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ABSTRACT

A wide range of nonlinear optical coefficients and various systems of notation have been used to
describe optical second-harmonic generation (5MG). To avoid possible confusion, the techniques of
optical nonlinear coefficient measurement and the elementary theory of SHG are briefly reviewed.
Absolute and relative nonlinear coefficient measurements by phase-matched SHG are described. The
following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD*P) = 0.37 pmfV, 1d22(BaB2O4)I =
2.2 pm/V, d31(Li103) = —4.1 pm/V, d31(5%MgO:LiNbO3) = —4.7 pm/V, 1d15(KTP)I = 1.9 pm/V
and 1d24(KTP)I = 3.5 pm/V. The accuracy of these measurements is estimated to be better than 10%.
An example of high-repetition-rate pulsed SHG in AgGaSe2 is given to demonstrate the use of
quantitative analysis of harmonic generation for evaluation of nonlinear optical material performance.

1. INTRODUCTION

More accurate determination of second-order nonlinear optical
coefficients is both possible and necessary with the higher
optical quality that has become available in laser radiation and
nonlinear optical materials. The output of early high power
lasers was irregular in temporal and spatial distributions. The
irregular nature of these lasers made absolute measuremenLs of
nonlinear optical coefficients difficult. Lasers with single-
temporal-mode and single-spatial-mode output are becoming
common in both high-power-pulsed and continuous wave (cw)
operation. It is surprizing that uncertainty and disagreement
about the values of nonlinear optical coefficients has persisted.
Accurate absolute values are important. Quantitative analysis
of nonlinear optical frequency conversion processes is a useful
diagnostic tool for determining optimum conditions and
avoiding effects that degrade the frequency conversion process.
The uncertainty in the nonlinear optical coefficients, however,
has made it difficult to perform accurate engineering
calculations for nonlinear optical frequency conversion
processes.

This paper reviews some recent measurements of
nonlinear optical coefficients by the technique of phase-
matched harmonic generation.[1J Phase-matched harmonic
generation is one of several techniques of measurement and has
an advantage of being performed under conditions that are
closer to the conditions of practical applications than other
techniques. Absolute measurements derived from phase-
matched harmonic generation require careful characterization of
the pump radiation and detailed attention to phase matching. It
is necessary to provide a brief theoretical description to
establish the definition of the nonlinear optical coefficient.
This is done by reviewing harmonic conversion of
monochromatic plane waves. Correlation with the focused
Gaussian beam analysis of Boyd and Kleinman [2] and a
simple extension to pulsed pumping provide the theory
necessary for discussion of the experimental measurements.

TABLE I. SOME REPORTED VALUES FOR THE
NONLINEAR OPTICAL COEFFICIENT d36 OF KDP

Singh in CRC Handbook ofLasers, 1971 [13]:
d36 0.473 pm/V at 1.06 jtm

Singh in CRC Handbook ofLaser Science and Technology,
vol. III, 1986 [10]:

d36 0.41 pm/V at 1.06 jim
Levine & Betha, App!. Phys. Lett. 20, p. 272, 1972 [11]:

d36 1 .04x109 (esu) at 1.318 jim

d36(MKS) =
3x104

d36(esu) = 0.44 pm/V

Kurtz, Jerphagnon & Choy, Landoll-Börnstein, 1979 [12]:
36 4.0x102 m2/C
dJk eOXii(2'°)zjj"°)Xkk('°)Sijk. Z n2 - 1

d36 0.60 pm/V at 1.318 jim
= 0.63 pm/V at 1.06 jim
= 0.70 pm/V at 0.694 jim

Craxton, IEEE J. Quant. Elect. QE-17, p. 1771, 1981 [5]:
(d36/Eo)Craxton 0.78 pm/V for SHG & THG
d36 (l/2)(d36/Eo'Craxton 0.39 pm/V

Yariv & Yeh, Optical Waves in Crystals, 1984 [14]:
(d3)yy = 0.50x(1/9)x1022(MKS)
d36 (d36)y&y/e0 0.63 pm/V

Eimerl, Ferroelectrics 72, p. 95, 1987 [15]:
d36 0.39 pm/V

Shen, The Principles ofNonlinear Optics, 1984 [16]:
..(2) 0.94x108x3/(4ir) (esu), d36 = 0.47 pm/V

This work [1]:

d36 0.38 pm/V at 1.06 jim

The measurements reported here were initiated because of
an inconsistency between the calculated threshold for
oscillation in a BaB2O4 (BBO) optical parametric oscillator
(OPO) and a lower observed threshold.[3] The value of the
nonlinear coefficient of BBO [4] that was used for the OPO
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threshold calculation was relative to KH2PO4 (KDP). Some controversy exists concerning the value of the nonlinear coefficient
of KDP. A sampling of the reported values of the nonlinear optical coefficient of KDP is shown in Table I. Even for this widely
used material there are a range of values. Using the same definition for nonlinear coefficient, tie values fall into two groups. The
group with lower values have absolute scales derived from phase-matched second-harmonic generation with either direct
measurements of KDP [5, 1] or relative to absolute phase-matched harmonic generation measurements with NH4H2PO4 (ADP).
[6, 7] A second group with higher values of nonlinear coefficients are based on an absolute scale obtained by parametric
florescence measurements on Li103. [8, 9] Numerous other interrelations between previous measurements can be found in the
tabulations of nonlinear optical coefficients. {10, 1 1 , 12]

The nonlinear coefficient measurements presented here were expanded to include six materials: BBO, KDP, KD2PO4
(KD*P), Li103, 5%MgO:LiNbO3, and KTiOPO4 (KTP). Absolute measurements were made of the nonlinear optical coefficients
of each of these materials. Relative measurements were also performed between the materials. This provided independence of
earlier published results when comparing crystals. A overview of techniques for the measurement of nonlinear optical coefficients
in presented in section 2. A brief discussion of the theory of second harmonic generation is presented in section 3 to establish the
definition and notation that are used here. The measurements including characterization of pump radiation and phase matching are
discussed in section 4. An example of quantitative analysis of second-harmonic generation in AgGaSe is described in section 5.

2. MEASUREMENT TECHNIQUES

Measurement techniques for second-order nonlinear optical coefficients are reviewed briefly by Singh [10] and in more detail by
Kurtz.[17] Here only a brief mention of the most often used techniques is made. The powder technique is useful for survey
investigations, can indicate if harmonic generation is phase matchable, and yield a rough indication of the size of the nonlinear
coefficient.[18] Small polished spheres or ellipsoids of nonlinear crystals are also good for survey measurements and
determination of phase matching properties.[191 Harmonic generation in these tiny oriented polished crystals can yield an absolute
measurement of effective nonlinear coefficient, but accuracy is limited. More accurate measurements require larger high-optical-
quality crystals of the nonlinear optical material. The techniques used with the larger crystals include Maker fringe, wedge, phase-
matched second-harmonic generation and parametric Iluorescence.

In the Maker-fringe technique, harmonic generation is observed as the number of coherence lengths is changed by rotating the
crystal. The harmonic signal will oscillate between a minimum and a maximum value as the crystal rotates and the number of
coherence lengths change through integer values. The angular spacing of the Maker fringes can be used to determine the coherence
length, and the peak harmonic intensity determines the nonlinear optical coefficient. The Maker-fringe technique can yield
individual components of the nonlinear optical coefficient tensor when the proper polarizations are selected and the crystal is
properly oriented. The wedge technique is similar to the Maker-fringe technique, but the number of coherence lengths is changed
by translating the wedged sample and avoiding some problems associated with rotation. The wedge and Maker-fringe techniques
are normally used for relative measurements referenced to a standard.

The technique of parametric fluorescence permits absolute measurements of nonlinear optical coefficients by the
measurement of the ratio of pump power and parametric fluorescence power. It is not necessa y to measure the absolute powers,
but the ratio of powers must be measured precisely, and the power of the pump beam and the parametric fluorescence typically
differ by eight orders of magnitude. It is necessary to accurately determine transmission and angular acceptance of the
monochromator used to separate fluorescence from the pump radiation. Parametric amplification is a phase-matched process, and
it is necessary to have constant phase-matching conditions throughout the crystal. Phase-matched measurements yield effective
nonlinear optical coefficients, which are dependent Ofl the direction of propagation through the crystal, possibly more the one
component of the nonlinear optical coefficient tensor, and the polarization type of the parametric process.

Phase-matched second-harmonic generation can provide either absolute or relative measurement of the effective nonlinear
coefficient. Precisely controlled phase matching is required. Accurate measurement of the of the incident and generated harmonic
powers are required for absolute measurement of the nonlinear optical coefficient. Careful spatial, temporal, and spectral
characterization of the fundamental radiation is also necessary for absolute measurements, and it is necessary to pay close attention
to a number of other effects important at high intensity. Single-mode pulsed and cw lasers are becoming routinely available
simplifying the characterization of the pump radiation and the analysis of the measurements.
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Practical nonlinear optical frequency conversion applications provide a final check of the measured values. In many cases
high efficiency harmonic generation, optical parametric oscillator thresholds, resonant cavity harmonic generation, and sum and
difference frequency generation are too convoluted to serve as direct measurement techniques, out they provide a check of values.
Indeed, OPO threshold observations provided the motivation to begin these measurements.

3. ELEMENTARY SECOND HARMONIC GENERATION THEORY

The theory of optical harmonic generation [20, 2] is well established and has been extensively reviewed.[21} There is, however, a
wide range of notation in nonlinear optics, and different definitions of the nonlinear optical coefficient are used. Standardization of
the definition is evolving, but for clarity some elementary theory is reviewed to make the definition explicit. This review is
extended to show the relationship between the monochromatic planewave treatment of harmonic generation and the focused
Gaussian beam analysis, and an approximation for pulsed harmonic conversion is presented.

The electric field and electric polarization, both of which are real, can be expressed as products of complex amplitudes and
exponentials summed with the complex conjugates of those products. In this format the time dependent electric field of a
monochromic planewave of angular frequency a is

E (r,t ) = E (r, w ) exp f i (k 'r - t )} + c.c. (1)

The bold characters indicate vector quantities. The relationship expressing the vector components of the electric polarization at the
harmonic frequency pNL(r,2w) generated by the components of the fundamental electric field

I (r, 2co )
=

C0 dk(-2wcow )E.(r,w )Ek(r,w ), (2)

j,k=1
where C0 is the permittivity of free space, define the second order nonlinear optical coefficients djkl(-2o.ow). The reduced
notation djjk dim allows the representation of the nonlinear optical coefficients in the customary 3 x 6 matrix. Further
reduction to a single effective nonlinear coefficient doff dependent on nonlinear optical properties, phase matching, and crystal

. orientation is standard for modeling phase-matched second-harmonic generation. The relationships between the effective nonlinear
coefficients and the components of the reduced matrix of coefficients is given in a number of places.[1O, 22, 23] It is necessary to
include the birefringent walkoff angle p in the calculation of effective nonlinear coefficient;[2] omitting walkoff would make a
difference as large as 10% in some crystals we measured. With this notation the coupled equations describing harmonic generation
for a monochromatic planewave propagating in the z direction are

d . -izkz 2
—.E(z,2w) = t ice E (z,co) and (3a)
dz

d . iikz *
.—E(z,co)

= z ice E(z,2co)E (z,a) (3b)

where the wave vector mismatch is given by k =k2 -
2km, and ic= co deff 1 (n c ) with n the index of refraction, c the speed

of light, and deff the effective nonlinear optical coefficient.

The intensity of monochromatic radiation can be expressed as a function of the electric field

2
I(z,o.) = {e0cn(w)/2}IE(z,co)I . (4)

The elementary solutions to Eqs. (3) can be expressed in terms of the initial fundamental intensity '(O) and the harmonic
intensity 12&,(1) generated in a crystal of length 1. For the case of perfect phase matching, Llk = 0, and only small depletion of
the fundamental wave, the solution is

I (1) = I (0)12122w w ' (5)

where F2 = 2ic2IJO)/(cnE0). Two other elementary solutions are for the case of imperfect phase matching and small depletion,
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I (1) = I (O)(Fl sin(Akl/2)/(Akl/2)) , (6)
2u 0)

and for the case arbitrary depletion of the fundamental and perfect phasematching,

I (1) = I (0) tanh2(F1 ) . (7)20) (1)

It is possible to apply the monochromatic plane wave solutions to harmonic conversion of a cw beam of Gaussian iransverse
distribution provided birefringent walkoff and diffraction effects are insignificant. The intensity of an incident fundamental beam
of Gaussian spatial profile is described by

2 2
I(r, z =0) = I exp(—2r I w0 ) , (8)

where r = (x 2 y 2 )1/2 is the transverse radial coordinate andw0 is the beam amplitude radius. The total power in the incident
fundamental beam is

P0) (z = 0) = J2 rdr i (r, z =0) = wI0 I 2 . (9)

The application of the monochromatic plane wave analysis requires the parameter r to be taken as a function of transverse
position

2 2 2
F2( r)

= I' exp(—2r I w0 ) (10)

where 2 ic 2/ ( cc)} J

In the simplest approximation of small pump depletion and perfect phase matching, the harmonic power generated by a Gaussian
fundamental beam in a crystal of length I is obtained by integrating Eq. (5) over the transversed spatial distribution of the beam

1 2 2 1 fdff\2f_2
\p2(0)l

P (1) = — P (0) 1 i = — C ) 0) —
(11)2@ 2 (0 2 nc tzcE, ,rwI2

Allowances must be made for surfaces losses and bulk absorption losses not considered in Eq. (1 1). This equation is applicable
for conditions of perfect phase matching, small pump depletion, and insignificant diffraction and birefringent walkoff.

Birefringent walkoff and diffraction are included in the Boyd and Kleinman analysis of harmonic generation [2] through the
use of the focusing factor hm(B,c ). The arguments of the function are the double refraction parameter B =p (1 k0) )1/2/ 2 and the

focusing parameter = i/b where p is the birefringent walkoff angle, I is the length of the nonlinear material, k0) =
(2irn (w))/ is the magnitude of the fundamental wave vector in the material, and b =w02k0) is the confocal parameter. The
harmonic power generated by a cw fundamental beam lbcuscd to a beam waist radius of w0 in the center of the crystal is

P (1) = 2w2d2 P2(0)lk ii (B, )I {irn3e0c3 } . (12)
20) C (0 0) fli

This is Eq. (2.22) of Ref. [2] specialized to the case of Optimum phase matching with (2.29) of [2] and converted to MKS units.
The focusing factor can be obtained from approximations valid in certain limiting conditions, from numerical integration, or from
graphic representations of numerical evaluations. With suI)stitUtiOfl of the approximation hm(B, ) l/w02k , valid in the
near field limit <z<1 and B — 0, Eq. (12) reduces to Eq. (1 ). The approximation

h(B, ) ( 1 — t2/12 + t4/120 — t6/1344 (13)

where t = 2B (2 )1/2, is valid for weak focusing <<1 with limited walkoff p <I I (w07r1/2), the condition used for most of
the experimental measurements. Again absorption is not included in (13). A generalization of the focusing factor is required to
deal with cases of non-optimum phase matching. This is necessary for the calculation of tuning curves for example. The
generalization is given by Eqs. (2.22-24) and (2.16) of reference [21.
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It is necessary to consider pulsed pump radiation and moderate levels of pump depletion in the analysis of the experimental
data. The pulsed pump radiation was accommodated in the analysis by measuring the pulse shape with a fast detector and
numerically integrating Eq. (12) over time using the observed pulse shape. Pump depletion was modeled with a near field
approximation obtained from the monochromatic planewave analysis.

The monochromatic planewave analysis is useful for preliminary evaluation and alo provides some useful insight.
Application to pulsed harmonic generation requires that group velocity walkoff of the fundamental and harmonic is small
compared to any temporal structure in addition to insignificant diffraction and birefringent walkoff. A simple model of the
incident pulse is a Gaussian distribution in time and space

I(r,z=O,t) = I exp{—2r2/w — 4t21n2 I At2}, (14)

where t is time and zlt is the full width in time at half maximum intensity. The total energy of this pulse is

U(z=O) = S2r dr Jdt I(r,z=O,t) = i0;o2ç (15)

Writing r2 = r02 exp(-2r 2 w02 - 4t 21n2/ zlt 2) where F2 (2K2! (n c e0))J2 and integrating the small-depletion perfectly
phase-matched approximation of (5) over time and the transverse spatial distribution, the conversion efficiency of the incident
fundamental energy U(O) to harmonic energy U2(1) generated in a crystal of length I is given by

U2 (1) 2J2 1n2 a)22
U (0)12

1 = = 1 121 2 eff (16)'0 U(O) 21 0 3 3 3/22
(0 nccolr W0Llt

The symbol 1o used to represent conversion efficiency in the small depletion approximation. The same integration in time can
be performed over the focussed Gaussian beam intensity conversion given by (12). The result is

221 3 3
170 = 2w dCffV 2 1n2/ir U(O) I k /'z(B,c ) I ( ir n e0c At } . (17)

An estimate conversion efficiency that takes depletion into consideration is given by

(18)

The approximation of (18) can be verified by numerical integration of the monochromatic planewave approximation with
depletion and perfect phase matching given by (7); accuracy is better than 2%.

The definition of the nonlinear optical coefficients is stated in Eq. (2). Equations (3) or (5-7)also specify the notation and
the definition. Different factors are used in various methods of presentation of optical harmonic generation, and care is required to
avoid confusion. A correlation was made between the simpler monochromatic plane wave theory of SHG and the theory for
focused Gaussian beams. The purpose was to provide a more intuitive understanding of the complicated mathematical
expressions. Approximations to deal with pulsed fundamental radiation and depletion were presented. The expressions given here
allow quantitative analysis of harmonic generation for a variety of conditions.

4. NONLINEAR OPTICAL COEFFICIENT MEASUREMENTS

Nonlinear coefficient measurements were perlbrmed in sets that involved the comparison of two crystals. One of the crystals was
previously characterized and used as a reference, and the other crystal was the sample under test. The two beam experimental setup
used for these measurements is shown schematically in Fig. 1. Harmonic generation with the two crystals was observed
individually for absolute nonlinear optical coefficient measurements, and harmonic generation from the two crystals was compared
for relative nonlinear coefficient measurements. Repeated calibration and characterization was used to assure accuracy.

The 1.064-jim pump radiation was generated by an single-mode injection-seeded Q-switched neodymium-doped yttrium
aluminum garnet (Nd:YAG) laser. The laser output was characterized spatially, temporally, and spectrally. Two prisms were used
to provide a spectral dispersion of 4 nm/mm to look for widely spaced spectral components. A knife-edge analysis of the beam
transmitted through the prisms showed no additional spectral components. A Fabry-Perot etalon with 0.03 cm1 spectral
resolution was used to determine that the laser was oscillating in a single mode.
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When multimode oscillation occurred, it was also
obvious in oscillograms. A photodiode-oscilloscope
combination with O.4-ns rise time was used to monitor
pump pulse shape throughout the measurements. The time
base of the oscilloscope was found to be accurate to better
than 0.6% when tested with a mode-locked laser of precisely
known repetition rate. The pump pulse had 7.0±2 ns full
width at half maximum. The leading and trailing portions
of the pump pulse were exponential with 1.4-ns rise time
and 3.O-ns fall time. For analysis of harmonic generation,
the central portion of the pulse was digitized from
oscillograms, and the early rise and fall were treated as
exponentials as shown in Fig. 2a. There was pulse-to-pulse
energy fluctuation of the pump of a histogram is
shown in Fig. 2b. Harmonic generation data was recorded
by averaging 100 pulses reducing the fluctuation of the
averages by a factor of 10. The 8% shot-to-shot fluctuation
will introduce a bias increasing average harmonic generation;
this increase, however, is only 0.6%.

The laser output was transmitted though a spatial filter
to produce a Gaussian-like beam. The beam was
recollimated after the filter to place a beam waist adjusted in
size between w0 = 0.9 — 1.6 mm at the position of the
crystals. It was verified that the propagation of the beam
after transmission through the filter was that of a Gaussian
beam. The vertical and horizontal beam distributions were
measured several times during the course harmonic
measurements by the knife edge technique. The edge
positions for 5%, 10%, 25%, 50%, 75%, 90% and 95%
transmission were obse'ved. A beam waist size was
obtained for the 6 positions other than 50%. Typically
these six values agreed within and over a day of
measurements the values agreed within An average of
several knife-edge beam measurements is shown in Fig. 3.
The uncertainty of beam size resulted in an error as large as
the other sources of error combined for the nonlinear
coefficient measurements.

0.0 Phase matching is of critical importance in second
-1

• •
0 1 harmonic measurements of nonlinear coefficients. The

Position (mm) crystals must be adjusted for optimum phase matching and
Fig. 3. Typical knife-edge measurement of phase matching must be uniform through the crystal. Each
transverse beam distribution at the crystal position. set of measurements required phase-matching tuning curves
Data are averages of eight measurements with error be observed for both reference and test crystals and compared
bars. The solid line is the calculated transmission with tuning curves calculated from dispersion equations.
for as Gaussian distribution fit to the data. Observed and calculated tuning curves for Li103 and LiNbO3

are shown in Fig. 4. Lithium iodate is an angle-phase-
matched crystal with 4.26° birefringent walkoff. The
walkoff results in a change in the shape of the secondary

maxima and minima of the tuning curve. The calculated tuning curves were obtained by numerical integration of Eqs. (2.16) and
(2.24) of reference [2]. The curves shown in Figs. 4a and 4d show the combined fundamental and harmonic transmitted through
the crystals as they were tuned through phase matching. The nearly constant transmission of the combined fundamental and
harmonic shows that two-photon absorption of the harmonic radiation is not significant in these measurements.
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Fig. 1 Schematic of the experimental setup
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A number of other checks and calibrations were performed. The intensity dependence of harmonic generation was observed
by attenuating the fundamental beaii. Only the pump depletion described by Eq. (18) was observed. There was no indication of
two photon absorption or loss of phase matching due to intensity dependent index of refraction. The crystals were placed on
mounts with 3 axes of rotation. Crystal orientation could be confirmed with polarized alignment beams, and crystal rotation
confirmed that deff was maximum. The transmission of mirrors, beam splitters, ana crystals was measured with a
spectrophotometer and with the two beam experimental setup. A separate harmonic crystal was used for measuring transmissions
and reflections at 532nm in the two-beam setup. A half-wave plate was used to rotate polarization for maximum conversion in
type-Il crystals. Reproducibility of the nonlinear coefficient measurements was 4%, and this is relative accuracy of the
measurements. The absolute values may have Some bias. It is estimated that the absolute accuracy is 10%.

The results of the measurements are given in Table II. The agreement and disagreement with earlier published results
illustrates the confusions that exists in the absolute values of nonlinear optical coefficients. The measurement for KDP is in
agreement with the nonlinear coefficient accepted for that material in high-power nonlinear conversion applications,[15] and it
agrees with the combination of relative measurements between KDP and NH4H4PO2 (ADP) and low-power cw absolute second-
harmonic measurements with ADP.[10i The ratios of values for KD*P and KDP and for Li103 and KDP are in agreement with
earlier measurements. The value of d31 for Li103 reported here, however, is only 58% of the value obtained earlier by the
technique of parametric fluorescence. The ratio of d22(BaB2O4 )/d36(KDP) = 5.8 is larger than the value of 4.1 reported earlier.
The value of d31(5%MgO:LiNbO3) = 4.7 pm/V is lower than the value 5.8 pm/V obtained by parametric fluorescence for
congruent LiNbO3,[9] but there is a compositional variation in the material involved. The value of dfj(KTP) is more than a
factor of two smaller than reported earlier

Substantiation of these results will come only when a consensus develops from nonlinear optical applications and further
measurement. This consensus appears to be developing. We have received a number of private communications in agreement
with these results. Recent publications describing optical parametric oscillator threshold in KTP [24, 25] and Li103 [26] have
shown agreement. Still much remains to be done. The variance between parametric fluorescence and second harmonic generation
measurements needs to be resolved. With the current improvements in laser performance and the quality of nonlinear optical
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TABLE II.
NONLINEAR OPTICAL COEFFICIENTS

0

E

(0I
(I)

E

z
0 05

0

Crystal
Nonlinear optical

coefficient(a) (10—12 m/V)

KDP d36 = 0.38

KD*P d36 = 0.37

LiIO3 d31 = —4.1

5%MgO:LiNbO3 d31 = — 4.7

BaB2O4 deff 1.94

1d221

KTP deff 3.2

1d151 1.9(c)

ld241 3.5
-10 0 1.0

External Angle (mrad)
110

Temperature (C)

Fig. 4. The measures of phase-matching tuning for
angle-tuned Li103 and temperature tuned LiNbO3 are
shown as data points, and tuning curves calculated from
dispersion equations are shown as the solid lines in (b,c)
and (e,f). The measured total transmission of
fundamental and harmonic as the two crystals arc tuned
through phase matching are shown in (a) and (d).

(a) Nonlinear coefficients are given for 1064 to 532 nm
second harmonic generation.

(b) Assumes that 1d311 << Id22! for BaB2O4 [27].

(c) Using d241/1d151 = 1.8 [25] and assuming d24 and

d15 have the same sign.



materials it is appropriate that nonlinear optical frequency conversion be analyzed quantitatively. Such engineering design and
analysis will be useful for characterizing materials, optimizing performance, and increasing the base of knowledge of properties of
nonlinear optical materials.

5. SHG IN AgGaSe2 AS AN EXAMPLE

The quantitative analysis of harmonic generation in silver selenogallate (AgGaSc2) pumped by high repetition rate pulse CO2
laser radiation was a predecessor to the measurements described above. The AgGaSe2 measurements were performed in
collaboration with Leon Newman and John Kennedy at United Technologies Research Center.[28] The useful spectral range of
AgGaSe2 for nonlinear frequency conversion is 1.5 - 12 trn determined by phase matching and transmission properties. The
material angle phase matches at 6 = 55° for 10.6- to 5.3-jtrnSHG. There is an interest in extending the use of this material to
increased power levels. The SHG measurements demonstrated that when pumped by 20-ns 10.6-tim pulses of 100 kHz repetition
rate AgGaSe2 performed well for average intensity up to 200 kW/cm2 for the bulk material and 20 kW/cm2 for the surfaces.
Surface damage occurred at intensities above 20 kW/cm2. The measurements indicated that the lower value of the reported range
ofnonlinear coefficients 32.4 -67.7 pm/V [10J is more accurate.

The continuously pumped, repetitively Q-switched CO2 laser oscillated on a single cavity mode. The output was Gaussian-
like both in spatial an temporal distribution. The output was monitored with 2-ns-rise-time HgCdTe detectors, beam distributions
were measured with a translated kni1-edge, and multiple energy probes were used to check calibration. Phase matching
measurements displayed tuning curves very similar to those calculated for the I .8-cm long crystal. This early material had 6% per
cm loss coefficient mainly due to scattering. Material with at least an order of magnitude lower loss is available now. The pulse
repetition rate of the laser could be varied up to 1 00 kHz where the average output power was 8.2 W. The fundamental beam was
focused to beam waist radii from iv0 = 47 jim to 320 jim inside the crystal. The second-harmonic measurements were analyzed
using the nonlinear coefficient d36(AgGaSe2) = 32.4 pm/V reported by Kildal and Mikkelsen [29] to obtain a value for the Boyd
and Kleinman focusing factor h1(B, ). These values are compared with calcuIions using the double refraction parameter B=
0.97 for the 1.8-cm-long AgGaSe2 crystal in Fig. 5. The agreement is good over a wide range of focusing conditions indicating
that optical distortion is not significant at peak intensity as high as 90 MW/cm2 at the focus in the bulk material. Harmonic-
conversion efficiency is shown as a function of peak power in Fig. 6. The conversion efficiency even at the highest intensity of
74 MW/cm2 decreases only as is expected from the depletion approximation given by Eq. (18).

Fig. 5 The data points represent 10.6- to 5.3-tm

second-harmonic generation in AgGaSe2 lbr different
focusing conditions represented as observed values of
the Boyd and Kleinman focusing factor hm(B,). The
observed focusing factors were calculated using
d36(AgGaSe2) = 32.4 pm/V and measured experimental
conditions. The solid curve is the calculated focusing
factor for the double refraction parameter B = 0.97

corresponding to a 1.8-cm-long AgGaSe2 crystal. The
abscissa is the focusing parameter = 1/b = I (k1w02).

Fig. 6. The effects of pump depletion are seen as
the fundamental power is increased for SHG in
AgGaSe2. The measurements were made with 20-
ns 10.6-im fundamental pulses with a repetition
rate of 10 kHz. The fundamental was attenuated
with a polarizer-analyzer pair to achieve different
intensities. The sDlid line is the calculated
conversion efficiency without pump depletion from
Eq. (17). The dashed line includes the effect of
depletion as estimated by equation (18).
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A quantitative analysis of nonlinear frequency conversion such as this yields valuable information. There is an indication of
the correct value of nonlinear coefficient when a range of values are reported. Damage thresholds for high-repetition-rate 20-ns
pulses of fundamental radiation are determined. An it is shown that within these limits, harmonic conversion is not reduced by
distortion or third order nonlinear effects in the crystal. With this information it is possible to proceed with engineering
calculations to optimize frequency conversion. Such calculations are now possible and necessary with the good quality that is
available in nonlinear optical materials and the laser outputs used to pump the nonlinear optical frequency conversion processes.
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