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Abstract

We study the design of simultaneous temporal experiments, where a set of inter-
ventions are applied concurrently in continuous time and outcomes are measured on a
sequence of events observed in time. The motivating setting is multiple data science
teams on a ride-hailing platform simultaneously and independently test changes to mar-
ketplace algorithms such as pricing and matching, and estimate effects from observed
event outcomes such as the rate at which ride requests are completed. The design
problem involves partitioning a continuous space (time) into intervals and assigning
treatments at the interval level. Design and analysis must account for three factors:
spillovers from interventions at earlier times, correlation in event outcomes, and effects
of interventions tested simultaneously. We derive estimators for error components in a
highly general setting and build intuition and guidance for practitioners via a careful
simulation study.
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1 Introduction

In a variety of empirical settings, it is useful to estimate the effects of interventions via
time-based or temporal experimental designs, rather than (the far more common) cross-
sectional designs. Most prominently, heuristic designs colloquially known as “switchbacks”
have become popular due to their applications in digital marketplaces. In these modern
settings, the interference structure between units is difficult to account for and can cause
bias of unknown sign and large magnitude using more traditional approaches. Prior to more
recent applications, there is a long history in medicine of designing an experiment using a
single unit of observation and leveraging longitudinal observations in medicine where it is
known as an “n-of-1” trial (Mirza et al. 2017).

As motivation for the present work, we consider the problem of designing multiple si-
multaneous temporal experiments, for instance, in a ride-hailing company where multiple
teams would like to measure the effects of their product changes with only a small number
of available treatment units (e.g., cities or regions). In a dynamic two-sided marketplace,
users exposed to new pricing and matching algorithms may change their behavior in ways
that affect outcomes for other users on either side of the marketplace. There are a variety of
causal mechanisms for these spillovers, such as riders consuming available drivers, relocat-
ing drivers, or stimulating drivers to drive for longer or shorter periods of time (Chamandy
2016).

Given the importance of digital marketplaces and the well-acknowledged need to rapidly
test new ideas, the design of experiments that provide reliable estimates in the presence of
marketplace-mediated interference has drawn increasing attention in recent studies (Holtz
et al. 2020; Li et al. 2021; Basse and Feller 2018; Jagadeesan et al. 2020; Johari et al. 2020). A
common theme of these approaches is exploiting prior knowledge of the spillover mechanisms,
and leveraging this structure to provide alternative analysis procedures or designs.

We study design of experiments in a highly generic setting where interventions are applied
in a continuous temporal space, and outcomes are measured on a sequence of events in this
space. Good designs in this setting efficiently partition continuous temporal space into
intervals with alternating treatments, in anticipation of precisely estimating a quantity we
call the global average treatment effects (GATE) of interventions from the observed event
outcomes. GATE is an important estimand for decision-making that captures the difference
in average outcomes when an intervention is deployed indefinitely (global treatment) versus
when the intervention is absent indefinitely (global control).

Our goal is to capture realistic properties of this empirical setting that complicate the
design and analysis of temporal experiments. First, we account for spillover effects between
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treatments and the outcomes of future events. Second, we account for correlation in event
outcomes from unobserved (or unmodeled) factors that create nuisance dependence among
measurements; outcomes close in time can be similar due to weather, traffic, or other ex-
ternal factors. Correlations do not have to be monotonic in the distance between events,
as they can display periodic behavior in weekly or daily cycles. Third, we account for the
irregular density of observed events, corresponding to the property that there is strong peri-
odicity in interactions with marketplaces. Finally, we consider the presence of simultaneous
experiments run by other teams on the same sequence of events, which can confound effect
estimates in finite samples.

Figure 1 introduces the causal structure for our empirical setting. An experimental design
is an assignment of Wℓ(t) which are pure parent nodes, affecting the outcome of events
occurring at Yt. A latent variable U causes nuisance correlations in all events, yielding
dependence in the observations.

Wℓ(1) Wℓ(2) Wℓ(3)

Y1 Y2 Y3

U

time

Figure 1: Directed acyclic graph characterizing our empirical setting. Wℓ(t) denote a vector
of interventions applied to time t, which affect events Yt. These direct effects are indicated
by solid lines. Past interventions may affect all future events and are observed with nuisance
variation (dotted lines) caused by unobserved cause U . The equal spacing of the time of
observation is for exposition and is not assumed.

To fix a ride-hailing example, consider Wp(t) as the price charged for a request observed
at time t and let Yt denote whether the rider’s session results in a ride request. The direct
effect of an intervention on price is intuitive and immediate, but if the ride request occurs,
then the effect in a future session may not, due to diminished supply of available drivers,
representing the arrows from Wp(1) to Y2 and Y3.
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The currently widespread approach to temporal experiments is to use a switchback design
(Bojinov et al. 2020). Common switchback designs partition time into intervals of equal size
and randomize each intervals’ treatment assignments. However, fixed-duration switchback
designs have two drawbacks. First, the length of time intervals need to be chosen by the
practitioner, which we show theoretically in Section 3 and empirically Section 4 has a large
impact on the performance of the design. Shorter periods increase spillovers from previous
intervals, leading to interference bias. Longer periods decrease precision by decreasing bal-
ance in settings with autocorrelation. Second, the absolute time that switching occurs is
fixed by choice of period and start time, which limits the ability of the design to exploit
information about event density and covariance.

In this paper, we study a setting with multiple interventions and outcomes observed in
continuous time. Good designs in this setting will tend to lower the mean square error (MSE)
of the estimated GATE estimated using standard Horvitz-Thompson estimators (Horvitz and
Thompson 1952), by effectively trading off various sources of bias and variance. We provide
two primary contributions: first, a theoretical analysis to decompose sources of expected
MSE from any design, and second, a simulation study that helps explore these tradeoffs and
build intuition for properties of error-minimizing designs.

From a theoretical perspective, in Section 3 we derive a bias-variance decomposition of the
MSE of the estimated GATE of each intervention. The bias is decomposed into three sources
of errors: (a) spillover effects across time of a single intervention, (b) imbalance of treatment
assignments from simultaneous interventions that cause confounding between interventions,
and (c) imbalance of heterogeneous times (for example, peak vs. off-peak times) between the
treated and control groups of a single intervention. Variance in our setting is caused by the
measurement errors of outcomes and their covariance, determined by their distance in time.
The relative contribution of these four sources of error affect the properties of the optimal
treatment design. As an extension, we show in Section 5 that for spatiotemporal experiments
where treatment decisions can vary with locations, the bias-variance decomposition continues
to hold.

To study the temporal experiment design problem empirically, in Section 4 we conduct a
simulation study that explores the role of assumptions about spillovers, outcome covariance,
and event density in affecting the MSE of heuristic designs. We evaluate the performance
of switchbacks with fixed and stochastic periods and characterize the properties of the most
efficient designs. Practitioners can use similar simulations with assumptions tailored to their
specific design problem in order to design efficient experiments in their empirical settings.

Our results highlight the role of using prior knowledge to select the average period between
intervals, the timing of switching, and the role of randomization in improving robustness to
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simultaneous experiments and interference from spillovers.

1.1 Related Work

Our work is closely connected to several related literatures in the experimental design space.
First, there has been extensive work on the design of experiments in temporal or time-series
settings, the distinguishing property of which is that outcomes are subject carryover effects
from treatments of prior time periods. As discussed above, the most common tool is the
switchback design (Bojinov et al. 2020), in which predetermined time intervals are randomly
and sequentially exposed to treatment and control variants. Alternative approaches include
pulse designs Basse and Feller (2018) where units are treated only for one time period, or
designs with irreversible treatment adoption pattern that are based on synthetic control
estimators Doudchenko et al. (2019, 2021); Abadie and Zhao (2021) or generalized least
squares Xiong et al. (2019).

Designing and analyzing experiments in the presence of interference has been studied in
broad settings beyond temporal data. On network data, one common method for mitigating
interference is through cluster-randomized designs (Ugander et al. 2013; Eckles et al. 2017;
Candogan et al. 2021), where the clusters are chosen to minimize edges that cut across
clusters. The cluster size serves an analogous role as the interval length in temporal data,
governing the tradeoff between interference bias and estimator variance. Another popular
method to mitigate interference is to use two-stage or multi-stage randomization, that has
been used in public health Hudgens and Halloran (2008); Liu and Hudgens (2014), political
science Sinclair et al. (2012), and social science Crépon et al. (2013); Baird et al. (2018); Basse
and Feller (2018). In the spatial setting, a common approach is to conduct experiments at an
aggregate level Bojinov et al. (2020); Xiong et al. (2019) or to randomly assign treatments to
a set of predetermined spatial intervention points, with a focus on estimating spatial spillover
effects Aronow et al. (2020, 2021). Our general approach to the temporal problem suggests
that some of these ideas may be useful here as well.

Finally, a body of work has been dedicated to the specific setting of marketplace-mediated
interference. (Johari et al. 2020) study how demand-randomized and supply-randomized
designs can contribute different types of bias in a manner that is dependent on market
balance. (Li et al. 2021) characterize the bias and variance of such experiments and describes
how the design can be optimized in such settings. Holtz et al. (2020) compare GATE
estimates from a meta experiment on the Airbnb marketplace that contains both cluster
randomization and independent randomization. Holtz and Aral (2020) perform simulation
studies that show how cluster-randomized experiments can be effective at reducing bias on

4



the Airbnb network. Our paper takes a more agnostic approach to the marketplace by
considering data in the form of a stream of events rather than the explicit two-sided setting.

2 Setting

Suppose K decision makers are running experiments on the same time periods simulta-
neously. For example, each decision maker could be on a different team within the same
company. Let T ∈ R be the duration of the experiments. Each decision maker runs an
experiment to study the effect of one intervention. For example, the interventions could be
pricing, matching, or routing algorithms that are all being tested within the same market-
place in a single region or city.

For each intervention ℓ ∈ [K], let wℓ : [0, T ] → {0, 1} denote the binary-valued function
where wℓ(t) = 1 indicates at time t ∈ [0, T ] is exposed to intervention ℓ (treatment), and
wℓ(t) = 0 indicates otherwise (control).

Each decision maker ℓ makes treatment decisions for all times, i.e., Wℓ = {Wℓ(t) :

t ∈ [0, T ]}, simultaneously, pre-experiment. Since t is continuous, the decision maker first
partitions experimental times [0, T ] into M disjoint intervals, and then make treatment
decisions at the interval level. Let ΠM : T → {t0, t1, · · · , tM−1, tM} be a function that
outputs the endpoints of M intervals and the endpoints satisfy 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤
tM−1 ≤ tM = T . For example, the temporal switchback designs that are commonly used
in practice (Chamandy 2016; Bojinov et al. 2020) partition the time intervals of equal size
(i.e., tm+1 − tm is the same for all m). The treatment status is switched randomly between
any two consecutive intervals. Our setup is more general than a standard switchback test in
that we allow for arbitrary switching times, and intervals of arbitrary length.

Each decision maker ℓ chooses the set of endpoints {tℓ0, tℓ1, · · · , tℓM}.1 It is possible that,
interval [tℓm, tℓ,m+1] chosen by decision maker ℓ overlaps with, but is not identical to, interval
[tjk, tj,k+1] chosen by decision maker k.

As the treatment decisions are made at the interval level, the treatment assignments for
all times within an interval are the same, i.e.,

wℓ(t) = wℓ(t
′), for all t, t′ ∈ [tℓm, tℓ,m+1], for all m.

Given {tℓ0, tℓ1, · · · , tℓM}, the decision making problem simplifies to partitioning the M

time intervals into the treatment and control groups of intervention ℓ. Equivalently, decision
1Without loss of generality, assume M is the same for all interventions, by allowing for the interval length

to be measure zero.
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maker ℓ chooses Tℓ and Cℓ pre-experiment, where Tℓ ∈ [M ] is the set of indices of treated time
intervals and Cℓ = [M ]\Tℓ is the set of indices of control time intervals under intervention ℓ.

We define potential outcomes as

Yt(w1,w2, · · · ,wK),

where wℓ = {wℓ(t) : t ∈ [0, T ]} denotes the treatment assignments of intervention ℓ for all
times.2 Yt(w1,w2, · · · ,wK) is the outcome we would observe at t if treatment assignments
satisfy Wℓ(t

′) = wℓ(t
′) for all t′ ∈ [0, T ] and ℓ ∈ [K]. Let wℓ = 1 = {wk(t) = 1 : t ∈ [0, T ]}

and wℓ = 0 = {wk(t) = 0 : t ∈ [0, T ]} be the global treatment and global control of
intervention ℓ, respectively.

Note that the definition above generalizes the standard, binary definition of potential
outcomes under the stable unit treatment value assumption (SUTVA) in two aspects. First,
this definition allows potential outcomes to be jointly affected by K interventions. Second,
this definition allows for the existence of temporal spillover effects: the potential outcome
of t is not only affected by the treatment status at t, but also the treatment assignments
at other times. Note that this definition of potential outcomes can be easily generalized to
include the spatial dimension, and similarly for the treatment variables, to account for the
heterogeneity in locations for applications on a ride-hailing platform, as discussed in Section
5 below.

In addition, we allow the potential outcomes that are close in time to be correlated:

Cov[Yt(w1,w2, · · · ,wK), Yt′(w1,w2, · · · ,wK)] ̸= 0 for t ̸= t′.

The correlation is not caused by our intervention choices, but rather, captures the similarity
of outcomes at nearby locations and times due to external factors like weather, supply
conditions, and traffic. The correlation creates nuisance dependence between measurements,
which can affect the resulting variance of effect estimates.

We are not able to observe outcomes for every time t. Instead we posit that a sequence of
events, indexed by i = 1, . . . , n, occur during the experiment with each taking place at time
ti, and decision makers observe outcomes Yti := Yti(W1, · · · ,WK) for all i. For example, the
events may be riders checking prices, and Yti may be a binary variable indicating whether the
rider requests a ride. Let f(t) : [0, T ] → R+ be the density function from which events are
sampled. Post-experiment, each decision maker ℓ use observed event outcomes {Yti}i∈[n] and

2Intervention ℓ is not applied to t ̸∈ [0, T ], i.e., wℓ(t) is always 0 for t ̸∈ [0, T ]. Therefore, there are no
spillover effects of intervention ℓ from R\[0, T ] to [0, T ], and it is reasonable to define potential outcomes
only by wℓ = {wℓ(t) : t ∈ [0, T ]}.
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treatment assignments Wℓ to estimate the effect of intervention ℓ. For notation simplicity,
we use Yi and Wℓi in the following that stand for Yti and Wℓ(ti), respectively.

2.1 Estimand

Our main object of interest is the global average treatment effect (GATE). We define the
GATE of intervention ℓ as

δℓ =

∫
δℓ,tf(t)dt,

which is the average of δℓ,t, the individual treatment effect at t, weighted by the event density
f(t), where δℓ,t is defined as

δℓ,t = Yt(w1,w2, · · · , 1︸︷︷︸
intervention ℓ

, · · · ,wK)−Yt(w1,w2, · · · , 0︸︷︷︸
intervention ℓ

, · · · ,wK) ∀t,∀{wk}k∈[K]\wℓ.

δℓ,t measures the difference in outcomes at t between the state where intervention ℓ is deployed
indefinitely (global treatment, i.e., wℓ = 1) and the state without intervention ℓ (global
control, i.e., wℓ = 0). δℓ,t is defined conditional on wk for k ̸= ℓ. However, we omit wk

in δℓ,t for notation simplicity. GATE δℓ is the average of δℓ,t weighted by the event density
function f(t).

Analogously, we define the average direct effect τℓ as

τℓ =

∫
τℓ,tf(t)dt,

where τℓ,t is the direct treatment effect at t

τℓ,t = Yt(w1,w2, · · · , et︸︷︷︸
wℓ

, · · · ,wK)− Yt(w1,w2, · · · , 0︸︷︷︸
wℓ

, · · · ,wK) ∀t,∀{wk}k∈[K]\wℓ

and
et =

(
0 · · · 0 1︸︷︷︸

time t

0 · · · 0
)

is a one-hot-encoded vector with the entry of time t to be 1 and all the remaining entries to
be 0.

We define the average spillover effect γℓ(wℓ), given treatment assignments wℓ, as

γℓ(wℓ) =

∫
γℓ,t(wℓ)f(t)dt,
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where γℓ,t(wℓ) is the spillover effect on t

γℓ,t(wℓ) = Yt(w1,w2, · · · ,wℓ, · · · ,wK)− Yt(w1,w2, · · · ,wℓ ◦ et, · · · ,wK) ∀t,∀{wk}k∈[K],

and “◦” denotes the entry-wise product. Both τℓ,t and γℓ,t(wℓ) are defined conditional wk

for all k ̸= ℓ, and we omit wk in τℓ,t and γℓ,t(wℓ) for notation simplicity.
Let γℓ = γℓ(1) be the average treatment effect under global treatment. We can then

decompose the GATE δℓ as
δℓ = τℓ + γℓ.

2.2 Problem Formulation of Temporal Switchback Designs

Each decision maker ℓ estimates the GATE δℓ, post-experiment, and decides whether to
deploy intervention ℓ indefinitely. To make an informed decision, the decision maker seeks to
estimate δℓ as precisely as possible. We seek to coordinate treatment assignments of different
interventions, such that the estimation error of δ̂ℓ for all ℓ ∈ [K] can be simultaneously
minimized.

We focus on deterministic switchback designs, where the treatment status of each interval
is deterministic. We formulate the problem of designing simultaneous temporal switchback
experiments as

min
{ΠMℓ,Tℓ}ℓ∈[K]

K∑
ℓ=1

E
[
(δ̂ℓ − δℓ)

2 | {Wℓ}ℓ∈[K]

]
. (1)

The decision variables in (1) are the partition functions ΠMℓ and treatment assignments
Tℓ based on the partition functions ΠMℓ for all ℓ. Given ΠMℓ and Tℓ, Wℓ(t) is uniquely
determined for all t, and the corresponding {Wℓ}ℓ∈[K] minimizes the sum of MSE of δ̂ℓ for
all ℓ.3

In addition to deterministic switchback designs, we consider and analyze block random-
ized designs in Appendix B, where the treatment assignment for each interval is randomized.
The general insights of deterministic switchback and block randomized designs are aligned.
We focus on the analysis of deterministic switchbacks in Section 3 for exposition, but we
make a comparison between deterministic and stochastic designs, and explain the merits of
each one via simulation studies in Section 4.

3The expected value in (1) is taken with respect the randomness in measurement error in Yi and in the
heterogeneity in treatment effects {τℓ,t − τℓ}t∈[0,T ] and {γℓ,t − γℓ}t∈[0,T ].
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2.3 Post-experiment Estimation

One non-parametric estimator we could use for δℓ is the Horvitz-Thompson estimator (Horvitz
and Thompson 1952):

δ̂ℓ =
1

n

∑
i

(
Wℓi

πℓ

− 1−Wℓi

1− πℓ

)
Yi =

1

n

∑
i

αℓiYi, (2)

where αℓi =
Wℓi−πℓ

πℓ(1−πℓ)
is a normalized weight, and

πℓ =

∫
Wℓ(t)f(t)dt

is the fraction of treated time under intervention ℓ.4

This estimator is quite general and flexible for three reasons. First, it does not rely on an
assumption about spillover mechanisms. Second, it does not rely on assumptions about how
event outcomes are correlated in time. Third, it does not require the knowledge of treatment
decisions of simultaneous interventions, i.e., Wk for k ̸= ℓ.

However, the flexibility of this estimator comes at a cost. First, the estimator in (2) could
be biased due to interference between observations. (2) approximates the outcomes under
global treatment by the outcomes of treated units, and approximates the outcomes under
global control by the outcomes of control units. When the spillover effect is zero, γℓ,t(wℓ) = 0,
the approximation error is zero. For general cases, the approximation error is non-zero and
(2) is a biased estimator of δℓ. The interference bias scales with the size of spillover effect
γℓ. Second, the estimator in (2) could have a large variance as the effective sample size is
affected by the correlation in event outcomes, and (2) does not optimally weight observations.
Third, the estimator in (2) could have confounding bias from simultaneous interventions. It
is possible that Wℓ is confounded with Wk, and δ̂ℓ is biased by τk and γk for k ̸= ℓ.

There are two directions that could lower the MSE of the estimated GATE. First, we can
use a better treatment design, where we provide some guidance in Sections 3 and 4 below.
Specifically, in Section 3, we derive a bias-variance decomposition of the MSE of δ̂ℓ from (2)
that shows how different sources of errors trade off. In Section 4, we conduct a simulation
study to show how the MSE of heuristic designs vary with the assumptions on spillovers,
outcome covariance, and event density.

Second, we can use a better estimator for GATE by leveraging prior knowledge of spillover
and correlation mechanisms, and the information of other interventions. Specifically, to re-

4Note that in the Horvitz-Thompson estimator (2), the weights are the same within the treatment group
and within the control group. However, the weights differ between the treatment and control groups to
adjust for the difference in treated and control fractions of intervention ℓ solved from (1).
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duce the interference bias, one could specify the structure of spillover mechanisms, explicitly
estimate direct effect τℓ and spillover effect γℓ, and use τℓ and γℓ to estimate δℓ. To reduce
the variance from correlated outcomes, one could specify the structure of correlation mecha-
nisms, and use the structure to reweight observations. To reduce confounding bias, one could
use the information of Wk for k ̸= ℓ, and simultaneously estimate the treatment effects of
all interventions. To simultaneously reduce bias and variance, one could use the generalized
least squares (GLS) estimators that simultaneously estimate τℓ and γℓ for all ℓ, by taking
advantage of the inverse error covariance weighting.

3 Analysis of Temporal Switchback Designs

In this section, we provide the bias-variance decomposition of the MSE of δ̂ℓ from the
Horvitz-Thompson estimator (2). The decomposition provides insights of how spillovers
from interventions at earlier times, correlation in event outcomes, and effects of simultane-
ous interventions affect the MSE of δ̂ℓ. The insights can then be used as the guidance to
optimize {Wℓ}ℓ∈[K] in practice.

We first lay out the assumptions that are necessary for the identification of treatment
effects and bias-variance decomposition in Section 3.1. We then introduce several interval-
level statistics that measure the average of time-varying components in the potential outcome
model over an interval in Section 3.2. Finally, we provide the bias-variance decomposition of
the MSE in terms of interval-level statistics in Section 3.3. The results in this section carry
over to the design and analysis of spatiotemporal experiments, as discussed in Section 5.

3.1 Assumptions

We first assume that the sampling of events is independent of the treatment decisions of all
interventions.

Assumption 1 (Exogeneity of events). Events are sampled randomly and independently
from the density function f(t), and f(t) is independent of the treatment assignments of all
interventions, W1,W2, · · · ,WK.

This assumption makes sense for the interventions that potential riders cannot notice
a difference before opening the app and checking prices, such as surge pricing algorithms
or matching algorithms. However, this assumption is violated for interventions related to
push notifications such as coupons or promo codes that are sent when users are not in the
app. These interventions could incentivize more riders to open the app and check prices,
consequently changing the event distribution.
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In addition, we make a simplifying assumption on the structure of intervention effects.

Assumption 2 (Additivity of Intervention Effects). For any intervention ℓ, we have

E [Yt(w1,w2, · · · ,w′
ℓ, · · · ,wK)− Yt(w1,w2, · · · ,wℓ, · · · ,wK)]

=E [Yt(w
′
1,w

′
2, · · · ,w′

ℓ, · · · ,w′
K)− Yt(w

′
1,w

′
2, · · · ,wℓ, · · · ,w′

K)] ,

where wk and w′
k are two treatment assignments of intervention k for all k.5

When K = 1, Assumption 2 always holds. When K > 1, Assumption 2 implies that the
effects of K interventions are additive, and this assumption excludes intervention effects to
be synergistic (combining two interventions leads to a larger effect than expected) or antag-
onistic (combining two interventions leads to a smaller effect than expected). Assumption
2 is reasonable for certain classes of distinct interventions; for example, we may often as-
sume that a pricing change and a routing change act via different mechanisms and are thus
additive. However, more complex combinations may not satisfy Assumption 2.

We allow direct and spillover effects to be heterogeneous in t. However, for the iden-
tification purpose, we restrict the heterogeneity mechanism by assuming that treatment
assignments of all interventions are independent of τℓ,t and γℓ,t(w). In other words, we rule
out the scenarios where decision makers allocate treatments to some specific times because
the treatment effects at these times are larger. In our experimental design setting, decision
makers can ensure this independence assumption to hold when making treatment decisions.6

Assumption 3 (Direct Effects). τℓ,t is i.i.d. in t and is independent of W1, · · · ,WK for
all t.

Assumption 4 (Spillover Effects). For every t, there exists a non-negative interference
kernel dℓ,t(t

′) that measures the interference intensity of intervention ℓ from t′ to t and
satisfies

∫
dℓ,t(t

′)f(t′)dt′ = 1, such that

γℓ,t(wℓ) =γℓ,t ·
∫

wℓ(t
′)dℓ,t(t

′)f(t′)dt′,

where γℓ,t = γℓ,t(1) is i.i.d. in t, and is independent of W1, · · · ,WK for all t.

γℓ,t denotes the spillover effect on time t under global treatment of intervention ℓ. As-
sumption 4 implies that spillover effects from the treatments at other times are additive.

5The expected value in Assumption 2 is taken with respect to t.
6We can generalize the independence assumption to the conditional independence assumption, where

treatment assignments of all interventions are independent of τℓ,t and γℓ,t(w) conditional on observables. To
account for observables in the design of experiments, we can use switchback or randomized designs stratified
by observables (Athey and Imbens 2017).

11



Spillover effects are parametrized by an interference kernel dℓ,t(t′) in Assumption 4. dℓ,t(t
′)

can be quite general in t and t′. Below are three examples of interference kernels. A visual-
ization of interference kernels is provided in Figure 2.

Example 1 (No spillover effect). dℓ,t(t
′) = 0 for all t ̸= t′.

Example 2 (Non-anticipating outcomes). dℓ,t(t
′) = 0 for all t′ > t. Then the integral is

only over t′ such that t′ ≥ t.

Example 3 (Bounded spillover effect). There exists M < ∞ such that dℓ,t(t
′) = 0 for all

t′ > t+M .

3.2 Interval-level Statistics

We introduce several interval-level statistics that quantify spillover effects, correlation in out-
comes, and other components at the interval level. These interval-level statistics are building
blocks of the bias-variance decomposition in Section 3.3, and are important quantities to be
considered in the partition of intervals and allocation of treatments.

Treated fraction. For any two interventions ℓ and k, let

πℓk =

∫
Wℓ(t)Wk(t)f(t)dt

be the fraction of time that is jointly treated under both interventions ℓ and k. If πℓk ̸= πℓπk,
then the treatment assignments of interventions ℓ and k are correlated.

Mean outcome in the global control state of all interventions. For the m-th interval
of intervention ℓ, [tℓm, tℓ,m+1], let

µ
(m)
ℓ =

∫
t∈[tℓm,tℓ,m+1]

µt · f(t)dt

be the average control outcome of t ∈ [tℓm, tℓ,m+1] weighted by the event density f(t), where

µt = E[Yt(0,0, · · · ,0) | t]

is the mean control outcome at t. µ
(m)
ℓ for different m measures the heterogeneity in inter-

val average outcomes in the global control state. The heterogeneity could come from the
difference in riders’/drivers’ behavior on weekdays vs. weekends.
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Interference. For any two intervals, [tℓm, tℓ,m+1] and [tjk, tj,k+1], let

I
(m,k)
ℓj =

∫
t∈[tℓm,tℓ,m+1]

∫
t′∈[tjk,tj,k+1]

dj,(t)(t
′)f(t)f(t′)dtdt′

be the intensity of spillover effects from interval [tjk, tj,k+1] to interval [tℓm, tℓ,m+1]. For
intervention j, γj · I(m,k)

ℓj is the average spillover effect of treating every t′ ∈ [tjk, tj,k+1] on
t ∈ [tℓm, tℓ,m+1].

I
(m,k)
ℓj is bounded between 0 and 1, and I

(m,k)
ℓj increases with the length of [tℓm, tℓ,m+1]

and [tjk, tj,k+1]. For notation simplicity, let I
(m,k)
ℓ = I

(m,k)
ℓℓ .

Correlation in event outcomes. For any two intervals, [tℓm, tℓ,m+1] and [tjk, tj,k+1], let

C
(m,k)
ℓj =

∫
t∈[tℓm,tℓ,m+1],t′∈[tjk,tj,k+1]

E[εtεt′ | {Wℓ}ℓ∈[K]] · f(t)f(t′)dtdt′

be the correlation in event outcomes between interval [tℓm, tℓ,m+1] and interval [tjk, tj,k+1]

given treatment assignments {Wℓ}ℓ∈[K], where εt is defined as

εt = Yt(0,0, · · · ,0)− µt︸ ︷︷ ︸
measurement error at t

+
K∑
ℓ=1

(τℓ,t − τℓ) ·Wℓ(t) +
K∑
ℓ=1

(γℓ,t − γℓ) · Iℓ(t)︸ ︷︷ ︸
difference between heterogeneous and average treatment effects

and Iℓ(t) = γℓ,t(Wℓ)/γℓ,t ∈ [0, 1] is the scaled spillover effect at t given intervention ℓ’s
treatment assignments Wℓ.

Note that εt consists of two parts: one is the measurement error in the outcome at t and
the other one is the difference between heterogeneous and average treatment effects. Both
parts can lead to the correlation between εt and εt′ for distinct t and t′. It is possible to
parametrize the conditional covariance between εt and εt′ by a kernel function, depending on
how the covariance varies with t− t′ (e.g., monotonically or periodically). See two examples
in Figure 2.

C
(m,k)
ℓj measures the average correlation between εt and εt′ for t ∈ [tℓm, tℓ,m+1] and t′ ∈

[tjk, tj,k+1], weighted by the event density f(t). C
(m,k)
ℓj scales with the length of [tℓm, tℓ,m+1]

and [tjk, tj,k+1]. For notation simplicity, let C
(m,k)
ℓ = C

(m,k)
ℓℓ .

3.3 Main Results

We provide the decomposition of the bias and mean squared error (MSE) of δ̂ℓ from the
Horvitz-Thompson estimator (2), in terms of the interval-level statistics, in Theorem 1 below.
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The decomposition lays out how different components in the potential outcome model affect
the estimation error of δ̂ℓ.

Theorem 1. Suppose Assumptions 1-4 hold and we run switchback experiments. As n → ∞,
the bias of δ̂ℓ estimated from (2) converges to

E
[
δ̂ℓ − δℓ | {Wℓ}ℓ∈[K]

]
p−→ Biasℓ(interference) + Biasℓ(simultaneous) + Biasℓ(mean)

and the MSE of δ̂ℓ converges to

E
[
(δ̂ℓ − δℓ)

2 | {Wℓ}ℓ∈[K]

]
p−→ Varℓ(error) + [Biasℓ(interference) + Biasℓ(simultaneous) + Biasℓ(mean)]2 ,

where

Biasℓ(interference) =− γℓ
∑
m∈Tℓ

∑
k∈Cℓ

[
I
(m,k)
ℓ

πℓ

+
I
(k,m)
ℓ

1− πℓ

]

Biasℓ(simultaneous) =
1

πℓ

∑
k ̸=ℓ

[
τkπℓk + γk

∑
m∈Tℓ

∑
j∈Tk

I
(m,j)
ℓk

]
− 1

1− πℓ

∑
k ̸=ℓ

[
τk(πk − πℓk) + γk

∑
m∈Cℓ

∑
j∈Tk

I
(m,j)
ℓk

]

Biasℓ(mean) =
1

πℓ

∑
m∈Tℓ

µ
(m)
ℓ − 1

1− πℓ

∑
m∈Cℓ

µ
(m)
ℓ

Varℓ(error) =
1

π2
ℓ

∑
m,k∈Tℓ

C
(m,k)
ℓ − 1

πℓ(1− πℓ)

∑
m∈Tℓ,k∈Cℓ

C
(m,k)
ℓ +

1

(1− πℓ)2

∑
m,k∈Cℓ

C
(m,k)
ℓ .

Note that the expected value in Theorem 1 conditions on {Wℓ}ℓ∈[K] given that {Wℓ}ℓ∈[K]

is fixed in the deterministic switchbacks. As the number of events n → ∞, the empirical
event distribution better approximates the population event distribution, and then the limit
of bias and MSE can be written in terms of interval-level statistics that are defined under
the population event distribution.

Theorem 1 shows that the bias consists of three terms, and the MSE consists of four
terms. Below we elaborate on each term.

Biasℓ(interference) measures the bias from the spillover effects of the treatment of inter-
vention ℓ at other times. If γℓ,t = 0 for all t (spillover effects are zero), then Biasℓ(interference) =

0; otherwise, Biasℓ(interference) is generally nonzero. Biasℓ(interference) is defined by I
(m,k)
ℓ

and I
(k,m)
ℓ , where [tℓm, tℓ,m+1] is a treated interval and [tℓk, tℓ,k+1] is a control interval. I

(m,k)
ℓ

measures the bias by using the outcomes of treated units to approximate the outcomes in
the global treatment state, and symmetrically I

(k,m)
ℓ measures the bias by using the out-

comes of control units to approximate the outcomes in the global control state. All terms
in Biasℓ(interference) have the same sign. If the interference kernel dℓ,t(t′) decays at a faster
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rate in |t′ − t|, then both I
(m,k)
ℓ and I

(k,m)
ℓ tend to be smaller (interference between two

intervals is smaller). Therefore, if treated intervals are lengthened, and same for the control
intervals, the size of Biasℓ(interference) tends to be smaller, as further discussed in Section
4.1 and shown in Figure 3 below.

Biasℓ(simultaneous) comes from the imbalance of treatment assignments of other inter-
ventions between the treated and control intervals of intervention ℓ, i.e., Wℓ is confounded
with Wk for k ̸= ℓ. If K = 1 and ℓ = 1 (one intervention only), then Biasℓ(simultaneous) = 0;
otherwise, Biasℓ(simultaneous) is generally nonzero. Biasℓ(simultaneous) tends to increase
with K and the size of τk and γk for k ̸= ℓ. Biasℓ(simultaneous) tends to be smaller when the
confounding of treatment assignments of simultaneous experiments is reduced, for example
by varying interval lengths, as further discussed in Section 4.3 and shown in Figure 5b below.

Biasℓ(mean) comes from the imbalance of mean outcome µt in the global control state
between the treated and control time intervals of intervention ℓ. If µt is the same for all t,
then Biasℓ(mean) = 0; otherwise, Biasℓ(mean) is generally nonzero. Biasℓ(mean) tends to
be smaller when heterogeneous times (for example, peak vs. off-peak times) are balanced
between the treated and control time intervals.

Note that εt has mean zero, but affects the MSE of δ̂ℓ through the term Varℓ(error). If
E[εtεt′ | {Wℓ}ℓ∈[K]] = 0 for t ̸= t′, then Varℓ(error) = 0, which is aligned with the standard
asymptotic results of the Horvitz-Thompson estimator Horvitz and Thompson (1952).7 If
the following two conditions hold, then E[εtεt′ | {Wℓ}ℓ∈[K]] = 0 for all t ̸= t′:

1. constant treatment effect: τℓ,t and γℓ,t are the same for all t ;

2. independent measurement error: Yt(0,0, · · · ,0)− µt is independent in t.

If either of the above two conditions hold, but not both, then Varℓ(error) is generally nonzero,
but tends to be smaller than the case where both conditions are violated. Note that the
middle term in Varℓ(error) is negative. When E[εtεt′ | {Wℓ}ℓ∈[K]] decreases with |t− t′|, then
Varℓ(error) tends to be smaller when the treatment status switches frequently, and then the
middle term tends to be more negative, as further discussed in Section 4.1 and shown in
Figure 3 below.

Below we provide three examples of how the MSE is simplified under special cases and
what the implication is on the optimal design.

Example 4 (Interference only). Suppose K = 1, µt ≡ µ, and E[εtεt′ | {Wℓ}ℓ∈[K]] = 0

for t ̸= t′. In this case, Biasℓ(simultaneous) = 0, Biasℓ(mean) = 0, and Varℓ(error) = 0.
7For the Horvitz-Thompson estimator under the classical setting where there is no interference and corre-

lation in errors is zero, the Horvitz-Thompson estimator converges to the true value at the rate Op (1/
√
n).

Consequently, the MSE converges to zero at the rate Op (1/n) and therefore the limit of the MSE is 0.
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The MSE of δ̂ℓ converges to [Biasℓ(interference)]
2. A design with deterministic and long

switchback period is preferable.

Example 5 (Correlation only). Suppose K = 1, µt ≡ µ, and γℓ,t ≡ 0. In this case,
Biasℓ(simultaneous) = 0, Biasℓ(mean) = 0, and Biasℓ(interference) = 0. The MSE of δ̂ℓ con-
verges to Varℓ(error). A design with deterministic and short switchback period is preferable.

Example 6 (Simultaneous interventions only). Suppose µt ≡ µ, γℓ,t ≡ 0, and E[εtεt′ |
{Wℓ}ℓ∈[K]] = 0 for t ̸= t′. In this case, Biasℓ(simultaneous) = 0, Biasℓ(interference) = 0,
and Varℓ(error) = 0. The MSE of δ̂ℓ converges to [Biasℓ(simultaneous)]2. A design with
randomized switchback frequency is preferable.

For general cases, we need to balance the tradeoffs involved, and the optimal design varies
with the relative strength of each component in the decomposition of MSE. In Section 4, we
study the performance of heuristic designs under various scenarios, and provide guidance on
designing efficient experiments in empirical settings.

4 Simulation Results

In this section, we present estimates of the mean-squared error of heuristic designs under
a simulated problem structure to characterize the tradeoffs involved. Evaluating a design
through simulation requires the following inputs:

• Spillover kernel dℓ,t(t′): we use a finite duration linear kernel in all simulations.

• Covariance kernel E[εtεt′ | {Wℓ}ℓ∈[K]]: we consider two regimes, a triangular kernel
with height 1, and a periodic covariance kernel which is the product of a triangular
kernel and cosine function capturing seasonal patterns.

• Event density f(t): we consider two regimes, uniform density of events and a periodic
density f(t) ∝ sin(αt) where events are clustered in time according to a known seasonal
pattern.

Figure 2 graphically depicts our design choices for the simulations. Additionally, we
vary parameters governing the strength of the direct and spillover effect sizes τℓ and γℓ,
which affect bias from interference and simultaneous experiments. Since these parameters
are arbitrary and must be assumed, we choose them such that the resulting bias is on the
same scale as the (fixed) variance.
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We restrict our evaluation to two heuristic designs in order to build intuition. The
simplest design is a deterministic switchback with period p and offset q < p, where we
initially switch policies at time q and then every p periods (i.e., the length of [t0, t1] is q

and the length of [tm, tm+1] is p for m ≥ 1). We also consider a natural randomized analog,
a random-duration switchback where we switch policies every Poisson(λ) periods (i.e., the
length of [tm, tm+1] is randomized for all m). The λ parameter governs the mean period
length and is analogous to the p period parameter for the deterministic policy.

Figure 2: Simulation setup: spillover and covariance kernels, and periodic densities. Time
difference denotes t′ − t in the spillover kernel dℓ,t(t′) and in the covariance kernel E[εtεt′ |
{Wℓ}ℓ∈[K]]. If t′ − t < 0, then dℓ,t(t

′) = 0.

4.1 Interference and variance tradeoffs

Figure 3 summarizes the most fundamental tradeoff of temporal experiments–policies with
shorter periods generate more comparisons that leverage autocorrelation but also increase
interference bias from previous intervals in different conditions. When the spillover effect γℓ
is small, switching as quickly as possible results in the most efficient design, and when it is
large, we improve the design through lengthening the period. We focus most of our ensuing
discussion on settings where these two error components are on a similar scale and result in
an interesting tradeoff.

4.2 Stochastic versus deterministic designs

Figure 4 compares deterministic designs with various periods to a distribution of errors
resulting from different random draws of the stochastic policy. We find that the stochastic
switchback generally results in designs with lower bias and increased variance for most values
of λ. The randomization generates some longer periods between switching, which helps
improve the estimator performance with respect to bias from interference.
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Figure 3: Tradeoffs under different regimes for deterministic switchback. The x-axis denotes
period p in the deterministic switchback with offset q = 0. The period p with smallest MSE
is circled in blue.

Figure 4: Poisson vs. deterministic switchback. Solid lines denote deterministic switchback
(deterministic policy). Shaded bands denote Poisson switchback (stochastic policy).

4.3 Simultaneous experiments

Our main result in Theorem 1 shows that simultaneous experiments may generate additional
bias when their effects are large enough, resulting in additional estimation error. In Figure 5a,
we show how two experiments are run simultaneously in deterministic switchback designs
if their periods are offset correctly. Failing to stagger two tests properly results in a very
large bias as one experiment confounds the other. In Figure 5b, we estimate how this bias is
affected by stochastic designs with a fixed mean period length. As we increase the number
of simultaneous experiments, the average bias increases due to the finite-sample correlation
between the treatment periods. The bias depends on the specific randomization, and in some
outlier cases, it can be far larger than in the average case. It is not depicted, but nuisance
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confounding is always worse for simultaneous experiments with longer mean periods due to
increased correlation in treatments.

(a) Deterministic policies (b) Stochastic policies (random offset or Poisson switchback)

Figure 5: Effects of simultaneous experiments on optimal design. In Figure 5a, two simul-
taneous experiments are run with period p ∈ {6, 12, 18} in both designs, and with offset
q = 0 in one design and varying offset q (x-axis in Figure 5a) in another design. In Figure 5b
we show distributions of bias produced by using random offsets (left panel) or the Poisson
switchback (right panel). The Poisson switchback is generally more effective, unless the de-
terministic designs are staggered perfectly.

4.4 Periodic event density

In many realistic settings, the density of events will be exhibit periodic patterns due to the
seasonality of human behavior. For instance, in ride-hailing, many ride requests occur during
commute times, and relatively few occur during the late evening on weeknights. These daily
and weekly cycles create opportunities for improving the design of temporal experiments,
and motivate simulations with a simple periodic density function. Figure 6 shows results
from a periodic density using a deterministic switchback. When the design has a period that
aligns with density (p ∈ {6, 12}), the offset parameter q determines how the alignment alters
the bias and variance. For p = 12, an offset of 3 (blue dots and lines), yields a design with
the lowest variance by switching at an area of maximum density. This results in more events
having natural “matches” in an adjacent interval. An offset of 10 (yellow dots and lines)
minimizes bias by switching directly after a period with low event density, which minimizes
interference from the preceding interval. Knowledge of the density of events can improve the
efficiency of the design by leveraging the best absolute times for bias- or variance-minimizing
switching points.
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Figure 6: Bias and variance estimates for deterministic switchback in a setting a density
with a 12 period cycle. The color of points varies with offset parameter q. In all periods
except 6 and 12, the offsets result in almost identical bias and variance.

4.5 Periodic covariance

Another property of realistic settings is that the covariance of errors may exhibit a periodic
structure, as events may be exposed to similar unobservable effects despite occurring at
different times. In ride-hailing applications, we empirically observe positive correlations
between days and weeks, occurring at similar times. For instance, a morning commute may
be similarly affected by weather that persists across days. This leads to a covariance structure
that both decreases with distance in time, but also increases with similarity in time of day.
In Figure 7, we compare the variance of deterministic designs when this property is reflected
in the covariance. In this setting with a deterministic switchback, the expected variance of
the design no longer monotonically increases in the period. Periods that ensure correlated
events receive different treatments can achieve lower variance, while other periods increase
variance by creating additional correlations between intervals with the same treatment.

4.6 Takeaways

Although our simulation results do not allow us to directly construct an optimal design,
they point to the properties that better designs would tend to have and the fundamental
constraints implied by the noise and causal structure of the setting.

First, as we learned in Section 3, the mean period of the design trades off variance by
increasing correlation and bias by decreasing interference from previous periods. We can see
that the MSE-minimizing period can vary substantially depending on assumptions about
covariance (which are testable), the magnitude of effects, and spillover structure encoded by
dℓ,t(t

′), γℓ, and τℓ (which must usually be assumed).
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Figure 7: Variance of deterministic switchback under linear and cyclic decay of covariance
structure in time. Variance increases monotonically in period p under linear decay, but non-
monotonically under cyclic decay.

Second, stochastic designs exhibit lower bias from interference and simultaneous exper-
iments, but do incur some additional variance in order to achieve this. Randomization has
the additional benefit that we observe intervals with different lengths, which can help with
testing if the treatment causes longer spillovers than were assumed in the design phase.

Third, simultaneous experiments are an important source of error under reasonable as-
sumptions, which is quite a different regime than traditional A/B testing with user-level
randomizations, which can generally support many simultaneous tests. In general, through-
put of multiple temporal experiments with substantive effects is something a centralized
platform should manage in order to prevent a “tragedy of the commons” result. Ensuring
that simultaneous experiments have designs that are uncorrelated in finite samples is likely
to be valuable and could be validated pre-experiment as proposed in Gupta et al. (2018)
(“Seedfinder”) or restricted randomizations (Simon 1979).

Fourth, periodic behavior in both event density and in covariance structure implies that
there may be benefits and costs to cleverly choosing absolute switching times and periods be-
tween switching. A more sophisticated search process could be applied to designing temporal
experiments that could leverage estimates of density and the covariance kernel to provide
better designs.

5 Extension to Spatiotemporal Experiments

Our framework of designing experiments on the temporal space can be easily generalized to
the spatial dimension. First, we show how the definitions of potential outcomes, treatment
variables, treatment effects and event density above can be appropriately modified. Specif-
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ically, let f(s, t) be the event density at location s and time t that could vary with s (for
example, airport vs. residential area) and t (for example, weekdays vs. weekends). The lo-
cation s ∈ R2 could be parametrized, e.g., by latitude and longitude. Let Y(s,t)(w1 · · · ,wK)

and wℓ,(s,t) be the potential outcome and treatment assignment of intervention ℓ at (s, t).
The definition of Y(s,t)(w1 · · · ,wK) is analogous to the definitions used in Aronow et al.
(2020, 2021), but more general in the sense that, we additionally allow for the temporal
dimension and explicitly account for concurrent interventions. Analogously, let δℓ,(s,t), τℓ,(s,t),
and γℓ,(s,t)(wℓ) be the individual treatment effect, direct treatment effect and spillover effect
at (s, t) to account for the heterogeneity of treatment effects in locations and times. The
GATE, average direct and spillover effects are the averages of the corresponding effect at
(s, t) weighted by event density f(s, t).

Second, the treatments are assigned at the three-dimensional block level. We generalize
the definition of partition and let ΠM : S × [0, T ] → {B1,B2, · · · ,BM} be a function that
partitions S× [0, T ] into M disjoint three-dimensional blocks, satisfying B1∪B2∪· · ·∪BM =

S × [0, T ] and Bk ∩ Bm = ∅ for k ̸= m, where S ∈ R2 is the set of locations on which the
experiments are run. Bm can be of arbitrary shape. Then the decision making problem is to
assign the M blocks to the treatment and control groups of an intervention.8

Third, we have exactly the same bias-variance decomposition of MSE as Theorem 1 for
spatiotemporal switchback experiments and as Theorem 2 in Appendix B for spatiotempo-
ral block randomized experiments by using block-level statistics (rather than interval-level
statistics), as shown in the proof of Theorems 1 and 2. To be more specific about block-level
statistics, they are the direct generalizations of πℓk, µ

(m)
ℓ , I(m,k)

ℓj and C
(m,k)
ℓj defined in Section

3.2 to the integrations over (s, t) weighted by f(s, t).9

6 Discussion and Conclusion

This paper studies the sources of error in the design and analysis of simultaneous temporal
experiments. We provide a theoretical analysis of how the bias and variance of the Horvitz-
Thompson estimator of the GATE are affected by three factors: spillovers from interventions
at earlier times, correlation in event outcomes, and effects of interventions tested concur-
rently. We provide simulation examples that show how these three factors trade off each
other and provide insights into how one can design efficient temporal experiments.

8This design problem of spatiotemporal experiments differs from Aronow et al. (2020, 2021) in the sense
that Aronow et al. (2020, 2021) randomly assign treatments to a set of predetermined spatial intervention
points, with a focus on estimating spatial spillover effects.

9More specifically, µ(m)
ℓ is integrated over (s, t) ∈ Bℓm for µ

(m)
ℓ . Both I

(m,k)
ℓj and C

(m,k)
ℓj are integrated

over (s, t) ∈ Bℓm, (s′, t′) ∈ Bjk.
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Perhaps the most general conclusion we can draw is that designing experiments in this
context involves considering a complex set of tradeoffs and critically depends on the assump-
tions experimentalists would make using prior knowledge. While the expected event density
is straightforward to estimate, high-dimensional covariance matrices in event outcomes may
pose challenges (Fan et al. 2016). The assumed spillover structure is effectively a causal
model for which practitioners may need to use prior experimental evidence to adequately
capture.

The wide variation in MSE of designs in various simulation setups highlights that useful
theory and priors are important factors in the success of experiments in this setting. This is
in contrast to randomized experiments with i.i.d. units, where there are a variety of reliable
tools for design and analysis, fewer assumptions are needed in either experiment phase, and
bias contributes less prominently to estimation (Lin 2013).

We motivated this study through supporting experiments in a ride-hailing setting where
multiple teams share a fixed set of experimental units but can run experiments over long
time periods to increase the sample size. These “temporal” experiments are a useful tool in
this setting, but we could see broader use in other applications with better development of
the theory and practical guidelines.

Indeed, there are a variety of settings where cross-sectional interventions are not possible
or where outcomes cannot be easily attributed to treatment decisions. Estimating the effec-
tiveness of traditional media advertising is well suited to our problem setup, and a privacy-
friendly approach to online advertising might employ temporal variation in campaign spend
linked to sales through timestamps only. There is also prior work using time-varying inter-
ventions in financial or cryptocurrency markets (Krafft et al. 2018) or in self-experimentation
for personalized medicine (Karkar et al. 2016). An important goal of this work is to broaden
the use of temporal experiments to settings where they are not currently used.

There are important questions left unanswered, most importantly a tractable approach
for solving the optimal design problem. More sophisticated designs could improve upon the
two heuristics we evaluated in Section 4. Solving the globally optimal design that minimizes
the MSE is challenging, as conditional on the partitioned time intervals, allocating them to
the treatment and control groups is equivalent to the Max-Cut problem that is NP-hard
in general graphs. Some heuristic algorithms, such as simulated annealing Van Laarhoven
and Aarts (1987), or approximation algorithms for Max-Cut, such as randomized rounding
Goemans and Williamson (1995), could be helpful for finding principled designs, and could
be another interesting direction to explore for future work.
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A Theoretical Results for Switchback Designs

To accommodate the extension to spatiotemporal experiments in Section 5, all the results are derived
for designs of spatiotemporal experiments. As we treat the space dimension as a whole in temporal
designs, so these designs are special cases of spatiotemporal designs. Theorem 1 follows immediately
from the derivation in this section.

A.1 Block-level Statistics
To make things clear, we provide the definition of block-level statistics that generalize and encompass
the interval-level statistics provided in Section 3.2. All the results and proofs in Appendix A.2 and
A.3 are presented in terms of block-level statistics.

πℓk =

∫
Wℓ(s, t)Wk(s, t)f(s, t)dsdt

µ
(m)
ℓ =

∫
(s,t)∈Bℓm

µ(s,t) · f(s, t)dsdt

I
(m,k)
ℓj =

∫
(s,t)∈Bℓm

∫
(s′,t′)∈Bjk

dj,(s,t)(s
′, t′)f(s, t)f(s′, t′)dsdtds′dt′

C
(m,k)
ℓj =

∫
(s,t)∈Bℓm,(s′,t′)∈Bjk

E[ε(s,t)ε(s′,t′) | {Wℓ}ℓ∈[K]] · f(s, t)f(s′, t′)dsdtds′dt′

A.2 Supplementary Theoretical Results

Let δℓi = δℓ,(si,ti), τℓi = τℓ,(si,ti), γℓi = γℓ,(si,ti), Wℓi = Wℓ(si, ti), Iℓi = γℓ,(si,ti)(Wℓ)/γℓ,(si,ti),
Yi = Y(si,ti) and εi = ε(si,ti). Under Assumptions 1-4, the observed outcome of event i can be
written as the reduced-form model with parameters of average direct and spillover effects:

Yi = µi +

K∑
ℓ=1

τℓ ·Wℓi +

K∑
ℓ=1

γℓ · Iℓi + εi. (3)
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The estimation error of δ̂ℓ can be decomposed as

δ̂ℓ − δℓ =
1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)︸ ︷︷ ︸
interference

+
1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)︸ ︷︷ ︸
effects of other interventions

+
1

n

∑
i

αℓi · εi︸ ︷︷ ︸
correlation in “errors”

+
1

n

∑
i

Wℓi − πℓ
πℓ

(
µi

1− πℓ
+ δℓ

)
︸ ︷︷ ︸

constant term

(4)

The following four lemmas provide the bias and MSE of each of the above four terms. We can then
use these four lemmas to show Theorem 1.

Lemma 1 (Correlation in “Errors”, Switchback Design). Under Assumptions 1-4,

E

[
1

n

∑
i

αℓi · εi | {Wℓ}ℓ∈[K]

]
= 0

and, as n → ∞,

E

( 1

n

∑
i

αℓi · εi

)2

| {Wℓ}ℓ∈[K]

 p−→ 1

π2
ℓ

∑
m,k∈Tℓ

C
(m,k)
ℓ − 1

πℓ(1− πℓ)

∑
m∈Tℓ,k∈Cℓ

C
(m,k)
ℓ

+
1

(1− πℓ)2

∑
m,k∈Cℓ

C
(m,k)
ℓ .

Lemma 2 (Interference, Switchback Design). Under Assumptions 1-4, as n → ∞,

E

[
1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi) | {Wℓ}ℓ∈[K]

]
p−→ −γℓ

∑
m∈Tℓ

∑
k∈Cℓ

[
I
(m,k)
ℓ

πℓ
+

I
(k,m)
ℓ

1− πℓ

]
,

Lemma 3 (Constant Term, Switchback Design). Under Assumptions 1-4, as n → ∞,

E

[
1

n

∑
i

Wℓi − πℓ
πℓ

(
µi

1− πℓ
+ δℓ

)
| {Wℓ}ℓ∈[K]

]
p−→ 1

πℓ

∑
m∈Tℓ

µ
(m)
ℓ − 1

1− πℓ

∑
m∈Cℓ

µ
(m)
ℓ .

Lemma 4 (Effects of Other Interventions, Switchback Design). Under Assumptions 1-4, as n → ∞,

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki) | {Wℓ}ℓ∈[K]


p−→ 1

πℓ

∑
k ̸=ℓ

τkπℓk + γk
∑
m∈Tℓ

∑
j∈Tk

I
(m,j)
ℓk

− 1

1− πℓ

∑
k ̸=ℓ

τk(πℓ − πℓk) + γk
∑
m∈Cℓ

∑
j∈Tk

I
(m,j)
ℓk

 .
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A.3 Proof of Lemmas 1-4 and Theorem 1
In this section, we first show Lemmas 1-4, and then we use Lemmas 1-4 to show Theorem 1. Let
m(i) ∈ [M ] be the index of block to which unit i belongs.

Proof of Lemma 1, for Switchback Design. The mean of 1
n

∑
i αℓi · εi is zero following that

E

[
1

n

∑
i

αℓi · εi | {Wℓ}ℓ∈[K]

]
=
1

n

∑
i

αℓi ·E
[
εi | {Wℓ}ℓ∈[K]

]
=
1

n

∑
i

[ K∑
ℓ=1

E[τℓi − τℓ]︸ ︷︷ ︸
=0

·Wℓi +

K∑
ℓ=1

E[γℓi − γℓ]︸ ︷︷ ︸
=0

·Iℓi +E[Yi(0,0, · · · ,0)− µi]︸ ︷︷ ︸
=0

]
=0

from Assumptions 3 and 4, and the second moment of this term is

E

( 1

n

∑
i

αℓi · εi

)2

| {Wℓ}ℓ∈[K]

 =
1

n2

∑
i

∑
j

αℓiαℓjE
[
εiεj | {Wℓ}ℓ∈[K]

]
=

1

n2

∑
m,k∈Tℓ

1

π2
ℓ

∑
i,j:mℓ(i)=m,mℓ(j)=k

E
[
εiεj | {Wℓ}ℓ∈[K]

]
− 1

n2

∑
m∈Tℓ,k∈Cℓ

1

πℓ(1− πℓ)

∑
i,j:mℓ(i)=m,mℓ(j)=k

E
[
εiεj | {Wℓ}ℓ∈[K]

]
+

1

n2

∑
m,k∈Cℓ

1

(1− πℓ)2

∑
i,j:mℓ(i)=m,mℓ(j)=k

E
[
εiεj | {Wℓ}ℓ∈[K]

]
From Assumption 1 and Law of Large Numbers (LLN), we have as n → ∞

1

n2

∑
i,j:mℓ(i)=m,mℓ(j)=k

E
[
εiεj | {Wℓ}ℓ∈[K]

]
p−→
∫
(s,t)∈Bℓm,(s′,t′)∈Bℓk

E
[
ε(s,t)ε(s′,t′) | {Wℓ}ℓ∈[K]

]
f(s, t)f(s′, t′)dsdtds′dt′ = C

(m,k)
ℓ ,

where C
(m,k)
ℓ measures the correlation in “errors” between Bℓm and Bℓk, and is defined in Section

3.2. Then we have

E

( 1

n

∑
i

αℓi · εi

)2

| {Wℓ}ℓ∈[K]

 p−→ 1

π2
ℓ

∑
m,k∈Tℓ

C
(m,k)
ℓ − 1

πℓ(1− πℓ)

∑
m∈Tℓ,k∈Cℓ

C
(m,k)
ℓ +

1

(1− πℓ)2

∑
m,k∈Cℓ

C
(m,k)
ℓ .

Proof of Lemma 2. From the definition of Iℓi and Assumption 4, we have

Iℓi =

∫
Wℓ(s, t)di(s− si, t− ti)f(s, t)dsdt =

∑
m

W
(m)
ℓ

∫
(s,t)∈Bℓm

di(s− si, t− ti)f(s, t)dsdt︸ ︷︷ ︸
:=I

(m)
ℓi

=
∑
m

W
(m)
ℓ I

(m)
ℓi .
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By Assumption 4,
∑

m I
(m)
ℓi = 1. If m(i) ∈ Tℓ, then

Iℓi −Wℓi = −
∑
m∈Cℓ

I
(m)
ℓi ;

and if m(i) ∈ Cℓ, then

Iℓi −Wℓi =
∑
m∈Tℓ

I
(m)
ℓi .

As n → ∞, from LLN, we have

1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi) =− γℓ
πℓ

∑
m∈Tℓ

1

n

∑
i:mℓ(i)=m

∑
k∈Cℓ

I
(k)
ℓi − γℓ

1− πℓ

∑
m∈Cℓ

1

n

∑
i:mℓ(i)=m

∑
k∈Tℓ

I
(k)
ℓi

p−→− γℓ
πℓ

∑
m∈Tℓ

∑
k∈Cℓ

I
(m,k)
ℓ − γℓ

1− πℓ

∑
m∈Cℓ

∑
k∈Tℓ

I
(m,k)
ℓ = −γℓ

∑
m∈Tℓ

∑
k∈Cℓ

[
I
(m,k)
ℓ

πℓ
+

I
(k,m)
ℓ

1− πℓ

]
,

where I
(m,k)
ℓ measures the intensity of spillover effects from Bℓk to Bℓm, and is defined in Section

3.2.

Proof of Lemma 3. As n → ∞, from LLN, the sum of the average of control outcomes and finite-
sample approximation error converges to

1

n

∑
i

Wℓi − πℓ
πℓ

(
µi

1− πℓ
+ δℓ

)
=

1

nπℓ

∑
i:mℓ(i)∈Tℓ

µi −
1

n(1− πℓ)

∑
i:mℓ(i)Cℓ

µi +
δℓ
n

∑
i

Wℓi − πℓ
πℓ︸ ︷︷ ︸

p−→0

p−→ 1

πℓ

∑
m∈Tℓ

µ
(m)
ℓ − 1

1− πℓ

∑
m∈Cℓ

µ
(m)
ℓ ,

where µ
(m)
ℓ is Bℓm’s mean outcome in the global control state of all interventions, and is defined in

Section 3.2.

Proof of Lemma 4. As n → ∞, from LLN, the effects of other interventions converge to

1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

=
1

nπℓ

∑
i:mℓ(i)∈Tℓ

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)−
1

n(1− πℓ)

∑
i:mℓ(i)∈Cℓ

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

=
1

nπℓ

∑
k ̸=ℓ

τknℓk + γk
∑

i:mℓ(i)∈Tℓ

∑
j∈Tk

I
(j)
ki

− 1

n(1− πℓ)

∑
k ̸=ℓ

τk(nk − nℓk) + γk
∑

i:mℓ(i)∈Cℓ

∑
j∈Tk

I
(j)
ki


p−→ 1

πℓ

∑
k ̸=ℓ

τkπℓk + γk
∑
m∈Tℓ

∑
j∈Tk

I
(m,j)
ℓk

− 1

1− πℓ

∑
k ̸=ℓ

τk(πk − πℓk) + γk
∑
m∈Cℓ

∑
j∈Tk

I
(m,j)
ℓk

 ,

where nℓk =
∑

i 1(mℓ(i) ∈ Tℓ,mk(i) ∈ Tk), πℓk and I
(m,j)
ℓk are defined in Section 3.2. The second

equation follows from the proof of Lemma 2.

29



Proof of Theorem 1. From the decomposition (4) and from Lemmas 1-4, as n → ∞

E
[
δ̂ℓ − δℓ | {Wℓ}ℓ∈[K]

]
p−→ Biasℓ(spillover) + Biasℓ(mean) + Biasℓ(simultaneous),

where all of these three terms are defined in Theorem 1. From Lemma 1,

E

[
1

n

∑
i

αℓi · εi | {Wℓ}ℓ∈[K]

]
· [Biasℓ(spillover) + Biasℓ(mean) + Biasℓ(simultaneous)] = 0.

Then as n → ∞, the MSE converges to

E
[
(δ̂ℓ − δℓ)

2 | {Wℓ}ℓ∈[K]

]
p−→ Varℓ(error) + [Biasℓ(spillover) + Biasℓ(mean) + Biasℓ(simultaneous)]2 .

B Theoretical Results for Block Randomized Designs

An alternative design is block randomized design, where the treatment assignments are randomized
for every block. Similar to Appendix A, all the results in this section are derived for designs of
spatiotemporal experiments. For notation simplicity, in this section, we assume partitions ΠℓM are
the same for all ℓ and treatment assignments of any two interventions are independent.

Assumption 5 (Treatment assignments). The treatment assignments of intervention ℓ are inde-
pendent of the treatment assignments of intervention k for k ̸= ℓ, i.e.,

Wℓ(s, t) ⊥ Wk(s
′, t′), ∀(s, t), (s′, t′).

With more complicated notations, our results can be easily generalized to the case where par-
titions Πℓm vary with ℓ, and the general insights stay the same. We formulate the optimization
problem to solve the optimal partition ΠM for all interventions as:

min
ΠM

K∑
ℓ=1

E
[
(δ̂ℓ − δℓ)

2
]
. (5)

In this section, we seek to provide a decomposition of the bias and MSE of δ̂ℓ, where δ̂ℓ is
estimated from the Horvitz-Thompson estimator below

δ̂ℓ =
1

n

∑
i

(
Wℓi

πℓi
− 1−Wℓi

1− πℓi

)
Yi =

1

n

∑
i

αℓiYi (6)

where πℓi = P(Wℓi = 1) and αℓi =
Wℓi−πℓi
πℓi(1−πℓi)

. The key distinction between (6) and the Horvitz-
Thompson estimator for the switchback design is that (6) accounts for different treated probabilities
for different units.

B.1 Block-level Statistics
We introduce several more block-level statistics that are defined analogously to those in Section 3.2,
but are adapted to block randomized designs.
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Event fraction. For any block Bm, let

π(m) =

∫
(s,t)∈Bm

f(s, t)dsdt

be the fraction of events in Bm.

Treated fraction. For any block Bm, let

π
(m)
ℓ =

1

π(m)

∫
(s,t)∈Bm

Wℓ(s, t)f(s, t)dsdt

be the fraction of treated under intervention ℓ in Bm weighted by the event density.

Correlation in “errors”. For any block Bm, let

C(m) =

∫
(s,t)∈Bm,(s′,t′)∈Bm

E
[
ε(s,t)ε(s′,t′)

]
f(s, t)f(s′, t′)dsdtds′dt′

be the correlation in “errors” between any two units in block Bm. Compared with C
(m,m)
ℓℓ defined in

Section 3.2, the key difference is that the expected value of ε(s,t)ε(s′,t′) in C(m) does not condition
on {Wℓ}ℓ∈[K].

Interference. For any block Bm, let

I
(m)
ℓ =

∫
(s,t)∈Bm,(s′,t′)∈Bm

dℓ,(s,t)(s, t)f(s, t)f(s
′, t′)dsdtds′dt′

be the average intensity of spillover effects between any two points in block Bm. I
(m)
ℓ equals I(m,m)

ℓℓ

defined in Section 3.2.

B.2 Main Results

The following theorem provides a decomposition of the bias of δ̂ℓ and an upper bound of MSE,
where δ̂ℓ is estimated from the Horvitz-Thompson estimator and with πℓ replaced by π

m(i)
ℓ , where

m(i) ∈ [M ] denotes the index of block to which unit i belongs, i.e., (si, ti) ∈ Bℓm(i).

Theorem 2. Suppose Assumptions 1-5 hold and we run block randomized experiments. As n → ∞,
the bias of δ̂ℓ estimated from (2) converges to

E
[
δ̂ℓ − δℓ

]
p−→ Biasℓ(interference)

and the limit of MSE of δ̂ℓ can be upper bounded by

lim
n→∞

E
[
(δ̂ℓ − δℓ)

2
]
≤ 4 [Var(error) + Varℓ(simultaneous) + Varℓ(mean) +MSEℓ(interference)]
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where

Biasℓ(interference) =− γℓ
∑
m

(
π(m) − I

(m)
ℓ

)
Var(error) =

∑
m

C(m)

π
(m)
ℓ (1− π

(m)
ℓ )

Varℓ(mean) =
∑
m

(
µ(m) + (1− π

(m)
ℓ )π(m) · δℓ

)2
π
(m)
ℓ (1− π

(m)
ℓ )

Varℓ(simultaneous) =
∑
m

1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=ℓ

[
π
(m)
k (1− π

(m)
k )

(
τk · π(m) + γk · I

(m)
k

)2

+γ2k
∑
q ̸=m

π
(q)
k (1− π

(q)
k )(I

(q)
k )2

 +

∑
k ̸=ℓ

(
τk · π

(m)
k π(m) + γk ·

∑
q

π
(q)
k I

(q)
k

)2 .

MSEℓ(interference) =
∑
m

 1

π
(m)
ℓ

∑
k ̸=m

(
1− π

(k)
ℓ

)
I
(m,k)
ℓ

2

+
1

1− π
(m)
ℓ

∑
k ̸=m

π
(k)
ℓ I

(m,k)
ℓ

2

+
1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=m

π
(k)
ℓ (1− π

(k)
ℓ )

(
I
(m,k)
ℓ

)2
+
∑
m̸=k

[(
π(m) − I

(m)
ℓ

)(
π(k) − I

(k)
ℓ

)
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

Proposition 1. In Theorem 2, if π
(m)
ℓ ≡ 0.5, then the terms in the upper bound of the limit of

MSE are simplified to

Var(error) =4
∑
m

C(m)

Varℓ(mean) =4
∑
m

(
µ(m) + 0.5π(m)δℓ

)2

Varℓ(simultaneous) =
∑
m

∑
k ̸=ℓ

(τk · π(m) + γk · I
(m)
k

)2
+ γ2k

∑
q ̸=m

(I
(q)
k )2

+

∑
k ̸=ℓ

(
τk · π(m) + γk ·

∑
q

I
(q)
k

)2
MSEℓ(interference) =

(
1−

∑
m

I
(m)
ℓ

)2

+
∑
m ̸=k

[(
I
(m,k)
ℓ

)2
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

Given that C(m), µ(m), π(m), I
(m)
ℓ , and I

(m,k)
ℓ are proportional to the size of Bm following from

their definitions, suppose there exist some constants α, β ∈ [0, 1] such that

1. C(m) = Θ
(

1
M1+α

)
, ∀ m

2. µ(m) = Θ
(

1
M

)
, ∀ m

3. π(m) = Θ
(

1
M

)
, ∀ m
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4. I
(m)
ℓ = O

(
1

M1+β

)
, ∀ m

5. I
(m,k)
ℓ = O

(
1

M2

)
, ∀ m ̸= k, ℓ

When π
(m)
ℓ ≡ 0.5, the leading terms in the upper bound of MSE are

lim
n→∞

E
[
(δ̂ℓ − δℓ)

2
]
= 4

∑
m

C(m)

︸ ︷︷ ︸
Θ( 1

Mα )

+
∑
m

∑
k ̸=ℓ

(
τk · π(m) + γk ·

∑
q

I
(q)
k

)2

︸ ︷︷ ︸
O
(

1

M2β−1

)
+

(
1−

∑
m

I
(m)
ℓ︸ ︷︷ ︸

O
(

1

Mβ

)

)2

+O

(
1

M

)

On one hand, if we increase M , then both Var(error) and Varℓ(simultaneous) decrease. On the
other hand, if we increase M , then MSEℓ(interference) decreases. Therefore, we need to optimally
choose M balance different terms in MSE.

B.3 Proof of Theorem 2

Proof of Theorem 2. The decomposition of the estimation error of δ̂ℓ continues to hold. Then the
bias decomposition follows directly from Lemmas 5-8 that provide the limit of the expected value
of each term in the decomposition of δ̂ℓ − δℓ.

For the upper bound of the limit of the MSE, from Cauchy–Schwarz inequality, we have

(δ̂ℓ − δℓ)
2 ≤4

( 1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

)2

+

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2

+

(
1

n

∑
i

αℓi · εi

)2

+

(
1

n

∑
i

Wℓi − πℓi
πℓi

(
µi

1− πℓi
+ δℓ

))2


where αℓi =
Wℓi−πℓi
πℓi(1−πℓi)

and πℓi = P(Wℓi = 1) is the treated probability of intervention ℓ for unit i.
Lemmas 5-8 provide the limit of the expected value of each term in the RHS of the above inequality.
Then the upper bound of the limit of the MSE follows directly from Lemmas 5-8.

Lemma 5 (Correlation in Errors). Under Assumptions 1-5, the mean of 1
n

∑
i αℓi · εi,

E

[
1

n

∑
i

αℓi · εi

]
= 0

As n → ∞, the second moment converges to

E

( 1

n

∑
i

αℓi · εi

)2
 p−→

∑
m

C(m)

π
(m)
ℓ (1− π

(m)
ℓ )

where C(m) =
∫
(s,t)∈Bm,(s′,t′)∈Bm

E
[
ε(s,t)ε(s′,t′)

]
f(s, t)f(s′, t′)dsdtds′dt′. If π(m)

ℓ ≡ 0.5, then

E

( 1

n

∑
i

αℓi · εi

)2
 p−→ 4

∑
m

C(m).
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Lemma 6 (Interference). Under Assumptions 1-5, the mean of 1
n

∑
i αℓi · γℓ · (Iℓi −Wℓi) is

E

[
1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

]
p−→ −γℓ

∑
m

(
π(m) − I

(m)
ℓ

)
.

As n → ∞, the second moment converges to

E

( 1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

)2


p−→
∑
m

 1

π
(m)
ℓ

∑
k ̸=m

(
1− π

(k)
ℓ

)
I
(m,k)
ℓ

2

+
1

1− π
(m)
ℓ

∑
k ̸=m

π
(k)
ℓ I

(m,k)
ℓ

2

+
1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=m

π
(k)
ℓ (1− π

(k)
ℓ )

(
I
(m,k)
ℓ

)2+
∑
m̸=k

[(
π(m) − I

(m)
ℓ

)(
π(k) − I

(k)
ℓ

)
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

If π(m)
ℓ ≡ 0.5, then

E

( 1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

)2
 p−→

(
1−

∑
m

I
(m)
ℓ

)2

+
∑
m̸=k

[(
I
(m,k)
ℓ

)2
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

Lemma 7 (Interference from Other Interventions). Under Assumptions 1-5, the mean of 1
n

∑
i αℓi

∑
k ̸=ℓ(τk·

Wki + γk · Iki) is 0, and the second moment is

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2
p−→
∑
m

1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=ℓ

[
π
(m)
k (1− π

(m)
k )

(
τk · π(m) + γk · I

(m)
k

)2
+ γ2k

∑
q ̸=m

π
(q)
k (1− π

(q)
k )(I

(q)
k )2


+

∑
k ̸=ℓ

(
τk · π

(m)
k π(m) + γk ·

∑
q

π
(q)
k I

(q)
k

)2 .

If π(m)
k ≡ 0.5 for all k, then the second moment converges to

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2
p−→
∑
m

∑
k ̸=ℓ

(τk · π(m) + γk · I
(m)
k

)2
+ γ2k

∑
q ̸=m

(I
(q)
k )2

+

∑
k ̸=ℓ

(
τk · π(m) + γk ·

∑
q

I
(q)
k

)2 .

Lemma 8 (Constant Term). Under Assumptions 1-5, the mean of 1
n

∑
i
Wℓi−πℓi

πℓi

(
µi

1−πℓi
+ δℓ

)
is 0,

and the second moment equals

E

( 1

n

∑
i

Wℓi − πℓi
πℓi

(
µi

1− πℓi
+ δℓ

))2
 p−→

∑
m

(
µ(m) + (1− π

(m)
ℓ )π(m) · δℓ

)2
π
(m)
ℓ (1− π

(m)
ℓ )

.
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If π(m)
k ≡ 0.5 for all k, then the second moment converges to

E

( 1

n

∑
i

Wℓi − πℓi
πℓi

(
µi

1− πℓi
+ δℓ

))2
 p−→ 4

∑
m

(
µ(m) + 0.5π(m)δℓ

)2
.

B.3.1 Proof of Lemma 5

Proof of Lemma 5. The expected value of 1
n

∑
i αℓi · εi is zero following that

E

[
1

n

∑
i

αℓi · εi

]
=

1

n

∑
i

E[αℓi] ·E[εi] = 0

and the second moment of this term is

E

( 1

n

∑
i

αℓi · εi

)2
 =

1

n2

∑
i

E[ε2i ]

πℓi(1− πℓi)
+

1

n2

∑
i ̸=j

E[WℓiWℓj ]− πℓiπℓj
πℓi(1− πℓi)πℓj(1− πℓj)

·E[εiεj ]

If m(i) = m(j), then
E[WℓiWℓj ]− πℓiπℓj

πℓi(1− πℓi)πℓj(1− πℓj)
=

1

πℓi(1− πℓi)
;

Otherwise,
E[WℓiWℓj ]− πℓiπℓj

πℓi(1− πℓi)πℓj(1− πℓj)
= 0.

Combining two cases together, as n → ∞, from LLN, we have

E

( 1

n

∑
i

αℓi · εi

)2
 =

1

n2

∑
i

∑
j:m(j)=m(i)

E[εiεj ]

πℓi(1− πℓi)

p−→
∑
m

C
(m)
ℓ

π
(m)
ℓ (1− π

(m)
ℓ )

.

If π(m)
ℓ ≡ 0.5, then the limit is simplified to

E

( 1

n

∑
i

αℓi · εi

)2
 p−→ 4

∑
m

C
(m)
ℓ .

B.3.2 Proof of Lemma 6

Proof of Lemma 6. The expected value of 1
n

∑
i αℓi · γℓ · (Iℓi −Wℓi) is nonzero and equals

E

[
1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

]
=

γℓ
n

∑
i

E[αℓi · (Iℓi −Wℓi)] = −γℓ
n

∑
i

(1− I
m(i)
ℓi )
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where I
(m(i))
ℓi =

∫
(s,t)∈Bm(i)

dℓ,(si,ti)(s, t)f(s, t)dsdt. The proof of E[αℓiIℓi] = I
(m(i))
ℓi is as follows.

Note that E[αℓiIℓi] = E[αℓiE[Iℓi | Wℓi]] and

E[Iℓi | Wℓi] =E

[∑
m

W
(m)
ℓ I

(m)
ℓi | Wℓi

]
= Wℓi · I

(m(i))
ℓi +

∑
k ̸=m(i)

E[W
(k)
ℓ ] · I(k)ℓi

=Wℓi · I
(m(i))
ℓi +

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓi .

Since E[αℓi] = 0 and E[αℓiWℓi] = 1, we have

E[αℓiIℓi] = E[αℓiE[Iℓi | Wℓi]] = I
(m(i))
ℓi .

As n → ∞, from LLN, the expected value converges to

E

[
1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

]
=− γℓ

∑
m

1

n

∑
i:m(i)=m

(1− I
m(i)
ℓi )

p−→ −γℓ
∑
m

(π(m) − I
(m)
ℓ ),

where I
(m)
ℓ =

∫
(s,t)∈Bm,(s′,t′)∈Bm

dℓ,(s,t)(s, t)f(s, t)f(s
′, t′)dsdtds′dt′ that equals I(m,m)

ℓℓ defined in Sec-

tion 3.2. The limit is generally nonzero, implying that δ̂ℓ is biased and the bias scales with how
much a unit is interfered by units in other blocks.

We can consider the second moment of 1
n

∑
i αℓi · γℓ · (Iℓi −Wℓi).

E

( 1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

)2
 =

γ2ℓ
n2

∑
i

E[α2
ℓi · (Iℓi −Wℓi)

2] +
γ2ℓ
n2

∑
i ̸=j

E[αℓiαℓj · (Iℓi −Wℓi)(Iℓj −Wℓj)]

Let us first analyze the term E[α2
ℓi · (Iℓi −Wℓi)

2].

E[α2
ℓi · (Iℓi −Wℓi)

2] = E[α2
ℓi(W

2
ℓi − 2WℓiE[Iℓi | Wℓi] +E[I2ℓi | Wℓi])]

For the term E[I2ℓi | Wℓi], we have

E[I2ℓi | Wℓi] = E

(∑
m

W
(m)
ℓ I

(m)
ℓi

)2

| Wℓi


=Wℓi · (I

(m(i))
ℓi )2 + 2Wℓi · I

(m(i))
ℓi ·

∑
k ̸=m(i)

E[W
(k)
ℓ ] · I(k)ℓi + E

 ∑
k ̸=m(i)

W
(k)
ℓ · I(k)ℓi

2
=Wℓi · (I

(m(i))
ℓi )2 + 2Wℓi · I

(m(i))
ℓi ·

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓi +

∑
k ̸=m(i)

π
(k)
ℓ · (I(k)ℓi )2 +

∑
k,j ̸=m(i),k ̸=j

π
(k)
ℓ π

(j)
ℓ · I(k)ℓi I

(j)
ℓi .
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Since E[α2
ℓi] =

1
πℓi(1−πℓi)

and E[α2
ℓiWℓi] = E[α2

ℓiW
2
ℓi] =

1
πℓi

, we have

E[α2
ℓi · (Iℓi −Wℓi)

2] =
1

πℓi
− 2

πℓi

[
I
(m(i))
ℓi +

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓi

]

+
1

πℓi

(I(m(i))
ℓi )2 + 2 · I(m(i))

ℓi ·
∑

k ̸=m(i)

π
(k)
ℓ · I(k)ℓi


+

1

πℓi(1− πℓi)

 ∑
k ̸=m(i)

π
(k)
ℓ · (I(k)ℓi )2 +

∑
k,j ̸=m(i),k ̸=j

π
(k)
ℓ π

(j)
ℓ · I(k)ℓi I

(j)
ℓi


=

1

πℓi

(
1− I

(m(i))
ℓi

)2
− 2

πℓi
(1− I

(m(i))
ℓi ) ·

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓi

+
1

πℓi(1− πℓi)

 ∑
k ̸=m(i)

π
(k)
ℓ · (I(k)ℓi )2 +

∑
k,j ̸=m(i),k ̸=j

π
(k)
ℓ π

(j)
ℓ · I(k)ℓi I

(j)
ℓi

 .

Let us consider the cross term E[αℓiαℓj · (Iℓi −Wℓi)(Iℓj −Wℓj)].

E[αℓiαℓj · (Iℓi −Wℓi)(Iℓj −Wℓj)]

=E[αℓiαℓj · (E[IℓiIℓj | Wℓi,Wℓj ]−E[Iℓj | Wℓi,Wℓj ] ·Wℓi −E[Iℓi | Wℓi,Wℓj ] ·Wℓj +WℓiWℓj)]

This term depends on whether i and j are in the same block or not.
If i and j are in the same block, i.e., m(i) = m(j), then E[IℓiIℓj | Wℓi,Wℓj ] equals

E[IℓiIℓj | Wℓi,Wℓj ] = E

[(∑
m

W
(m)
ℓ I

(m)
ℓi

)(∑
m

W
(m)
ℓ I

(m)
ℓj

)
| Wℓi,Wℓj

]
=Wℓi · I

(m(i))
ℓi I

(m(i))
ℓj +Wℓi · I

(m(i))
ℓi ·

∑
k ̸=m(i)

E[W
(k)
ℓ ]︸ ︷︷ ︸

π
(k)
ℓ

·I(k)ℓj +Wℓi · I
(m(i))
ℓj ·

∑
k ̸=m(i)

E[W
(k)
ℓ ]︸ ︷︷ ︸

π
(k)
ℓ

·I(k)ℓi

+
∑

k ̸=m(i)

E[W
(k)
ℓ ]︸ ︷︷ ︸

π
(k)
ℓ

·I(k)ℓi I
(k)
ℓj +

∑
k,p̸=m(i),k ̸=p

E[W
(k)
ℓ ]︸ ︷︷ ︸

π
(k)
ℓ

E[W
(p)
ℓ ]︸ ︷︷ ︸

π
(p)
ℓ

·I(k)ℓi I
(p)
ℓj .

E[Iℓj | Wℓi,Wℓj ] equals

E[Iℓj | Wℓi,Wℓj ] =E

[∑
m

W
(m)
ℓ I

(m)
ℓj | Wℓi,Wℓj

]
= WℓiI

(m(i))
ℓj +

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓj ,

and E[Iℓi | Wℓi,Wℓj ] equals

E[Iℓi | Wℓi,Wℓj ] =WℓiI
(m(i))
ℓi +

∑
k ̸=m(i)

π
(k)
ℓ · I(k)ℓi .

Combining these terms together, since E[αℓiαℓj ] = 1
πℓi(1−πℓi)

, E[αℓiαℓjWℓi] = E[αℓiαℓjWℓj ] =
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E[αℓiαℓjWℓiWℓj ] =
1
πℓi

, we have

E[αℓiαℓj · (Iℓi −Wℓi)(Iℓj −Wℓj)]

=
1
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ℓi I
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1
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π
(k)
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1
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 1
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−

 1
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1

πℓi

∑
k ̸=m(i)

π
(k)
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1

πℓi
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πℓi

(
1− I
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π
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ℓ · I(k)ℓi I
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If i and j are in different blocks, i.e., m(i) ̸= m(j), then E[IℓiIℓj | Wℓi,Wℓj ] equals

E[IℓiIℓj | Wℓi,Wℓj ] = E

[(∑
m

W
(m)
ℓ I

(m)
ℓi

)(∑
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W
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ℓ I
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ℓi +Wℓj · I
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+ (Wℓi · I
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(m(j))
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π
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π
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+
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π
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E[Iℓj | Wℓi,Wℓj ] equals

E[Iℓj | Wℓi,Wℓj ] =E
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W
(m)
ℓ I

(m)
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and E[Iℓi | Wℓi,Wℓj ] equals

E[Iℓi | Wℓi,Wℓj ] =WℓiI
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π
(k)
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Combining these terms together, since E[αℓiαℓj ] = E[αℓi]E[αℓj ] = 0, E[αℓiαℓjWℓi] = E[αℓiαℓjW
2
ℓi] =

E[αℓiαℓjWℓj ] = E[αℓiαℓjW
2
ℓj ] = 0, and E[αℓiαℓjWℓiWℓj ] = E[αℓiWℓi]E[αℓjWℓj ] = 1, we have

E[αℓiαℓj · (Iℓi −Wℓi)(Iℓj −Wℓj)] =I
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ℓj + I

(m(j))
ℓi I
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Then as n → ∞, from LLN, we have
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∑
m

1

n2

∑
i,j:m(i)=m(j)=m

 1

π
(m)
ℓ

(
1− I

(m)
ℓi

)(
1− I

(m)
ℓj

)
− 1

π
(m)
ℓ

(
1− I

(m)
ℓi

)
·
∑
k ̸=m

π
(k)
ℓ · I(k)ℓj

− 1

π
(m)
ℓ

(
1− I

(m)
ℓj

)
·
∑
k ̸=m

π
(k)
ℓ · I(k)ℓi

+
1

π
(m)
ℓ (1− π

(m)
ℓ )

·

∑
k ̸=m

π
(k)
ℓ · I(k)ℓi I

(k)
ℓj +

∑
k ̸=m,p ̸=m,k ̸=p

π
(k)
ℓ π

(p)
ℓ · I(k)ℓi I

(p)
ℓj


+
∑
m ̸=k

1

n2

∑
i,j:m(i)=m,m(j)=k

[
(1− I

(m)
ℓi )(1− I

(k)
ℓj ) + I

(k)
ℓi I

(m)
ℓj

]
p−→
∑
m

 1

π
(m)
ℓ

(
π(m) − I

(m)
ℓ

)2
− 2

π
(m)
ℓ

(
π(m) − I

(m)
ℓ

)∑
k ̸=m

π
(k)
ℓ I

(m,k)
ℓ +

1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=m

π
(k)
ℓ I

(m,k)
ℓ

2

+
1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=m

π
(k)
ℓ (1− π

(k)
ℓ )

(
I
(m,k)
ℓ

)2+
∑
m̸=k

[(
π(m) − I

(m)
ℓ

)(
π(k) − I

(k)
ℓ

)
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

=
∑
m

 1

π
(m)
ℓ

∑
k ̸=m

(
1− π

(k)
ℓ

)
I
(m,k)
ℓ

2

+
1

1− π
(m)
ℓ

∑
k ̸=m

π
(k)
ℓ I

(m,k)
ℓ

2

+
1

π
(m)
ℓ (1− π

(m)
ℓ )

∑
k ̸=m

π
(k)
ℓ (1− π

(k)
ℓ )

(
I
(m,k)
ℓ

)2+
∑
m̸=k

[(
π(m) − I

(m)
ℓ

)(
π(k) − I

(k)
ℓ

)
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

If π(m)
ℓ ≡ 0.5, then the limit is simplified to

E

( 1

n

∑
i

αℓi · γℓ · (Iℓi −Wℓi)

)2


p−→
∑
m

∑
k ̸=m

I
(m,k)
ℓ

2

+
∑
k ̸=m

(
I
(m,k)
ℓ

)2+
∑
m ̸=k

[(
π(m) − I

(m)
ℓ

)(
π(k) − I

(k)
ℓ

)
+ I

(m,k)
ℓ I

(k,m)
ℓ

]

=

(
1−

∑
m

I
(m)
ℓ

)2

+
∑
m ̸=k

[(
I
(m,k)
ℓ

)2
+ I

(m,k)
ℓ I

(k,m)
ℓ

]
.

39



B.3.3 Proof of Lemma 7

Proof of Lemma 7. The expected value of 1
n

∑
i αℓi

∑
k ̸=ℓ(τk ·Wki + γk · Iki) is

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

 =
1

n

∑
i

E[αℓi] ·
∑
k ̸=ℓ

E [τk ·Wki + γk · Iki] = 0.

The second moment equals

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2 =
1

n2

∑
i

E[α2
ℓi] ·E

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2
+

1

n2

∑
i ̸=j

E[αℓiαℓj ] ·E

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

∑
k ̸=ℓ

(τk ·Wkj + γk · Ikj)


Let us calculate the first term. The expected value of τk ·Wki + γk · Iki is

E[τk ·Wki + γk · Iki] = τk · πki + γk ·E

[∑
m

W
(m)
k I

(m)
ki

]
= τk · πki + γk ·

∑
m

π
(m)
k I

(m)
ki

and the second moment equals

E[(τk ·Wki + γk · Iki)2] =τ2k · πki + 2τkγkπki ·

·I(m(i))
ki +

∑
p ̸=m(i)

π
(p)
k · I(p)ki


+ γ2k

∑
m

π
(m)
k (I

(m)
ki )2 +

∑
m ̸=p

π
(m)
k π

(p)
k I

(m)
ki I

(p)
ki

 ,

where we use E[WkiIki] equals

E[WkiIki] =E[Wki ·E[Iki | Wki]] = E

Wki · I
(m(i))
ki +Wki

∑
p ̸=m(i)

π
(p)
k · I(p)ki


=πki · I

(m(i))
ki + πki

∑
p ̸=m(i)

π
(p)
k · I(p)ki

and E[I2ki] equals

E[I2ki] = E

(∑
m

W
(m)
k I

(m)
ki

)2
 =

∑
m

π
(m)
k (I

(m)
ki )2 +

∑
m ̸=p

π
(m)
k π

(p)
k I

(m)
ki I

(p)
ki .

As any two interventions are independent, the cross term of intervention k and h equals

E [(τk ·Wki + γk · Iki)(τh ·Whi + γh · Ihi)] = E [(τk ·Wki + γk · Iki)] ·E [(τh ·Whi + γh · Ihi)]

=

(
τk · πki + γk ·

∑
m

π
(m)
k I

(m)
ki

)(
τh · πhi + γh ·

∑
m

π
(m)
h I

(m)
hi

)
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Then the first term equals

E[α2
ℓi] ·E

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2
=

1

πℓi(1− πℓi)

∑
k ̸=ℓ

τ2k · πki + 2τkγkπki ·

I
(m(i))
ki +

∑
p ̸=m(i)

π
(p)
k · I(p)ki


+γ2k

∑
m

π
(m)
k (I

(m)
ki )2 +

∑
m̸=p

π
(m)
k π

(p)
k I

(m)
ki I

(p)
ki


+

1

πℓi(1− πℓi)

∑
k ̸=ℓ,h̸=ℓ,k ̸=h

(
τk · πki + γk ·

∑
m

π
(m)
k I

(m)
ki

)(
τh · πhi + γh ·

∑
m

π
(m)
h I

(m)
hj

)
.

For the second term, if m(i) ̸= m(j), then E[αℓiαℓj ] = 0; if m(i) = m(j), then E[αℓiαℓj ] =
1

πℓi(1−πℓi)
and

E

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

∑
k ̸=ℓ

(τk ·Wkj + γk · Ikj)


=
∑
k ̸=ℓ

τ2k · πki + τkγkπki ·

I
(m(i))
ki + I

(m(i))
kj +

∑
p ̸=m(i)

π
(p)
k · (I(p)ki + I

(p)
kj )


+γ2k

∑
m

π
(m)
k I

(m)
ki I

(m)
kj +

∑
m̸=p

π
(m)
k π

(p)
k I

(m)
ki I

(p)
kj


+

∑
k ̸=ℓ,h ̸=ℓ,k ̸=h

(
τk · πki + γk ·

∑
m

π
(m)
k I

(m)
ki

)(
τh · πhj + γh ·

∑
m

π
(m)
h I

(m)
hj

)
.

41



In summary, as n → ∞, from LLN, the second moment converges to

E

 1

n

∑
i

αℓi

∑
k ̸=ℓ

(τk ·Wki + γk · Iki)

2
=
∑
m

1

π
(m)
ℓ (1− π

(m)
ℓ )

1

n2

∑
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∑
k ̸=ℓ

τ2k · π(m)
k + τkγkπ

(m)
k ·

I
(m)
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(m)
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∑
p ̸=m

π
(p)
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(p)
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∑
q

π
(q)
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(q)
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(q)
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∑
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π
(q)
k π

(p)
k I

(q)
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(p)
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+

∑
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(m)
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∑
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π
(p)
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∑
q

π
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(q)
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∑
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(q)
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+
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(
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(m)
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∑
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p−→
∑
m

1

π
(m)
ℓ (1− π
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+
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(
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(m)
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∑
q

π
(q)
k I

(q)
k

)2 .

If π(m)
k ≡ 0.5 for all k, then the second moment converges to

E
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n

∑
i

αℓi

∑
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(τk ·Wki + γk · Iki)

2
p−→
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m
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+
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q
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B.3.4 Proof of Lemma 8

Proof of Lemma 8. Let us consider the term 1
n

∑
i
Wℓi−πℓi

πℓi

(
µi

1−πℓi
+ δℓ

)
. First the expected value of

this term is zero

E

[
1

n

∑
i

Wℓi − πℓi
πℓi

(
µi

1− πℓi
+ δℓ

)]
=

1

n

∑
i

E[Wℓi]− πℓi
πℓi

(
µi

1− πℓi
+ δℓ

)
= 0

and the second moment of this term is

E
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Wℓi − πℓi
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(
µi
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+ δℓ
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=
1
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∑
i
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i

πℓi(1− πℓi)
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2µiδℓ
πℓi
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)

+
1
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(
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1− πℓi
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)(
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1− πℓj
+ δℓ

)
.

If m(i) ̸= m(j), then E[WℓiWℓj ] = E[Wℓi]EWℓj ] = πℓiπℓj . Otherwise, ifm(i) = m(j), then
E[WℓiWℓj ]−πℓiπℓj

πℓiπℓj
= 1−πℓi

πℓi
and then the second moment is simplified to

E

( 1

n

∑
i

Wℓi − πℓi
πℓi

(
µi

1− πℓi
+ δℓ

))2


=
1

n2
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i
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( µiµj

πℓi(1− πℓi)
+

(µi + µj)δℓ
πℓi

+
1− πℓi
πℓi

· δ2ℓ
)
.

As n → ∞, from LLN, the second moment converges to

E

( 1

n

∑
i

Wℓi − πℓi
πℓi

(
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1− πℓi
+ δℓ

))2
 p−→
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m
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)2
π
(m)
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.

If π(m)
k ≡ 0.5 for all k, then the limit is simplified to

E

( 1

n

∑
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Wℓi − πℓi
πℓi

(
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1− πℓi
+ δℓ

))2
 p−→ 4

∑
m

(
µ(m) + 0.5π(m)δℓ
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.
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