However, the value of d3; (LiIO;)
is only 58% of the parametric fluorescence value pre-
sented in [9]. The reason for the variance is not under-
stood. It has been suggested that the pump wavelengths
may-have been too close to the LilO; absorption edge in
the parametric fluorescence measurements. There has also
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been some question of the necessity for further correc-
tions to deal with the birefringence of the nonlinear crys-
tals. An anisotropic Green’s function analysis [10] is dis-
cussed in the Appendix, with the conclusion that existing
theory is appropriate for the quantitative analysis of near-
field second-harmonic generation and parametric fluores-
cence.

The advantage of parametric fluorescence is that it is
only necessary to measure the power ratio of the pump
radiation and the generated fluorescence, whereas second
harmonic requires the measurement of an absolute power
and the spatial and temporal distributions of the pump
field. Phase matching is also of critical importance in the
second-harmonic technique. Second-harmonic genera-
tion, however, has the advantage that it is a direct mea-
surement of the nonlinear coefficient under conditions that
more closely duplicate actual applications. The results
presented here are a study of nonlinear coefficient mea-
surement by second-harmonic generation. At this point,
no attempt is made to explain the different values obtained
by the two techniques. In the future, more work is needed
to resolve these apparent differences.

Our second-harmonic measurements were performed
under near-field conditions where diffraction is not of con-
cern. Birefringent walkoff, however, was significant in the
longer angle-tuned crystals. A Gaussian transverse inten-
sity distribution was assumed, and the focused beam anal-
ysis of Boyd and Kleinman [11] was used. This CW anal-
ysis was extended to pulsed harmonic generation by
numerical integration of the observed temporal distribu-
tion. Substantial effort was placed in characterizing the
temporal and spatial distribution of the pump pulse. The
largest single source of error in these measurements is
fluctuation in spatial distribution caused by drifting of
spatial filter alignment. This single error source is about
equal in magnitude to all other sources of error combined.

The highest levels of harmonic conversion used here
were 14%), a level at which pump depletion must be con-
sidered, but can be treated adequately with a simple near-
field approximation. The depletion approximation was
verified by observation of the dependence of harmonic
conversion on pump energy in two crystals. Measure-
ments to demonstrate that two-photon absorption was not
a factor were also performed in the same crystals. In all
cases, phase-matching tuning curves were carefully com-
pared to calculated curves obtained from dispersion rela-
tions. The agreement of observed and theoretical tuning
curves assured that the full length of the nonlinear crystal
was used, and that optical distortions were not limiting
harmonic conversion.

The theoretical development used to analyze our sec-
ond-harmonic measurements is discussed in Section II.
Although no new theory is presented, except for the de-
pletion approximation, the theory is presented to make
explicit the definitions that are used to describe the sec-
ond-harmonic generation interaction. Different factors ap-
pear in the various methods of presentation, and misin-
terpretation of factors abound in this field. The

experimental apparatus is described in Section III, and
measurements are discussed in Section IV. Results are
summarized in Section V.

II. THEORY

The analysis used here draws almost entirely from ear-
lier work [11], [12] which is reviewed in many places [6],
[91, [13], [14]. MKS units are used. Definition of notation
is made using a few expressions appropriate for mono-
chromatic planewaves. The discussion continues by in-
cluding the focused beam analysis, and is extended to
pulsed harmonic conversion by numerical integration
using observed pulse shapes. A simple approximation de-
rived empirically by calculation is used to allow for the
small amount of fundamental wave depletion in the mea-
surements. Finally, a near-field approximation is used to
allow for an elliptical transverse beam distribution.

The electric field or electric polarization, both of which
are real, can be expressed as the product of a complex
amplitude and exponential summed with the complex
conjugate of that product. In this format, the time-depen-
dent electric field of a monochromic plane wave of an-
gular frequency w is

E(r,t) = 1E(r, w) exp {i(k cr - wt)} + c.c.

The relationship between the vector components of elec-
tric polarization at the harmonic frequency 2w resulting
from the second-order nonlinear interaction define the
nonlinear optical coefficients dj,; ( —2w, w, w):
3
eM(r, 20) = .kZI eodi( —2w, w, w)E;(r, w)E(r, )
k=

(1)

where ¢, is the permittivity of free space. The reduced
notation dj; — d;, allows the representation of the non-
linear optical coefficients in the customary 3 X 6 matrix.
Further reduction to a single effective nonlinear coeffi-
cient d,; dependent on nonlinear optical properties, phase
matching, and crystal orientation is standard for modeling
phase-matched second-harmonic generation. With this
notation, the coupled equations describing harmonic gen-
eration for a monochromatic plane wave propagating in
the z direction are

9 B(z, 20) = ke SRE (2, ©) (2a)
dz
and
diE(z, w) = ike*FE(z, 20)E*(z, w)  (2b)
Z

where x = wd, ¢/ (nc) with n the index of refraction, ¢ the
speed of light, and Ak = k,, — 2k, the wave vector mis-
match. Two elementary solutions to the coupled equa-
tions are

ho(1) = L,(0){T¢sin (Aki/2)/(AkI/2)}  (3a)
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and
L,(1) = 1,(0) tanh? (I'}) (3b)

for the respective cases of negligible pump depletion and
perfect phase matching. Here, I, (/) is the harmonic in-
tensity generated in a crystal of length /, 1,(0) is the ini-
tial fundamental intensity, and I'? = 2«%1,(0)/(cnep).
Any of (1), (2), or (3) can serve to define the notation
used to express the nonlinear coefficients.

The dispersion in the nonlinear coefficient djy,; (—2w, v,
w) is often expressed in using Miller’s delta [15] &, and
the linear susceptibilities

dijk(_zw, w, w) = eOszin;X:kaijk

2 2
eo{ni(Zw) - 1}{nj (w) — 1}

2
'{"k(w) - 1}5ijk- (4)
Here, x,-z,-“’ is the linear electric susceptibility at frequency
2w, and n;(2w) is the index of refraction at 2w, both for
light with the electric field polarized in the direction of
the ith principal axis of the crystal. The dispersion of 8,
has been demonstrated to be small, and for experimental
purposes, 8 is usually treated as a constant.

Beam characterization measurements described in the
next section show that the transverse distribution of our
beam is nearly Gaussian in shape. Second-harmonic con-
version efficiency for CW beams with Gaussian transverse

distribution in the low conversion limit is given by [11],
[13]

New = Pro/Pu = 20 digp kh(B, £)/(7n*ec®)  (5)

where p, and p,,, are the powers of incident fundamental
(after surface losses) and the output second harmonic (be-
fore surface losses), respectively. The Boyd and Klein-
man focusing factor £ (B, §) is a function of the walkoff
parameter B and focusing parameter £, which are ex-
pressed by the formulas

B = pvik/2 (6)
and
£ =1/(kw}). (7)

Here, p is the birefringent walkoff angle, wy is the 1/e
amplitude radius at the beam waist, and k = nw/c is the
magnitude of the fundamental wave vector inside the
crystal.

For beam parameters used in these measurements, the
approximations of A (B, ¢) for the limiting case of weak
focusing § << 1 are appropriate. With the added con-
straints of optimum phase matching, no absorption, and
birefringent walkoff aperture length greater than crystal
length [, = 7'/2wy/p > I, the focusing factor is given to
the necessary accuracy by

h(B, £) = £(1 = 1*/12 + t*/120 — 1%/1344 + - - )

(8)
where ¢t = 2B(2£)'/2. Since (8) assumes perfect phase
matching, numerical solutions of the double integral de-

fining 2 (B, £) [11] were used to calculate phase-matching
curves for angle-tuned crystals. Equation (8) does not in-
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clude bulk material losses; however, using (8) and ap-
proximating bulk losses as surface losses gave the re-
quired accuracy fora | cm KDP crystal. None of the other
crystals used had significant absorption.

The extension of (5) to pulsed harmonic conversion was
accomplished with an integration over the observed pulse
shape; u = [p(t) dr = PAt where u is the total energy,
p (1) is the instantaneous power, P is the peak power, and
At is an effective pulse width. Here, At, and Az, were
obtained by numerical integration of the observed funda-
mental pulse shape and the square of the observed fun-
damental pulse shape, respectively. This treatment is ap-
plicable when the pulse has no structure or modulation on
the scale picoseconds or shorter, which would make group
velocity walkoff important. Rewriting (5) for pulsed har-
monic conversion,

Uy _ Pl

Neale = u, PwAtw
Aty, lkh(B, £)
2 52 2w ’
= — . 9
2u,0 defAtf, an’epe’ ©)

The subscript is used to indicate that 7, is the conver-
sion efficiency that is obtained from a calculation that as-
sumes no pump depletion. Pump depletion was approxi-
mated with the relation

(10)

where ngpervea 1S the observed energy conversion effi-
ciency. Numerical integration for the near field without
walkoff showed that (10) is accurate to better than 2% for
Nobserved < 50%.

Allowance was also made for an elliptical transverse
distribution of the pump beam, a condition that existed in
some of these measurements. A pump traveling in the z
direction with intensity distribution which is described by

I, = Iy exp (—2x*/wi — 2y*/w})

Ncale = 77c»l:vserved/(1 - Tlobserved)

is used. For the near-field approximation, it is necessary
to retain the walkoff dependence of the focusing parame-
ter in the critical phase-matching direction which is cho-
sen to be the x direction. However, the beam area must
be adjusted to allow for a different size in the noncritical
y direction. This is done with the substitution

h(B, £) = (we/w)h(B, £); & =1/(kw7). (11)

When the pump depletion approximation and the allow-
ance for elliptical transverse distribution are included, (9)
solved for d2; becomes

(2o /us) AL Wy cegn’N
(1 = uy,/u,) Aty, w, 1671 (B, &)

dig = (12)
In (12), both w = 2wc/Ay and k = 2mn /N, have been
expressed in terms of the free-space wavelength A of the
fundamental radiation.

The expressions for the effective nonlinear coefficients
of the materials used are reproduced in Table I. The effect
of nonorthogonality of the extraordinary electric field with
the wave vector in the birefringent crystals is included.
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TABLE I
EFFECTIVE NONLINEAR OPTICAL COEFFICIENTS

Crystal Point Group Phase-Matching Effective Nonlinear Optical Coefficient®
KDP - Type 1 dex = —dse sin (0 + p) sin 2¢
KD*P 42m Type 11 dg = (dis + dsg) sin (8 + p)
cos (6 + p) cos 29
BaB,0, deg = dy sin (0 + p) — dn»
5% MgO : LINbO, 3m Type 1 cos (0 + p) sin 3¢
LilO, 6 Type I dr = dy, sin (8 + p)
KTP® mm? Type 11 doy = (dyy — dys) sin 26 sin 2¢

— (dys sin® ¢ + dyy cos® @) sin 8

*There are different conventions used for defining effective nonlinear coefficients. We choose the one in
which the direction of the wave vector is specified by spherical coordinates (8, ¢) referenced to the crys-
talline axes; p is the birefringent walkoff angle. The positive sense of the extraordinary polarization is
taken as that which has a component in the direction of the positive crystalline z axis.

®The expression for KTP is an approximation that is justified by the small difference between n, and n,
compared to the difference between n, and n, or n,, and further justified because 6 =~ 90° for all measure-

ments used here.

TABLE II
CALCULATED PHASE-MATCHING PARAMETERS
Crystal Reference® Opm p ny(w) n.(w) no(2w) n.(20)
KDP, Type 1 [17] 41.2° 1.60° 1.4942 1.4603 1.5129 1.4709
KD*P, Type I [18] 36.6° 1.45° 1.4931 1.4582 1.5073 1.4683
KD*P, Type Il 53.7° 1.42°,1.28°
BaB,0,, Type [ (19} 22.8° 3.19° 1.6545 1.5392 1.6742 1.5547
LilO,, Type 1 1201 30.2° 4.26° 1.8559 1.7164 1.8975 1.7475
5% MgO: LiNbO,", Type I [21] 90° 0 2.2327 2.1527 2.3242 2.2327
T =107C :
KTP, Type II 122} 0 = 90° n(w) = 1.7381 n(2w) = 1.7785
¢ =24.3° 0.19° n(w) = 1.7458 n,(2w) = 1.7892
0.26° n_(w) = 1.8302 n.(2w) = 1.8894
*Reference is to source of dispersion equations from which parameters are calculated.
°LiNbO, is the only temperature tuned crystal; all the others are angle tuned at room temperature.
°KTP is a biaxial crystal; all the others are uniaxial.
For negative uniaxial crystals, this is done by replacing 6 photodiode
with 6 + p [11] in expressions such as those given by recton-seeded
. . . i ned NA:YAG lasel
Midwinter and Warner [16]. Here, 6 is the phase-match- Qrowite
ing angle and p is the birefringent walkoff angle. For 11m foldeg b
. . . al
LiIO;, which has a relatively large walkoff angle, the mpat
magnitude of the value of di¢ obtained from a measured "‘P"'I‘""*
value of d g is reduced. Indexes of refraction and phase- ;u' {‘, : J { |7
matching parameters calculated from dispersion equations \ o evacuated spatil fer  WIRdoW lang
are given in Table II. fens
III. EXPERIMENT SETUP
Measurements were performed in sets that involved the
comparison of two nonlinear crystals. One crystal was a ..
well-characterized reference, and the other was the crystal G ]
under test. Each set included absolute measurement of the e o s : o v
. e . R H : TO 1
individual crystals and a relative measurement. Phase- = - U P enystal
1 4 thin film ttenuati beam- , H
matching tuning curves were observed for both crystals, polarizar  A1PTEIG  spiiter -
and surface reflections and total transmissions were mea- oy
sured at both fundamental and harmonic frequencies. boam (A

Transverse beam characterizations were performed in the
course of a measurement set, and the temporal pulse shape
was monitored throughout the measurements. Other cali-
brations and consistency checks were performed on a less
regular basis.

Fig. 1. Schematic drawing of experimental setup.

Fig. 1 shows the main components of the experimental
setup which consisted of a Q-switched Nd: YAG laser, a
spatial filter, and a two-beam arrangement in which the
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(a)

(b)

A N I S T T
Fig. 2. Oscillograms showing fundamental (a) and second-harmonic (b)

pulses. The time scale for both is 2 ns/cm displayed on the horizontal
axis. Vertical displacement is relative power.

nonlinear crystals were measured and compared. An im-
portant feature of these measurements was the use of a
single-mode injection-seeded laser for the 1.064 um pump
source. Temporal properties of the laser output were de-
termined with a 0.4 ns rise time photodiode-oscilloscope
combination and a Fabry-Perot interferometer with 0.03
cm ! resolution. The measurements showed that the in-
jection-seeded laser operated in a single axial mode. We
expect that the spectral distribution was near the time-
bandwidth limit for the 7.0 + 0.2 ns full width at half
maximum pulse.

Pulse duration changed little over the course of these
measurements. Typical oscillograms of both fundamental
and harmonic pulses are shown in Fig. 2. The leading and
trailing edges of the fundamental pulse had exponential
shapes, with a 1.4 ns time constant for the rise and 3.0 ns
for the fall. Numerical integration over the measured pulse
shape yielded the effective pulse width Az, = 8.1 £ 0.2
ns and the ratio Af,,/At, = 0.67 + 0.02. The ratio
Atzw/(Az‘w)2 = 8.3 x 10’s™' + 3% was used in evalu-
ating (12). The time response and time base calibration of
the photodiode-oscilloscope combination were checked
by observing the output of a mode-locked Nd: YAG laser.
The time base was accurate to within 0.6%.

Shot-to-shot energy fluctuations were caused by drift-
ing in the alignment of the spatial filter. Fig. 3(a) shows
a histogram of individual pulse energy distribution. Most
of the harmonic generation measurements consisted of
averages obtained with 100 pulses. Several such averages
were used in a measurement. Using 100-shot averages
simplified the problem of shot-to-shot energy fluctuations
and was consistent with the knife-edge transverse beam
characterizations which were done with several hundred
pulses. The histogram of pulse energies shows reasonable
agreement with a normal distribution for which the prob-
ability of finding the fundamental energy between u, and
u, + du, is given by P(u,) du, where

P(u,) = exp { —(u, — ,)’/(20%)} /(0,¥27). (13)
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Fig. 3. Measurements characterizing laser output. (a) Histogram showing
fundamental pulse energy distribution. (b) Typical knife-edge measure-
ment of transverse beam distribution and calculated transmission for a
Gaussian distribution fit to the data points. Error bars were obtained using
eight separate horizontal and vertical scans performed over the course of
one day.

7, is the average fundamental energy, and o, is the stan-
dard deviation. We observed o,,/%,, = 0.08. The standard
deviation for harmonic pulses was 16%. However, the
100-shot averages reduced this value by a factor of ten.
Averaging the shot-to-shot fluctuations will slightly bias
harmonic measurements to higher values of harmonic
power, as is seen by calculating the average value of u’
given by (13):
(u2y = @) + ol

The bias was only 0.6% and was not included in the cal-
culation.

Spatial filtering was performed by a combination of
propagation into the far field, followed by aperturing the
central peak of the distribution, and finally focusing
through a pinhole in a vacuum spatial filter followed by
recollimation. The output beam was slightly converging
and reached a beam waist about 2 m beyond the colli-
mating lens. Beam radii were measured by a knife-edge
method at several positions after the collimating lens. It
was demonstrated that the beam propagation closely fol-
lowed that predicted for a Gaussian distribution. Aperture
and pinhole adjustment in the spatial filter provided beam
waists between wy, = 0.9 and 1.6 mm.

Additional checks demonstrated that there were no ex-
traneous temporal or spectral components in the laser out-
put. No change in beam size due to a possible second
spectral component was observed with the knife-edge
characterization when two prisms were used in place of
turning mirrors to provide a dispersion of 4 nm /mm.
Photodiodes with various integrating times and sensitivi-
ties were used with different triggering and sweep rate set-
tings of the oscilloscope, and no observable temporal
components other than the Q-switched pulse were found
in the laser output.

Repeated measurements of beam distribution were per-
formed at the position where the SHG crystals were
placed. The two-beam arrangement allowed quick mea-
surements of the 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95
transmission positions as the knife-edge was scanned
across the beam in one channel. The seven measurements
were averaged to locate the center of the beam, and each
of the six measurements other than the 0.5 position yielded
a measurement of w, or w,. If the horizontal and vertical
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measurements agreed within experimental error, they were
combined to a single value wy, and if not, the beam would
be treated as elliptical in shape. Fig. 3(b) shows the beam
transmittance for knife-edge positions compared to values
calculated for a Gaussian distribution. Typical individual
beam scans yielded +3% standard deviation for waist
measurements. Eight measurements made over the course
of one day combined to yield a standard deviation of
+5%, which was taken as the accuracy to which the beam
waist was known.

The components of the two-beam arrangement were
casily rearranged and interchanged for a variety of mea-
surements. The pump beam was transmitted through a thin
film polarizer and a partially transmitting mirror to pro-
vide 2-4 mJ of linearly polarized 1.064 um radiation in-
cident on the beamsplitter. Beamsplitting ratios from
50/50 to 93 /7 were used. The pyroelectric energy probes
used to measure pulse energy had flat spectral response
and could monitor both fundamental and harmonic. Ab-
sorbing glass filters and highly reflecting dielectric mir-
rors were used to eliminate fundamental radiation and
transmit harmonic radiation when necessary. Calibrated
neutral density filters and diffusers were used to keep
measured fundamental intensities within the range of the
energy probes. In addition to absolute and relative har-
monic generation measurements, the apparatus also was
used to measure transmissions of crystals and filters. Sur-
face reflectivities of the crystals at both fundamental and
harmonic were measured with rearrangement of compo-
nents, and transmission at 532 nm was measured with the
harmonic output generated in a separate crystal.

Three axes of rotational adjustment were used in the
crystal mounts. Two of the axes were perpendicular to the
direction of polarization and a third was parallel. A po-
larized alignment beam was used to determine whether
the crystals were properly oriented with respect to the
pump beam. A half-wave plate was used to rotate the fun-
damental polarization for maximum harmonic generation
for measurements with type II crystals. The angular ad-
Jjustments allowed rotation through a small range of azi-
muthal angle to check that the crystals were properly ori-
ented for maximum dgs. All the crystals were properly
oriented. However, it was necessary to use the 12 mm
BaB,0, crystal significantly off normal incidence to avoid
problems of parallel-surface reflections.

The calibrations of the two pyroelectric energy probes
were intercompared, and each pyroelectric probe was
compared to a thermoelectric power meter. The power
meter was internally calibrated with an electrical resis-
tance heater. The 30 Hz repetition rate of the laser al-
lowed comparison of the average power measurement with
the average pulse energy of the pyroelectric probes. The
thermoelectric power meter read 3% higher than the
higher of the two pyroelectric energy probes, and that
probe gave a reading 2% higher than the other; all agreed
within 5% . The relative difference of the two probes was
retained in the analysis of data, and their average reading
was used as the energy calibration. The reason for this
choice was that conditions were more appropriate for the
pyroelectric detectors, and the 5% difference is within the

expected error of all the meters and is too small to be
significant. The 5% value was taken as the accuracy of
the energy measurement, which also is the accuracy stated
by the manufacturer.

Energy measurement was also dependent on the accu-
racy of filter, attenuator, and beamsplitter calibration.
Filters and attenuators were measured both in the two-
beam setup described above and with a spectrophotome-
ter. Comparison indicated accuracies of 1% in the mea-
sured transmissions. The beamsplitting ratio and probe
sensitivity ratio were checked repeatedly to assure consis-
tency in the measurements. Variations of 1/2-1% caused
by differences in probe placement and pointing were
found. Where possible, critical parameters were mea-
sured with more than one method, and multiple or addi-
tional measurements were used for consistency checks and
determination of accuracy.

The overall accuracy of these nonlinear coefficient mea-
surements is estimated to be better than 10%. The average
of the harmonic energy divided by the square of the fun-
damental energy { u,,/ u’y was determined for each se-
ries of 100 shots in making absolute measurements. A fur-
ther average was made of at least five and usually more
such measurements of ( u,,/u2 ). Typically, the individ-
ual averages in one set of measurements would be con-
sistent to +2%. Larger variations were observed with re-
peated measurements that would entail recalibration, use
of different samples of the same material, or different
beam parameters. For example, 12 measurements on three
different samples of BaB,O, had a +3.6% standard de-
viation for the value of d.y. Examination of (12), how-
ever, shows that d gz can only be determined to the accu-
racy to which wy, was known, and that was estimated to
be 5%. The accuracy of quantities Af,,/(At,)* and
u,/ > could double the uncertainty of the values of d.g.

IV. MEASUREMENTS

12 separate absolute measurements were made on three
different BaB,0, samples, more than used for the other
materials. Also, the other materials were all measured rel-
ative to BaB,0,. This discussion starts with the barium
metaborate measurements. The discussion is then ex-
panded to include other materials, both by absolute and
relative measurement of the nonlinear coefficients.

Two of the three BaB,0, samples were grown at the
Stanford Center for Materials Research, and the third was
grown at the Fujian Institute of Research on the Structure
of Matter in the People’s Republic of China. The Stanford
crystals were 4.1 and 11.9 mm long, and the Fujian crys-
tal was 9.4 mm long. The tuning curves for the three
BaB,0, crystals agreed well with tuning curves obtained
from dispersion equations and numerical evaluation of the
double integral that defines the Boyd and Kleinman fo-
cusing factor 2 (B, £). The calculated tuning curves were
adjusted for pump depletion using (10). The observed and
calculated curves for the 11.9 mm crystal are shown in
Fig. 4(a) and (b).

The effective nonlinear coefficient obtained in these
measurements was d.;(BaB,0,) = 1.94 + 0.07 pm/V.
The sign of the d;, coefficient relative to that of d,; is
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Fig. 4. Measured (data points) and calculated (solid lines) phase-matching tuning curves for different second-harmonic crystals.

unknown for BaB,0,, and no effort was made to deter-
mine the polarity of the crystals that were measured. For-
tunately, ds, is small compared to d),; measurements of
|ds;| = 0.07 |dp, | [23] and |dsy| < 0.05 |dy, | [24] have
been reported. Assuming that d, is negligible, the value
|dy| = 2.16 + 0.08 pm/V is obtained from the mea-
sured d.g, calculated phase-matching parameters (Table I)
and the appropriate definition of d .y (Table II). Express-
ing the result with two digits as | dy, | = 2.2 pm/V more
correctly conveys the accuracy of the measurement.

Earlier measurements have placed |d,,(BaB,04)| =
4.1 dys(KDP) [23], [24]. The result of 2.2 pm/V is 37%
higher than these earlier results when d;(KDP) = 0.39
pm/V is used. Even though |dj,(BaB,0,)| = 5.7
d;s(KDP) was observed here, these measurements nearly
duplicated the 0.39 pm /V result for KDP.

Only a single KDP crystal was measured. The 10.4 mm
long crystal was oriented for type I phase matching, and
surfaces were uncoated. The observed tuning curve again
closely follows the calculated curve [Fig. 4(c) and (d)].
There is a smaller amount of birefringent walkoff in this
crystal compared to the BaB,0, crystal; therefore, the
tuning curves more closely approach the sinc-squared
curve of the monochromatic plane wave. Both absolute
measurements of the KDP crystal and measurements rel-
ative to the 9.4 and 11.7 mm BaB,0, crystals using
d.s(BaB,O,) = (1.94 + 0.07) pm/V were closely
grouped at dy(KDP) = 0.376 + 0.005 pm/V. This
small range of measurements could be coincidence, and
the earlier comments about accuracy apply. More typi-
cally, the combined measurements on a single material
would have +4% standard deviation. For comparison, it
is useful to mention that in the notation used by Craxton
[2], {d36(KDP)/€g }craxton = 0.78 pm/V corresponds to
d3s(KDP) = 0.39 pm/V in the notation used here.

In contrast to the agreement with KDP second-har-
monic measurements, these observations produced sub-
stantially different results compared to parametric fluores-
cence measurements of lithium iodate. Two LilO;
crystals, 14.7 and 19.8 mm long, were used for type 1
second-harmonic generation. These crystals were antire-
flection coated on input and output faces. Both crystals
demonstrated good agreement between predicted and ob-
served phase-matching curves. Birefringent walkoff was

again significant, as can be seen in the shape of the sec-
ondary maxima in the tuning curves of the 14.7 mm crys-
tal. [Fig. 4(e) and (f)]. Absolute measurements of the two
LilO, crystals gave |ds, | = 4.24 + 0.10 pm/V, whereas
measurements relative to BaB,O, and KDP, respectively,
yielded 4.02 + 0.19 and 4.08 £ 0.19 pm/V. The value
obtained by combining these measurements and using the
known sign was dy; (LilO;) = —4.1 £ 0.2 pm/V.

Tabulations of measurements of the nonlinear coeffi-
cients of LilO; [6] show an unusually wide range of val-
ues. Of concern was that the high intensities used for
pulsed harmonic generation could lower efficiency through
some third-order nonlinear effect such as two-photon ab-
sorption or intensity-dependent refractive indexes. Har-
monic generation was observed as a function of funda-
mental pulse energy in an attempt to detect such effects.
This was accomplished by attenuating the pump puise with
calibrated partially reflecting mirrors between the beam-
splitter and the 19.8 mm LilO; crystal. Fig. 5(a) shows
the observed deviation from linearity between generated
harmonic energy and square of the fundamental energy.
This deviation was explained by pump pulse depletion as
approximated by (10). There was no indication of reduced
harmonic generation by any third-order process in this set
of measurements. The four steps of attenuation gave five
relative measurements of nonlinear coefficient at peak in-
tensities ranging from 7.4 MW / cm? for the unattenuated
pulse to approximately one-fifth that value. The five mea-
surements had better consistency, d3; = —4.13 + 0.05
pm/V, than other measurements made at constant inten-
sity.

An additional measurement was performed to test for
nonlinear absorption. Fundamental energy was monitored
in the reference channel, and both transmitted fundamen-
tal and generated harmonic were measured in the test
channel as the 19.8 mm LilO; crystal was tuned through
phase matching. The measurement of total transmission
and observed and calculated tuning curves is shown in
Fig. 6(a)-(c). The measurement suggested that two-pho-
ton absorption was present, but not large enough to sig-
nificantly have changed the measurement of the nonlinear
coefficient. The second surface of the crystal was antire-
flection coated for 532 nm, and a 0.5% increase in total
transmission was expected at peak conversion, but not ob-
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served, suggesting that a few percent of the harmonic was
lost by two-photon absorption.

Parametric fluorescence measurements have been pre-
viously performed for lithium niobate [25], [7], and it was
of interest to compare second-harmonic generation mea-
surements in this material. A 6.3 mm sample of 5%
MgO: LiNbO; was prepared for temperature-tuned non-
critically phase-matched second-harmonic measurements.
This crystal was uncoated. The previous parametric flu-
orescence measurements were performed with stoichio-
metric and congruent LiNbO;. The MgO: LiNbO; used
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in these measurements has slightly different properties
than those of stoichiometric or congruent compositions,
but should be close enough for a useful comparison of the
two techniques of nonlinear coefficient measurement.
Congruent LiNbO; must be cooled below room tempera-
ture for noncritical-phase-matched second-harmonic gen-
eration pumped by 1064 nm radiation, but 5%MgO:
LiNbO; has a phase-matching temperature near 107° C
[26]. The MgO-doped material also has the advantage of
reducing photorefractive damage [27], and is of interest
for its application in external monolithic resonant cavity
nonlinear frequency conversion [28].

The measurements performed on LiNbO; were similar
to those described above for LilOs. There is no birefrin-
gent walkoff for 90° phase matching, and the tuning curve
is expected to be the sinc-squared curve with the adjust-
ment for pump depletion. The observed curve followed
the calculated curve closely [Fig. 6(e) and (f)], except for
a small deviation near the first minima. This was probably
due to a distortion of the pump beam at the surface of the
crystal. The excellent agreement in the locations of the
secondary maxima and minima indicated that the full
length of the crystal was used in the phase-matched inter-
action. The total transmission measurement of the crystal
tuned through phase matching [Fig. 6(d)] shows no indi-
cation of two-photon absorption. The difference in second
surface transmission for fundamental and harmonic was
insignificant in the uncoated, phase-matched crystal.

Absolute measurements and measurements relative to
BaB,0, and KDP yielded an average value of d3,(5%
MgO:LiNbO;) = —4.69 + 0.13 pm/V. With all the
materials measured, both absolute and relative measure-
ments had a reproducibility of 4%. This was further dem-
onstrated by the measurements of pump-energy-depen-
dent harmonic generation shown in Fig. 5(b) and (c). One
measurement was absolute, with fundamental energy
monitored in the reference channel. The other was a rel-
ative measurement where the second harmonic generated
in a BaB,0, crystal was monitored in the reference chan-
nel and fundamental energy was deduced from the refer-
ence harmonic signal. The two measurements give essen-
tially the same result, with the depletion approximation
again adequately describing the deviation from linearity
in the ratio of harmonic energy to the square of the fun-
damental energy.

The measured coefficient d3; (5% MgO:LiNbO;) =
—4.7 pm/V is only 79% of the parametric florescence
value for congruent LiNbO;, not an unreasonable agree-
ment considering that the materials have a different com-
position. This is supported by comparison measurements
[29] of second-harmonic generation by 9 mm samples of
MgO-doped and congruent materials under similar pump-
ing conditions; 50.9% conversion was observed in the
congruent material, and 35.2% conversion was observed
in the MgO-doped material.

Two additional materials, KD*P and KTP, commonly
used for 1064 nm pumped harmonic generation were stud-
ied. Two 30 mm long KD*P crystals, one each of type I
and type II, were measured. For the type II crystal, the
result of a quantitative analysis derived from a near-field
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calculation was used, and Kleinman symmetry was used
to set dig = dy4. The KD*P crystals were measured both
absolutely and relative to BaB,O,, with the result
dss(KD*P) = 0.367 + 0.012 pm/V. This is consistent
with earlier measurements relative to KDP [30], [31], [32]
which yielded values in the range d;(KD*P) = 0.34-
0.48 pm/V when normalized to d3s (KDP) = 0.39 pm /V
[3] or dys(KDP) = 0.41 pm/V [6]. The tuning curves
for the two KD*P crystals both indicated high-quality ma-
terial and little distortion of the pump beam. The tuning
curve of the type I crystal is shown in Fig. 4(g) and (h).

Second-harmonic generation was observed in three type
II KTP crystals. All the KTP crystals were produced by
the flux growth technique in the People’s Republic of
China. The very parallel surfaces of the first two crystals
produced interference which was seen in the tuning curve
(Fig. 7). The third crystal was also very parallel, but had
a 1064 nm antireflection on one surface and a 532 nm
antireflection coating on the second surface. The observed
tuning curve for this crystal was in excellent agreement
for rotations both about the z axis and about an axis in the
x-y plane as shown in Fig. 8. This agreement indicates a
crystal of excellent optical quality, with proper orienta-
tion, and very small distortion of the pump beam. The
polarization of the fundamental pulse was rotated with a
half-wave plate to produce the maximum second har-
monic. The effective nonlinear optical coefficient derived
from absolute harmonic measurements and measurements
relative to KDP, KD*P, and BaB,0, was d.s(KTP) =
3.18 + 0.17 pm/V. The value calculated from earlier
measurements |dy| = 7.6 X 1072 m/V and |d;s| =
6.1 pm/V [33] is dog(KTP) g, = 7.3 pm/V [22].

It is necessary to know the relative signs and relative
magnitudes of dy5 and d,, for the purpose of determining
the size from a measurement of d.;. Observation of the
change in d.z with crystal orientation indicates that ds;
and ds, have the same sign. If it is assumed that the ratio
dys/dis = 1.25 as measured previously [33], then the
measured value of d.g yields |dys| = 3.3 pm/V and | ds |
= 2.6 pm/V. These values are less than half of the earlier
values. The measurements, complicated by interference,
made with the uncoated KTP crystals ranged from deg =
2.1 to 4.4 pm/V and supported the measurement of the
lower value.

V. SUMMARY

The nonlinear optical coefficient measurements re-
ported here are summarized in Table III. These values can
be taken as both relative measurements and absolute mea-
surements. The reproducibility of the measurements was
approximately +4%. When the values are used as relative
measurements, the accuracy is the same as the reprodu-
cibility. It is possible that the absolute measurements
could be biased by inaccuracy in modeling and fluctua-
tions of the transverse beam distribution, measurement of
pulse shape and duration, and by the accuracy of the en-
ergy measurements. It is estimated that the accuracy of
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the absolute measurements of the nonlinear coefficients is
+10%.

The measurement for KDP reported here is in agree-
ment with the nonlinear coefficient accepted for that ma-
terial in high-power nonlinear conversion applications,
and it agrees with the combination of relative measure-
ments between KDP and ADP and low-power CW sec-
ond-harmonic measurements with ADP. Furthermore, the
relative measurements between KD*P and KDP and be-
tween KDP and LilO; are in agreement with earlier mea-
surements. There is possible agreement between the ab-
solute measurement of 5% MgO : LiNbO; and parametric
fluorescence measurements of congruent LiNbO;, but this
is not conclusive. We have measured a significantly lower
value for the nonlinear coefficients of KTP and a moder-
ately higher value for the nonlinear coeflicient of BaB,0,
than reported in earlier measurements. Perhaps the most
significant difference is the absolute measurement of the
nonlinear coefficient of LilO5, which is only 58% of the
value measured by parametric fluorescence.

It is remarkable that after more than 25 years of study
in nonlinear optics, there should still exist such uncer-
tainty in the scale of the nonlinear material parameters.
This investigation indicates a need for further study. Per-
forming both second-harmonic and parametric fluores-
cence measurements on the same nonlinear crystal sam-
ples would provide useful information. Such measure-
ments would help resolve the difference in values ob-
served for congruent LiNbO; and MgO:LiNbO;. The
anomaly between second-harmonic generation measured
and parametric fluorescence measured nonlinear coeffi-
cients for lithium iodate also needs to be resolved.

It is possible to make accurate measurements of nonlin-
ear optical coefficients using the technique of second-har-
monic generation provided a great deal of care is used in
making the measurements and high optical quality fun-
damental radiation is used. The development of automatic
data acquisition and reduction techniques and the avail-
ability of well-characterized highly coherent lasers will
make further accurate measurements tractable. The wide
range of nonlinear coefficient values that have been ob-
tained over the past 25 years underscores the need to use
well-characterized high-quality sources of fundamental
radiation in nonlinear optical frequency conversion.
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TABLE III
NONLINEAR OPTICAL COEFFICENTS

Nonlinear Optical Miller’s Delta
Crystal Coefficient (1072 m/V) (1072 m?/C)
KDP dse = 0.38 836 = 2.4
KD*P dyy = 0.37 by = 2.4
LilO, ds, = —4.1 5, = —3.8
5% MgO: LiNbO, dy, = —4.7 5y = —0.84
BaB,0, dg = 1.94
|dy| = 2.2° [82] = 4.5
KTP dee = 3.18
ldis| = 2.6° |15 =29
|das| = 3.3 18] = 2.5

“Nonlinear coefficients are given for 1064 to 532 nm second harmonic
generation.

"Assumes that |ds, | << |dy, | for BaB,O, [24].

‘Using | dys | /| dys| = 1.25 [33] and assuming d,, and d,s have the same
sign.

APPENDIX

Some detailed aspects of nonlinear frequency conver-
sion in birefringent crystals are considered in this Appen-
dix. An anisotropic-media Green’s function analysis is
used to show that the treatment used here is appropriate
for quantitative analysis of second-harmonic generation
under near-field conditions. Only under tight focusing
conditions will birefringence cause some astigmatism and
aberration that is not already included in the analysis.

A central assumption of the Boyd and Kleinman treat-
ment of harmonic generation by focused beams [11] is
that a Gaussian harmonic beam is generated in each infin-
itesimal slab increment of a nonlinear crystal through
which a Gaussian fundamental beam is propagated. In the
case of type I phase matching in a negative uniaxial crys-
tal, the fundamental beam is an ordinary wave and the
harmonic is extraordinary. It is further assumed that the
extraordinary harmonic beam has the same focal position
f and the same confocal parameter b as the fundamental

beam. However, the transverse position of the extraordi-
nary beam is displaced in a way that causes it to propagate
with the appropriate birefringent walkoff. This result was
derived by Kleinman ef al. [34] using an isotropic-media
Green’s function modified to include birefringent walkoff.

We proceed with the anisotropic-media analysis, ex-
pressing results in a form similar to [34] to facilitate com-
parison. Assume that the nonlinear crystal exists between
z = 0and z = [, and is imbedded in a medium with iden-
tical linear birefringent properties, but with no nonline-
arity. The harmonic electric field at a point r is given by

SV exp {—ag(z - z’)/2}

(A1)

exp (—2iwt)
47!'60

<yG(r, ') - O"(r) dr.

Ey(r, t) =

Here, 2w is the angular frequency of the harmonic, and
«, is the absorption coefficient at the harmonic frequency.
The dyadic projection operator is defined by

4riw

17 on,(0)

ai (A2)

where n,(0) is the index of refraction for the extraordi-
nary harmonic wave, and & is a unit vector in the direction
of the electric field of the harmonic wave. The nonlinear
polarization produced by an ordinary Gaussian fundamen-
tal beam propagating in the z direction is

exp {2ik;z’ — a2’}
(1 +ir)

- exp {_ gg_{rZ_'_—y:Z)}B(z') (A3)

wi(1 + ir")

(PNL("’) = (P()
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where 7’ = 2(z' — f)/band B(Z’) = 1for0 = ' =1
and O elsewhere. The fundamental wavevector is k;, and
a; is the absorption coefficient of the fundamental. Every-
thing to this point is identical to [34] except for the an-
isotropic Green’s function.

The Green’s function for an anisotropic dielectric is [10]

W 2 1
vG(r, r') = aa | —

exp {ike - (r - r’)}
c kes/l?e cos p .

r=r]

(A4)

Equation (A4) differs from the Green’s function used in
[34] by the factor k,\[l?e cos p in the denominator where
K, is the Gaussian curvature of the surface defined by
k.(2w) and p is the birefringent walkoff angle. For an
isotropic medium, k,vK, cos p is one, and the Green’s
functions become the same. As an example of an aniso-
tropic material, consider LilO; oriented for phase-
matched, type I, 1064 — 532 nm second-harmonic gen-
eration for which ke\/z cos p = 1.10.

However, the factor becomes 1/cos p = 1 when the
variation of k, with direction is included in the x’ and y’
integration of (Al). The paraxial expansion used to per-
form the integration is

exp {ik,,, - (r - r’)}

|r—r|
_exp {2ik1(z - z')}
(z—-2')
. —ik[x —x" = p(z - z')]2
exp 2k, (z — 2')
ik(y = ')’
(y —
- = AS
2kiky(z — 2') (A3)

Phase matching is assumed in this expression, and «, and
k, are the principal curvatures of the surface defined by k,
(note K, = «;«,). Again, for isotropic material, we would
have 2k k, = k.x, = 1 and 2k, = k,x, = 1, and (AS)
would become identical to the expansion used in [34].

Completing the x’ and y’ integrations of (A1) using (A4)
and (AS), we have

exp {2ikiz — ay2/2}

E(r) = T ®o cos p
! ' 2
_gex —2[x — p(z = 2')]
o P wi(1l + ir,)
2y2 e—az’ dz'

B wi(l + i)\ (1 + ir") (A6)
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where
7 = 2{z = [f/kare = (1/kee = 1) ot/
(A7)
and
7y =2{z = [f/kery = (1/kerty — 1)z'] ke, /b.
(A8)

We could further manipulate the expressions (A7) and
(A8) to have x-distribution and y-distribution focal posi-
tions and confocal parameters, but it is unnecessary for
our purposes. We can project the solution back to the
plane z = [, and take that as the exit surface of the crystal.
With the experimental conditions of these measurements,
we are in the near field with 7 << 1 at this plane. In using
(8), we had assumed that 7 could be ignored, and the small
changes in 7 given by the last two equations are of no
significance. In the approximation that 7, = 7, = 7 = (2
— f)/b, (A6) becomes the same as [34, eq. (4.19)], the
result mentioned above which leads to (2.9) of the Boyd
and Kleinman focused beam analysis [11].

For parametric fluorescence in negative uniaxial crys-
tals such as LilO5 or LiNbOj, the scattered radiation or
parametrically generated noise is ordinary, and an iso-
tropic analysis of the scattering is adequate. The pump
radiation used for these parametric fluorescence measure-
ments, however, is extraordinary. Therefore, it is neces-
sary to use the angle of propagation plus the walkoff angle
(6 + p) when calculating components of the extraordi-
nary electric field of the pump radiation that lie in the
direction of the principal axes of the crystal. In both par-
ametric fluorescence measurements and second-harmonic
measurements in these crystals, the measured effective
nonlinear coefficients must be converted to components
of the nonlinear optical tensor using the angle (8 + p)
[11]. For LiNbO; with 6 = 90°, p = 0, and there is no
change from using 8 instead of (6 + p). For LilOs with
6 = 30.2°, p = 4.26°, the effective nonlinear coeflicient
is increased by 1.12 for a given value of d3; using (6 +
p) instead of §. This factor is not adequate to account for
the discrepancy between d.; measured here by SHG and
previous measurements by parametric florescence.
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