MSE 334 Computation of Equilibria

Lecture 4 - 03/28/2009

Scribe: Yu Wu

Lemke-Howson Algorithm

Prof. Amin Saberi

Consider a two person bimatrix game where the payoff matrices are $A_{m \times n}$ and $B_{m \times n}$. A pair of strategies $(\boldsymbol{x}, \boldsymbol{y})$ is a Nash equilibrium for game (A, B) if and only if

$$\forall 1 \le i \le m, \ x_i > 0 \Rightarrow (A\boldsymbol{y})_i = \max_k (A\boldsymbol{y})_k$$
$$\forall m+1 \le j \le m+n, \ y_j > 0 \Rightarrow (\boldsymbol{x}^T B)_j = \max_k (\boldsymbol{x}^T B)_k$$

Let $M = \{1, 2, \dots, m\}$ and $N = \{m + 1, m + 2, \dots, m + n\}$. Define the support of \boldsymbol{x} by $S(\boldsymbol{x}) = \{i \mid x_i > 0\}$. Define the support of \boldsymbol{y} similarly.

Definition 1. A bimatrix game (A, B) is non-degenerate if and only if for every strategy \boldsymbol{x} of the row player, $|S(\boldsymbol{x})|$ is at least the number of pure best responses to \boldsymbol{x} , and for every strategy \boldsymbol{y} of the column player, $|S(\boldsymbol{y})|$ is bigger than or equal to the number of pure best responses to \boldsymbol{y} .

An equivalent definition is: for any \mathbf{y}' that is a best response to \mathbf{x} , $|S(\mathbf{x})| \ge |S(\mathbf{y}')|$, and for any \mathbf{x}' that is a best response to \mathbf{y} , $|S(\mathbf{y})| \ge |S(\mathbf{x}')|$.

Also note that we can slightly perturb the payoff matrices to make the game non-degenerate. Therefore WLLOG (with little loss of generality!), we can assume that game (A, B) is non-degenerate.

The following proposition is directly implied by the definition:

Proposition 2. If (x, y) is a Nash equilibrium of a non-degenerate bimatrix game, then |S(x)| = |S(y)|.

Now consider the following Polytopes:

$$P = \{(u, \boldsymbol{x}) \mid x_i \ge 0, \sum x_i = 1, \ \boldsymbol{x}^T B \le u \cdot \mathbf{1}\}$$
$$Q = \{(v, \boldsymbol{y}) \mid y_j \ge 0, \sum y_j = 1, \ A \boldsymbol{y} \le v \cdot \mathbf{1}\}$$

By the above proposition it is easy to see that every Nash equilibrium can be described as a pair of corner points of P and Q. For simplicity of notation, consider the following transformations"

$$\overline{P} = \{ \boldsymbol{x} \mid x_i \ge 0, \ \boldsymbol{x}^T B \le \boldsymbol{1} \}$$

 $\overline{Q} = \{ \boldsymbol{y} \mid y_i \ge 0, \ A \boldsymbol{y} \le \boldsymbol{1} \}.$

and

There is a one to one correspondence between the corners of P and \overline{P} , except the zero corner of \overline{P} . In fact, for each corner (u, \boldsymbol{x}) of $P, \boldsymbol{x}/u$ is a corner of \overline{P} ; and for each nonzero corner \boldsymbol{x} of $\overline{P}, (1/\sum x_i, \boldsymbol{x}/\sum x_i)$ is a corner of P. The same correspondence exists for Q and \overline{Q} .

The corner points of \overline{P} and \overline{Q} are of our interest because they correspond to special set of strategies of the players. \boldsymbol{x} is a corner point of \overline{P} implies some inequalities among $\{\boldsymbol{x} \mid x_i \geq 0, \, \boldsymbol{x}^T B \leq 1\}$ bind. If $x_i = 0$, then row i is not used in the mixed strategy \boldsymbol{x} ; if $(\boldsymbol{x}^T B)_j = 1$, then column j is a best response to row player's strategy \boldsymbol{x} . Next we give an explicit connection of the corner points of $\overline{P}, \overline{Q}$ and Nash equilibria.

Define graph G_1 , G_2 as follows: The vertices of G_1 , G_2 are the corner points of \overline{P} , \overline{Q} respectively. There is an edge between \boldsymbol{x}_1 and \boldsymbol{x}_2 in G_1 if and only if \boldsymbol{x}_1 and \boldsymbol{x}_2 are adjacent corner points of \overline{P} . Define the edges of G_2 similarly. Then label each vertex \boldsymbol{x} of G_1 with the indices of the tight constraints in \overline{P} , i.e.

$$L(\boldsymbol{x}) = \{i \,|\, x_i = 0\} \cup \{j \,|\, (\boldsymbol{x}^T B)_j = 1\}$$

Label G_2 similarly. By the non-degeneracy of the game, $|L(\boldsymbol{x})| \leq m$ and $|L(\boldsymbol{y})| \leq n$. We have the following theorem.

Theorem 3. A pair (\mathbf{x}, \mathbf{y}) is a Nash equilibrium if and only if (\mathbf{x}, \mathbf{y}) is completely labeled: $L(\mathbf{x}) \cup L(\mathbf{y}) = M \cup N = \{1, 2, \dots, m+n\}.$

Proof Suppose $L(\boldsymbol{x}) \cup L(\boldsymbol{y}) = \{1, 2, \dots, m+n\}$. For each $i \in M$ that is in the label set of \boldsymbol{x} , row i is not used in \boldsymbol{x} , for each $j \in N$ that is in the label set of \boldsymbol{x} , column j for the other player is a best response to \boldsymbol{x} . These conclusions are symmetric for the label set of \boldsymbol{y} . Let $M_1 = \{i|x_i = 0\}, N_2 = \{j|(\boldsymbol{x}^T B)_j = 1\};$ $N_1 = \{j|y_j = 0\}, M_2 = \{i|(A\boldsymbol{y})_i = 1\}$. Since $|L(\boldsymbol{x})| \leq m$ and $|L(\boldsymbol{y})| \leq n$, then $L(\boldsymbol{x}) \cup L(\boldsymbol{y}) = M \cup N$ implies (M_1, M_2) is a partition of M and (N_1, N_2) is a partition of N. Therefore \boldsymbol{x} consists of strategies only in M_2 , and is a best response to \boldsymbol{y} .

On the other hand, if $(\boldsymbol{x}, \boldsymbol{y})$ is a pair of Nash equilibrium, then $M \setminus S(\boldsymbol{x}) \subset L$ because those rows are not used in \boldsymbol{x} , and $S(\boldsymbol{y}) \in L$ because those columns are best responses to \boldsymbol{x} . Note the game is nondegenerate, so $|S(\boldsymbol{x})| = |S(\boldsymbol{y})|$, then $L(\boldsymbol{x}) = (M \setminus S(\boldsymbol{x})) \cup S(\boldsymbol{y})$. Similarly, $L(\boldsymbol{y}) = (N \setminus S(\boldsymbol{y})) \cup S(\boldsymbol{x})$. Hence $L(\boldsymbol{x}) \cup L(\boldsymbol{y}) = M \cup N$.

Finally, we use this connection of Nash equilibrium and graphs G_1 , G_2 to give a combinatorial (albeit exponential-time) algorithm of finding a Nash equilibrium in a bimatrix game. The algorithm is by Lemke and Howson. The basic idea is to pivot alternatingly in \overline{P} and \overline{Q} until we find a pair that is completely labeled.

Let $G = G_1 \times G_2$, i.e., vertices of G are defined as $v = (v_1, v_2)$ where $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$. There is an edge between $v = (v_1, v_2)$ and $v' = (v'_1, v'_2)$ in G if and only if $(v_1, v'_1) \in E(G_1)$ or $(v_2, v'_2) \in E(G_2)$. Then for each vertex $v = (v_1, v_2) \in V(G)$, define its label by $L(v) = L(v_1) \cup L(v_2)$. For each $k \in M \cup N$, define the set of "k-almost" completely labeled vertices by

$$U_k = \{ v \in V(G) | L(v) \supseteq M \cup N \setminus \{k\} \}$$

We have the following key results of U_k :

Theorem 4. For any $k \in M \cup N$,

- 1. (0,0) and all Nash equilibrium points belong to U_k . Furthermore, their degree in the graph induced by U_k is exactly one.
- 2. The degree of every other vertex in the graph induced by U_k is two.

Proof First, note that the label set of (0,0) and any Nash equilibrium is exactly $M \cup N$, so (0,0) and all Nash equilibrium points are in U_k for any k. Furthermore, let $v = (v_1, v_2)$ be (0,0) or any Nash equilibrium point. Without loss of generality, suppose $k \in L(v_1)$, where v_1 is a corner point of the polytope \overline{P} . Among all edges in G_1 that v_1 is incident to, there is only one direction leading to a vertex v'_1 without label k (i.e. loosing the binding constraint corresponding to label k). It is easy to see that $(v'_1, v_2) \in U_k$, therefore there is only one neighbor of v in U_k .

For part (2), let $v = (v_1, v_2)$ be any other point in U_k . Then there must be a duplicated label in $L(v_1)$ and $L(v_2)$, denoted by l. Similarly to (2), there is exactly one direction of v_1 's edges in \overline{P} to drop the label l, and the new vertex v'_1 has all labels v_1 has except l, so $(v'_1, v_2) \in U_k$. It is symmetric for v_2 . Hence there are two neighbors of v in U_k .

In other words, in a non-degenerate bimatrix game (A, B) the set of k-almost completely labeled vertices in G and their induced edges consist of disjoint paths and cycles. The endpoints of the paths are the artificial equilibrium (0,0) and the equilibria of the game.

Corollary 5. A non-degenerate bimatrix game has an odd number of Nash equilibria.

Algorithm (Lemke-Howson)

Input: A Non-degenerate bimatrix game (A, B). **Output**: One Nash equilibrium of the game.

- 1. Choose $k \in M \cup N$.
- 2. Start with $(x,y) = (0,0) \in G$. Drop label k from (x,y) (from $x \in \overline{P}$ if $k \in M$, from $y \in \overline{Q}$ if $k \in N$).
- 3. Let (x, y) be the current vertex. Let l be the label that is picked up by dropping label k. If l = k, terminate and (x, y) is a Nash equilibrium of the game. If $l \neq k$, drop l in the other polytope and repeat this step.

The Lemke-Howson algorithm starts from the artificial equilibrium (0,0) and follows the path in U_k . Since the number of vertices of G is exponential in n and m, so the algorithm may take an exponential time to find a Nash equilibrium.

Reference

- [1]. C. E. Lemke and J. T. Howson, Jr., Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12.
- [2]. B. V. Stengel, Computing Equilibria for Two-Person Games. Chapter 45, Handbook of Game Theory with Economic Applications, Vol. 3.
- [3]. B. V. Stengel, Equilibrium Computation for Two-Person Games in Strategic and Extensive Form. Chapter 3, Algorithmic Game Theory.