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Physics 41N
Mechanics: Insights, Applications and Advances

Lecture 2: Dimensional Analysis –
from Biology to Cosmology

In today’s seminar, we will see how it is possible to deduce a great deal
about the equations that describe the behaviour of a physical system through
an analysis of dimensions – with some physical intuition thrown in. We will
use this technique to determine the form of the equation describing the period
of oscillation of a pendulum, up to a dimensionless constant. We will also use
this technique to determine the form of the equations describing the walking
frequency of animals and the angle by which a ray of light is bent when
passing a massive object, both up to a dimensionless constant. We will also
explore some of the limitations of dimensional analysis.

1 Variables, Dimensions and Units

First, let’s start with dimensions. How many independent fundamental di-
mensions are there in mechanics? In mechanics we can almost always get
away with just three fundamental dimensions: mass, length and time. We
will use bold-face, upper-case letters to denote the dimensions of mass, length
and time: M, L and T. Non-boldface, lower-case letters will denote the
names of variables that have these dimensions; e.g., mass m, distance d, or
time t. In Table 1, we summarize the basic dimensions used in mechanics.

An example of a dimension that is not independent of mass, length and
time is the dimension of acceleration. Acceleration has dimensions of length
divided by time squared, L/T2. We will use square brackets [ ] around a
variable to denote the dimensions of that variable:

[a] = L/T2.

Let’s now look at the relation

F = ma,
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Table 1: The basic dimensions used in mechanics.

Variable Dimension Sample Units
mass m M kg, g, lbs

distance d L m, cm, feet
time t T s, years

which expresses the concept that in order to accelerate a mass m with ac-
celeration a, you must provide a force F . F, m and a are physical variables.
Each variable has well-defined dimensions, which we again denote with square
brackets:

[m] = M, [a] = L/T2, [F ] = ML/T2.

The notion of a variable’s dimensions should be distinguished from the
variable itself. For example, the variable m can eventually be replaced by a
number, with some chosen units such as kg or pounds. The dimension M
identifies the physical character of the variable m, but has nothing to do with
its magnitude.

An equation must always be dimensionally correct; that is, the dimensions
on the left and right of the equal sign must be the same. We write this as
follows for the equation F = ma:

[F ] = [m][a]

or
[F ] = ML/T2.

Why must the dimensions on the left and right match? Only if the dimensions
match will the relation remain true, independent of the size of the units used
to measure each quantitiy.

Note that units are distinct from dimensions – you do not need to choose
particular units for any of the variables until you are about to substitute
numerical values for the variables. The numerical value of each variable
depends on the size of the chosen unit. For example, the numerical value of
the variable m will be larger if the units used for m are grams rather than
kilograms. Only if dimensions of mass appear to the same power on both
sides of the equation will the equation be independent of the units chosen.
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Figure 1: A simple pendulum.

2 An Example of Dimensional Analysis: Pe-

riod of a Simple Pendulum

We will look at an example that illustrates the basic methods of dimensional
analysis. We will find the form of the equation for the period of oscillation
for a simple pendulum. That is, how much time does it take a bob of mass
m, at the end of a (massless) string of length `, to swing back and forth
through one complete oscillation? (See Figure 1.) The basic steps are the
following:

1. Make a list of all the physical variables and dimensional1 fundamental
constants on which the answer could depend.

2. Write down the dimensions of these quantities.

3. Demand that these quantities be combined in a functional relation such
that the equation is dimensionally correct.

For the first step, you must always use physical intuition. On which
physical variables might the period of oscillation of the pendulum depend?
One could guess that the period T might depend on the mass m and the

1By “dimensional”, I mean a constant that has dimensions. This is in contrast to
dimensionless constants such as π, 1/2, etc.
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length `. We will assume that the period can be expressed as a product of
the variables m and `, each raised to an unknown power:

T = k`αmβ,

where k is a dimensionless constant.2 The method of dimensional analysis
now consists of finding values for α and β that make the dimensions of the
right-hand side equal to the dimensions of the left-hand side. The equation
relating the dimensions does not involve the dimensionless constant k but it
does involve α and β:

T = LαMβ.

We have used the fact that the dimensionality of the period of oscillation is
time (T). We now write three equations that equate the exponents of M, L
and T on the two sides of the equation:

Exponents of M : 0 = β;

Exponents of L : 0 = α;

Exponents of T : 1 = 0.

The last condition cannot be satisfied as would have been obvious from just
looking at the equation. None of the variables on the right-hand side involve
the dimensions of time, so we cannot balance dimensions.

We must be missing a physical variable or a physical dimensional constant
on which the period of oscillation depends. We can imagine that the period
of oscillation will be different on the moon where the acceleration due to
gravity, denoted by g, is different. So we should have included g in the
equation. Let’s start again. We now assume

T = k`αmβgγ.

The equation relating dimensions is

T = LαMβ(LT−2)γ.

Equating the exponents of the basic dimensions M, L and T, we get

Exponents of M : 0 = β;

2α is the Greek letter alpha and β is the Greek letter beta. Below, we will also introduce
the Greek letter γ (gamma).
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Exponents of L : 0 = α + γ;

Exponents of T : 1 = −2γ.

The first equation shows that contrary to our intuition, the mass of the bob
is not involved in determining the period of oscillation. The effect of gravity
is uniquely determined by the third equation, because gravity is the only
variable on the right involving time: γ = −1/2. Substituting this into the
second equation, we get α = 1/2. Therefore, our equation for the period of
oscillation becomes

T = k

√
`

g
.

This method does not allow us to find the value of the constant k. There
are two ways that we can find k. We can do a dynamical calculation from
which it turns out that k = 2π. Or we can do what we did in the seminar:
we used a weight swinging at the end of a string to determine the constant
k for one system by measuring the length of the string, timing the period
of the oscillation, and using the fact that g = 9.8 m/s2. Using the equation
k = T

√
g
`
, we found that k ≈ 6.28. We then used the fact that the dimen-

sionless numbers that appear in fundamental equations in physics are always
“special” numbers like 2, 4, π, etc., to conclude that k = 2π. Therefore, the
final equation for the period of oscillation is

T = 2π

√
`

g
.

3 Modelling

A major application of dimensional analysis, which unfortunately we won’t
have time to discuss in any detail, is modelling – i.e., determining which
parameters or combination of parameters can be varied when modelling a
system without changing the physical behavior of the system. You will en-
counter some important dimensionless combinations of parameters (such as
the Reynold number) if you study fluid dynamics. For example, the Reynold
number R determines whether flow is laminar or turbulent, and is given by

R =
ρDv

η
,
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where ρ and η are the density and viscosity of the fluid, respectively, v is
the velocity of the fluid and D is the characteristic length of the object
around which the fluid is flowing. In using scale models of aircraft to study
performance characteristics, the performance of the model and the aircraft
are the same if the Reynold number is the same. Therefore, if the size of
the aircraft is scaled down, the speed of the air in a test wind tunnel must
increase by the same factor.

Incidently, NASA Ames at Moffett Field in Mountain View has one of
the largest wind tunnels in the world, used for testing the design of airplane
fuselages, wings, etc. NASA Ames also has a smaller wind tunnel that can
produce air speeds in excess of Mach 2 (twice the speed of sound in air).
NASA Ames is occasionally open for tours. Another place where you can see
the use of scale models is in Sausalito, north of San Francisco. A 1.5-acre scale
model of the San Francisco Bay was built by the Army Corp of Engineers
after World War II to study the hydraulics of the Bay and to understand the
effects of landfills and other human activity. It’s still in use but it is open
to the public for tours (http : //www.spn.usace.army.mil/bmvc/). If you
happen to go there, look at the spikes that stake many regions of the model
Bay. They are there to alter the viscous behavior of the system in such a
way that the data collected can be extrapolated to the real Bay.

4 Dimensions and Mathematical Formulae

We already discussed the fact that each term in a physical equation must have
the same dimensions; otherwise, the validity of the equation will depend on
the units being used to measure each quantitiy. This fact can sometimes be
used to determine fundamental equations up to a dimensionless constant and
can always be used to check whether an equation is blatantly incorrect. Note
that in mathematics classes, dimensions are rarely, if ever, mentioned because
the variables are usually not defined as physical quantities. In particular, in
mathematics, you will see mathematical terms like sin x, cos y, and exp t. In
physics, the quantities x, y, and t have dimensions (e.g., length for x and y;
time for t). In that case, expressions like sin x, cos y, and exp t are not valid
because the arguments of the sine, cosine, and exponential functions must
be dimensionless. Only if the arguments are dimensionless will the series
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expansions for each function be valid:

sin α = α− α3

3!
+

α5

5!
− ...,

cos α = 1− α2

2!
+

α4

4!
− ...,

and

exp α = 1 + α +
α2

2!
+

α3

3!
+ ...

Therefore, in physics, we encounter formulae with terms such as

cos(2πft), sin(2πx/λ), exp(t/τ).

In each of these cases, the argument of the function is dimensionless. [Also
note that the series expansions for the trigonometric functions will only be
valid if the argument α is expressed in radians (which is dimensionless), not
degrees.]

5 Dimensional Analysis for Biological Systems

– An Example

The same method can be applied to many problems involving frequency. For
example, consider the stepping frequency of walking mammals. It has long
been argued that efficient walking is like an oscillating pendulum, as shown
in Figure 2. In fact, walks, trots, canters – all ‘efficient’ gaits – are essentially
free pendulums. The idea is that you add just enough energy to keep the
oscillation going against frictional losses. (Think of ‘pumping’ a swing.)

Dimensional analysis will again tell us that the walking frequency f is
independent of the mass of the mammal, but depends on the leg length ` as
1/
√

`, for animals of similar morphology. (We are using our earlier result for
the period of oscillation, T , and the fact that f = 1/T .) In Figure 3, the
stepping frequency of wild African animals is shown as a function of shoulder
height for walking, trotting and cantering. Since this is a log-log plot, the
data should lie along a straight line:

f = k

√
g

`
=

√
gk2

`
,
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Figure 2: Physicist’s view of an animal’s gait.

log f =
1

2
log

gk2

`
=

1

2
log(gk2)− 1

2
log `.

Therefore, on a log-log plot of f versus `, the data should lie on a line with
slope −1/2. From Figure 3, we see that indeed the data are consistent with
a line with slope −1/2 (check the slope).

Hill3 studied the maximum stepping frequency that an animal can attain
when running at top speed. This frequency is determined by the maximum
stress that a tendon can safely carry without tearing and the moment of
inertia of the leg. He found through dimensional analysis that the maximum
stepping frequency depends on `−1 and does not depend on gravity at all,
unlike the natural walking frequency, which depends on

√
g
`
. These expected

behaviours are shown on a log-log plot in Figure 4. For the natural walking
frequency, we plot two lines for two different values of g. What does this
plot tell us? First, because the lines for maximum frequency and natural
frequency cross at some point, we can conclude that there is a maximum size
for an animal that is strong enough to run (or fly). Also, the line representing
natural walking frequency is higher if gravity is greater, but the maximum
stepping frequency is not affected by gravity. Therefore, the maximum size of
an animal that is strong enough to run or fly at its natural frequency decreases
if gravity increases. Over the past decade, searches for planets orbiting other
stars have revealed tantalizing evidence (“wobble” in the positions of the

3A.V.Hill, The dimensions of animals and their muscular dynamics, Science Progress,
38, 209 (1950).
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Figure 3: From “Newton Rules Biology”, by C.J.Pennycuick.
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stars) for planets orbiting a significant fraction of the stars that have been
studied. The planets tend to be large. Our argument says that for big
planets whose gravity is stronger than ours on Earth, we may anticipate that
the largest walking and flying animals will be smaller than those here on
earth.

We can combine the above conclusion that the maximum stepping fre-
quency is inversely proportional to the leg length ` with the observation that
step size is proportional to ` to deduce that the maximum speed of an animal
is independent of the leg length, or the size, of the animal, for animals of
similar morphology. This is indeed true. A study was done to measure the
top speeds of ten species of wild African ungulates. The animals ranged from
gazelles to giraffes. The top speed was basically constant, decreasing slightly
in the larger animals.

Figure 4: From “Newton Rules Biology”, by C.J.Pennycuick.
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6 A Second Example: the Deflection of Light

by Mass

We’ll now use dimensional analysis to determine the form of the equation
describing the deflection angle due to gravity for a light ray passing by a
star (or other object) of mass m. First, let’s define the angle θ as the angle
between the directions of the ray of light when it is asymptotically far from
the star (coming towards the star and going away from the star), as shown
in Figure 5.

r

m

!

Figure 5: The bending of a single light ray by the mass m.

Note that when angles appear in an equation, they should always be ex-
pressed in radians.4 An angle expressed in radians is dimensionless.5 There-
fore, the deflection angle θ is dimensionless.

On which physical variables might the deflection angle depend? Our
physical intuition tells us that the angle should depend on the mass of the
star m and on the distance of the ray of light from the star. Let’s define r to be
the distance of closest approach of the ray to the star as shown in the sketch
above. If we proceed with our dimensional analysis at this point, we will find
that there is no dimensionally consistent form for the equation expressing

4For example, the equation sin θ ≈ θ is true for small θ only if θ is expressed in radians
on the right-hand side.

5To see that an angle expressed in radians is dimensionless, note that many expressions
for an angle involve only the ratio of two lengths. For example, the angle subtended by
an arc length ` is given by θ = `/r where r is the radius of the circle. Because `/r is
dimensionless, θ must be dimensionless as well.
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θ in terms of m and r, just as we found that the period of oscillation of a
pendulum could not be expressed in terms of m and ` alone. So, again there
must be a dimensional constant that we need to include. Since the deflection
of light is due to gravity, we might suspect that the angle depends on the
gravitational constant G.6 What are the dimensions of G? Recall that the
equation for the gravitational force between two massive objects of mass m1

and m2 a distance r apart is given by F = Gm1m2

r2 . Therefore,

[G] = [
Fr2

m1m2

] = M−1L3T−2,

where we used [F ] = MLT−2. Now let’s try to find the equation for θ:

θ = kmαrβGγ.

The equation relating dimensions is

M0L0T0 = MαLβ(M−1L3T−2)γ.

Equating the exponents of the basic dimensions M, L and T, we get

Exponents of M : 0 = α− γ;

Exponents of L : 0 = β + 3γ;

Exponents of T : 0 = −2γ.

But the last equation gives us γ = 0, the second one gives us β = 0 and
the first one gives α = 0! So, we must still be missing a physical variable
or a dimensional constant. Which dimensional constant is most likely to be
relevant for the case of the bending of light by gravity? How about the speed
of light, c? Let’s try it:

θ = kmαrβGγcδ.

The equation relating dimensions is now

M0L0T0 = MαLβ(M−1L3T−2)γ(LT−1)δ.

Equating the exponents of the basic dimensions M, L and T, we get

Exponents of M : 0 = α− γ;

6We do not expect it to depend on g because, although g is related to G, g is particular
to the gravitational force at the earth’s surface.
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Exponents of L : 0 = β + 3γ + δ;

Exponents of T : 0 = −2γ − δ.

So now we have three equations in four unknowns. The four exponents α, β,
γ and δ are constrained but are not uniquely determined. Each of the three
equations involves γ, so lets express the other three exponents in terms of γ.
From the first equation, α = γ. From the last equation, δ = −2γ. And from
the second equation, β = −δ − 3γ = 2γ − 3γ = −γ. Therefore, the equation
for the bending angle is of the form

θ = kmγr−γGγc−2γ = k(
mG

rc2
)γ.

Actually, there could be more than one term in the equation for θ, each with
a different value of the exponent γ and the constant k, but each term must
have the above form. In fact, there could be an infinite number of terms
(an infinite series), in which case the right-hand side might be a function of
mG
rc2

that can be represented as a series expansion. So, we have not uniquely
determined the form of the equation for θ but we can already draw some
conclusions from the above equation. For example, we can see that the
bending angle depends on the ratio m/r; if m and r are both changed by the
same factor, the bending angle will be the same.

We can go further and restrict γ by using physical intuition. First, we
expect that θ approaches zero as m becomes very small or as r becomes very
large. If γ were negative, then θ would approach infinity as m became small
or r became large. Therefore, γ must be a positive exponent: γ > 0.

To further restrict γ, we can try to apply physical intuition to the deriva-
tive of θ with respect to m or r. Since the ratio m/r appears in the equation
for θ, let’s consider the derivative with respect to x = mG

rc2
:

dθ

dx
= γkxγ−1, γ > 0.

Our physical intuition might tell us that in the limit of x = mG/(rc2) be-
coming very small, the change in θ with respect to a change in m/r should
become small, but should not vanish. Therefore, we want the exponent of
mG
rc2

to be zero in the equation for dθ
dx

. So γ must equal 1 and the equation
for θ, at least for small values of the dimensionless combination of variables
mG
rc2

, is

θ = k
mG

rc2
.
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I admit that this last argument is a bit of a stretch...
What about the dimensionless constant k? A survey of all the equations

that you will learn this year in the Introductory Physics sequence will con-
vince you that the dimensionless constants in physical equations are always
of order 1. And the equation we just derived is no exception. It turns out
that θ = kmG

rc2
with k = 4.

Now let’s actually calculate the bending angle for two different cases:
(a) light passing close to the edge of the sun, and (b) light from a distant
quasar7 passing close to the edge of a galaxy that is about 200,000 light
years across and weighs about 1012 times as much as the sun (not an atypical
galaxy). We will need the values of the dimensional constants in the equation:

c = 3.0× 108 m/s, G = 6.67× 10−11 m3/(kg · s2).

6.1 Bending of Light by the Sun

Before we calculate the angle by which light is bent when passing close to
the sun, let’s review the historical significance of this phenomenon. One of
the first tests of Einstein’s theory of general relativity was a measurement of
the bending of starlight as it passed by the edge of the sun. The difficulty
with this measurement is that it is normally impossible to see a star when it
is in line with the edge of the sun. It was necessary to wait for a solar eclipse
so that the measurement could be made since we can see the stars during a
solar eclipse! After Einstein first presented his ideas on light deflection, an
expedition to the location of the next solar eclipse was prevented by war. A
few years later, in 1919, another total solar eclipse ocurred and his theory
was tested and verified. Now let’s calculate the bending angle.

For a light ray passing near the edge of the sun, r is the radius of the sun
(r = 6.96× 108 m) and m is the mass of the sun (m = 1.99× 1030 kg). The
bending angle is

θ =
4mG

rc2
(1)

7Quasars are extremely bright objects that are very far away. QUASAR stands for
Quasi-stellar Radio Sources because they were first observed in the radio band, in the
early 1960’s, but they have now been observed in many parts of the electromagnetic
spectrum. Quasars give off huge amounts of electromagnetic radiation, about the same
amount as 10 to 1000 typical galaxies! Quasars are candidates for black holes.
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=
4× 1.99× 1030 kg × 6.67× 10−11 m3/(kg · s2)

6.96× 108 m× (3.0× 108 m/s)2
(2)

= 8.5× 10−6 radians (3)

= 8.5 microradians. (4)

We can convert this into degrees by multiplying by 180◦/π to get θ = 0.0005◦

or 5/10,000 of a degree. To get a sense of the size of this angle, let’s compare
it to the angular diameter of the sun ∆φ:

∆φ =
diameter of the sun

distance from earth to sun
(5)

=
2× 6.96× 108 m

1.49× 1011 m
(6)

= 0.0093 radians× 180◦

π
(7)

= 0.54◦ (8)

Therefore, the angular diameter of the sun is about half a degree.8 So the
angular shift of the starlight passing near the sun’s edge is about 1/1000
of the angular diameter of the sun itself. This shift would certainly not be
apparent to the naked eye. Precise measurements of images in a telescope
are required to measure this shift relative to the angular position of other
stars.

6.2 Bending of Light by a Galaxy

For light passing near the edge of a galaxy that is 200,000 light-years across
and weighs about 1012 times as much as the sun, r = 100, 000 light-years×9.5×
1015 m/light-year = 9.5×1020 m and m = 1012 msun = 1012×1.99×1030 kg =
1.99× 1042 kg. The bending angle is

θ =
4mG

rc2
(9)

=
4× 1.99× 1042 kg × 6.67× 10−11 m3/(kg · s2)

9.5× 1020 m× (3.0× 108 m/s)2
(10)

= 6.2× 10−6 radians× 180◦

π
(11)

= 0.0004◦. (12)

8For a sense of scale, it is handy to note that a degree is approximately the angular
width of your thumb held at arms length: δφ ≈ 2 cm/1 m = 0.02 radians = 1.1◦.
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The bending angle we just calculated for light bent by a galaxy is almost
exactly the same as that for light bent when passing close to the sun. In both
cases the bending angle is between 5 and 10 microradians. They are so similar
because the bending angle scales as m/r and, although the galaxy weighs 1012

times as much as the sun, the light passes about 1012 times further from its
center than from the center of the sun ( 9.5×1020m

6.96×108m
= 1.4× 1012). Once we had

already determined the bending angle for the sun, it would have been simpler
for us to use this scaling to determine the bending angle for the galaxy by
merely dividing the result for the sun by 1.4.

What does the image of an object such as a quasar look like if the light
from the quasar is bent by an object such as a galaxy between the quasar
and the earth? First, think about the case when the quasar, the galaxy and
the earth are all in a line. As illustrated in Figure 6 below, the image of the
quasar will look like a ring, called an Einstein Ring.

Figure 6: Light from a distant source is bent by an intermediate mass to
form a ring-shaped image, called an Einstein Ring.

Figure 7 shows a plot of the intensity of radio waves for the first Einstein
Ring ever discovered The angular radius of the ring is about 1 arcsecond
or ( 1

60
) 1

60

◦
= 1

3600

◦
= 0.0003◦, about the same as the deflection angle we

calculated above.
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Figure 7: The first Einstein ring was observed with radio waves in 1987 by
Jacqueline Hewitt from MIT.
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If the mass doing the bending is not perfectly aligned with the observer
and the source, the image will look like arcs or separated spots. The phe-
nomenon is called graviational lensing. The first lensing candidates were
discovered in 1979. As mentioned above, the first Einstein ring was discov-
ered in 1987. The first evidence of giant arcs in the sky due to the lensing of
background galaxies by foreground clusters of galaxies was presented in 1987
by R. Lynds and Vahe Petrosian of Stanford. Today, gravitational lensing
is a major tool being used to understand the distribtution of regular matter
and dark matter in the universe, and to address key questions in cosmology.

For more information about gravitational lensing and for images that
show evidence of gravitational lensing, go to google and enter any of the
following groups of words: “Einstein rings”, “graviational lensing”, “weak
gravitational lensing”.

We will return to gravitational lensing in a later seminar when we discuss
evidence for Dark Matter in the Universe.
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