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We propose a robust scheme for generating macroscopic superposition states of spin or motion with the
aid of a single photon. Shaping the wave packet of the photon enables high-fidelity preparation of
nonclassical states of matter even in the presence of photon loss. Success is heralded by photodetection,
enabling the scheme to be implemented with a weak coherent field. We analyze applications to preparing
Schrödinger cat states of a collective atomic spin or of a mechanical oscillator coupled to an optical
resonator. The method generalizes to preparing arbitrary superpositions of coherent states, enabling full
quantum control. We illustrate this versatility by showing how to prepare Dicke or Fock states, as well as
superpositions in the Dicke or Fock basis.
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Macroscopic quantum superposition states theoretically
have wide-ranging applications in precision measurement
[1,2], quantum error correction [3], continuous-variable
quantum communication [4], and tests of fundamental
physics [5–8]. To date, Schrödinger cat states have been
prepared in ground-breaking experiments with optical
[9,10] and microwave [11–13] photons and in chains of
trapped ions [14,15]. Increasingly macroscopic cat states of
matter could advance the stability of atomic clocks to
fundamental quantum limits [2,16] or elucidate the inter-
play of quantum mechanics and gravity [5–8].
One approach to generating Schrödinger’s cat states that

has been proposed in diverse contexts employs an ancilla
qubit, mapping a superposition of the qubit onto a super-
position of two coherent states of a collective spin [17,18]
or microwave field [11–13,19]. A challenge is that the
ancilla—e.g., a photon [20] or Rydberg atom [17–19]—is
generally subject to dissipation. In dissipative systems,
heralded schemes [21–29] can generate highly pure non-
classical states that require much stronger coupling to
access deterministically [30,31]. A particularly versatile
scheme proposed by Chen et al. “carves” a many-atom
entangled state from a simple initial state via a quantum
nondemolition measurement with a single photon [32].
Still, the measurement fidelity is fundamentally limited by
finite interaction strength relative to the photon loss rate.
Here, we propose a heralded scheme for generating

macroscopic superposition states with high fidelity even at
finite interaction-to-decay ratios, using only modulated
laser light and a single-photon detector. Our scheme
employs a photon as a “brush” for painting superpositions
of coherent states at designated points in the phase space of
a collective atomic spin or a mechanical oscillator. The
phase-space points are selected by shaping the time
dependence of the photon pulse. The approach generalizes

to selecting multiple points or a continuous curve in phase
space, enabling full quantum control.
Our approach is illustrated in Fig. 1, where we first show

how to prepare the collective spin J of an atomic ensemble
in a superposition of two distinct orientations [Fig. 1(a)].
To manipulate the ensemble, we employ a dispersive atom-
light interaction

HS ¼ ΩSc†cJz; ð1Þ

where c†c represents the number of photons in an optical
resonator mode, Jz denotes the population difference
between two internal states, and ΩS denotes the differential
ac Stark shift due to a single photon; we set ℏ ¼ 1. After
initializing the ensemble in a coherent spin state jψ0i along
x, we let the atoms interact with a photon in a wave packet
consisting of two short pulses at times t ¼ 0 and t ¼ T.
If we detect a photon exiting the cavity at a time td > T,
it may have interacted with the atoms for either a time td or
a time td − T. The ensemble is thus projected into a
superposition

SPC

(a) (b)

FIG. 1. Painting Schrödinger’s cat states with shaped single
photons. A cat state of (a) spin or (b) motion, with phase
separation Φ, is generated by a photon in a superposition of
two pulses separated by a time T ¼ Φ=ΩS=M. The single photon
is introduced by driving a cavity with a weak coherent field.
Success is heralded by detection of the photon by the single-
photon counter (SPC) at the cavity output.

PHYSICAL REVIEW LETTERS 121, 123602 (2018)

0031-9007=18=121(12)=123602(6) 123602-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.123602&domain=pdf&date_stamp=2018-09-18
https://doi.org/10.1103/PhysRevLett.121.123602
https://doi.org/10.1103/PhysRevLett.121.123602
https://doi.org/10.1103/PhysRevLett.121.123602
https://doi.org/10.1103/PhysRevLett.121.123602


jψ1ðtdÞi ¼ c0jΩStdi þ cT jΩStd −Φi ð2Þ

of two rotated copies jφi≡ e−iφJz jψ0i of the initial state
with angular separation Φ ¼ ΩST.
The amplitudes c0 and cT of the superposition state

depend on the strengths of the two pulses and on their
separation time T. For equal pulse strengths, a photon
detected at a late time td > T is more likely to have arrived
in the second pulse than in the first by a factor eκT, where
1=κ is the cavity lifetime. However, compensating with
unequal pulse strengths will allow for preparing an equal
superposition state even in the presence of loss.
The same method can generate a cat state of the motion

of a mechanical oscillator initialized in its ground state
jψ0i. We consider a Hamiltonian

HM ¼ 1

2
ΩMðP2 þ X2Þ − g0c†cX; ð3Þ

where X ¼ x=x0 denotes the displacement normalized to
the zero-point length x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmΩMÞ

p
for mass m and

frequency ΩM, P is the conjugate momentum, and g0 is the
optomechanical coupling strength. If a photon enters the
cavity, it displaces the equilibrium position of the oscillator
by an amount X1 ¼ jg0=ΩMj, and the coherent state jψ0i
begins to rotate about the new equilibrium position in phase
space [Fig. 1(b)]. Thus, a photon entering at a superposition
of times t ¼ 0 and t ¼ T, and detected at time td > T,
projects the oscillator into the superposition of coherent
states shown in Fig. 1(b). The angular separationΦ ¼ ΩMT
on a circle of radius X1 results in a phase-space separation
2X1 sinðΦ=2Þ, which can be large for g0 > ΩM.
Imparting a well-defined phase shift Φ with a single

photon requires that the photon pulse be short in time or,
equivalently, broad in frequency compared to the uncer-
tainty in the Jz- or X-dependent cavity frequency. To
nevertheless obtain an appreciable heralding probability,
we should drive the cavity with a coherent pulse strong
enough to produce a small probability for a single photon to
enter the cavity, but weak enough to avoid two-photon
events. To ensure that we detect only photons that have
interacted with the system, and not the reflected component
of the input field, we consider a two-sided cavity driven
from one end, with a detector at the far end.
In the limit of a weakly transmissive input mirror, the

driving of the cavity is described by a Hamiltonian

HinðtÞ ¼ EðtÞc† þ E�ðtÞc: ð4Þ

The conditional evolution is governed by the non-
Hermitian Hamiltonian [33]

Heff ¼ Hin þHS=M þ
�
ωc − i

κ

2

�
c†c; ð5Þ

where HS=M describes the spin or mechanical system and
its interaction with the intracavity light [Eq. (1) or Eq. (3)],
ωc is the frequency of the bare cavity mode, and κ is the
cavity linewidth. Conditioned on the transmission of
exactly one photon, at time td, the final heralded state of
the system is

jψ1i ¼ h0j ffiffiffi
κ

p
ĉ T̂ e−i

R
td
0

HeffðtÞdtj0i ⊗ jψ0i; ð6Þ

where j0i denotes the vacuum state of the cavity and T̂ is
the time-ordering operator [34].
To analyze the conditional evolution, we let Hn ¼

hnjHS=Mjni denote the Hamiltonian projected onto the
subspace with n photons in the cavity. For the spin system,
Hn generates a precession

UnðtÞ≡ e−iHnt ¼ e−inΩSJzt ð7aÞ

by an angle proportional to the intracavity photon number.
For a mechanical oscillator, Hn generates a phase-space
rotation

UnðtÞ≡ e−iHnt ¼ e−iΩMða†−XnÞða−XnÞteiΩMX2
nt ð7bÞ

about a point Xn ¼ ng0=ΩM that depends on photon
number, where a is the annihilation operator for phonons
in the mechanical resonator. We assume an input field
sufficiently weak that at most one photon enters the cavity
(n ¼ 0 or 1). In this limit, the dynamics of the mechanics
are analogous to those of the spins: if the oscillator is
initialized in the vacuum state, then in either system, Un
generates a nontrivial rotation U1ðφ=ΩÞ if and only if there
is one photon in the cavity.
Drawing on the principle of Fig. 1, we will apply these

light-induced rotations to prepare target superposition
states of the generic form

jψ�i ¼
Z

φmax

0

dφfðφÞU1ðφ=ΩÞjψ0i; ð8Þ

with φmax ≤ 2π. The coefficients fðφÞ will be determined
by the shape of the input pulse EðtÞ. If we apply a weak
input field EðtÞ ¼ E0ðtÞe−iωct for times t ≥ 0, detecting a
photon at time td projects the system into a state

jψ1i ¼
ffiffiffi
κ

p Z
td

0

dτE0ðtd − τÞe−κτ=2U1ðτÞjψ0i: ð9Þ

Here, the integral is over the photon’s duration τ in the
cavity. The exponential decay reflects the fact that the
photon is unlikely to have entered long before detection.
Comparing the heralded state jψ1i with the target state

jψ�i, we choose a pulse shape

E0ðtÞ ¼ ϵfðφmax −ΩtÞe−κt=2: ð10Þ
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Here, ϵ parametrizes the field strength and must satisfy
ϵ ≪ Ω to ensure that at most one photon interacts with the
system. The exponential decay compensates for the finite
cavity lifetime and hides all information about when the
photon entered the cavity. Thus, the pulse shape in Eq. (10)
produces a heralded state

jψ1i ¼
ffiffiffi
κ

p
ϵ

Ω
e−κtd=2U1ðtd − φmax=ΩÞjψ�i; ð11Þ

equivalent to the target state jψ�i up to an overall rotation.
To produce a Schrödinger cat state, our derivation

confirms that the input field should consist of a pair of
short pulses. Following Eq. (10), we set

EðtÞ ¼ ϵffiffiffi
2

p
Ω
½δðtÞ þ δðt − TÞeiϕ�e−iωct−κt=2: ð12Þ

In practice, δðtÞ represents a pulse so short that the
transmission amplitude for a single pulse would be inde-
pendent of the system state (Jz or X), corresponding to a
bandwidth B ≫ Ω

ffiffiffiffi
N

p
for an N-atom spin ensemble or

B ≫ g0 for the mechanical oscillator. The two pulses
interfere to produce a transmission amplitude that does
depend on the spin or motional state due to the Jz- or
X-dependent cavity dispersion [32,34]. Conditioned on
detecting a photon at a time td > T, the system is thus
projected into an equally weighted superposition of two
coherent states, as in Eq. (2) with cT ¼ eiϕc0.
By extension, shaping the time dependence of the input

field allows for “painting” more general superpositions of
coherent states, with amplitudes specified by fðφÞ. Note
that the description fðφÞ for a given target state is not
unique, because the coherent states form an overcomplete
basis. As a further consequence, although the phase-space
trajectory specified by fðφÞ is restricted to lie on a circle,
arbitrary target states jψ�i are accessible by painting along
such a path.
To provide a recipe for full quantum control, we expand

the state of the system in the basis of Dicke states jJz ¼ mi
or displaced Fock states jã†ã ¼ mi. In the latter case, we let
m denote the phonon number when the equilibrium
position is displaced by a single intracavity photon by
defining ã ¼ a − X1. In the expansions

jψ0i≡
X

m

c0mjmi; jψ�i≡
X

m

cfmjmi ð13Þ

of the initial and final states, the coefficients are related by
cfm ¼ c0mfm, where fm ¼ R ϕmax

0 dφfðφÞeimφ is the Fourier
transform of the weighting function fðφÞ in Eq. (8). Thus,
to prepare jψ�i, we apply an input field

EðtÞ ¼ ϵ

2π

X

m

cfm
c0m

e−i½ωcþΩðm−μÞ�t−κt=2 for t ∈ ½0; T�; ð14Þ

where μ ¼ 0 for the spin case and μ ¼ X2
1 for the

mechanical oscillator. The field is applied up to time
T ¼ φmax=Ω ≤ 2π=Ω, with EðtÞ ¼ 0 for t ∉ ½0; T�. The
target state is theoretically accessible from any initial state
in which c0m ≠ 0 whenever cfm ≠ 0.
A Dicke state jψ�i ¼ jmi offers an illuminating exam-

ple. The state jmi is prepared by a photon of center
frequency ωc þ Ωm in a pulse of duration 2π=Ω with
decaying intensity. The frequency is chosen so that the field
is transmitted through the cavity only if Jz ¼ m [32]. The
decaying intensity is best understood by considering the
measurement backaction—namely, the spin rotation due to
the ac Stark shift Ω. Since the Dicke state is symmetric
under rotations about Jz, the spin should have equal
probability ∝ jfðφÞj2 of being rotated by any angle
0 < φ ≤ 2π, conditioned on detection of the photon. To
ensure that the detection time td > 2π=Ω provides no
information about when the photon entered the cavity,
the intensity of the drive must decay at rate κ.
A Fock state of motion can be prepared similarly. When a

photon enters the cavity, it exerts a force that drives the
system along an arc of radius X1 in phase space. An
exponentially shaped pulse of length 2π=Ω ensures that this
arc is equally likely to end at any point on a circle, thus
painting the circular quasiprobability distribution of a Fock
state jmi. Choosing a center frequency ωc þ Ωðm − X2

1Þ
ensures that the photon can enter the cavity and remain
there until time T only by exciting the mth motional
sideband.
The scheme for preparing Fock states bears a superficial

resemblance to a method demonstrated in recent experi-
ments [28,35]. There, single-phonon Fock states are gen-
erated by driving the optical cavity at a frequency ωc þ Ω
and detecting only photons emitted at frequency ωc. By
contrast, the paintbrush method obviates filtering of the
optical field emanating from the cavity—a technically
limiting aspect in experiments to date.
Moreover, a coherent superposition jψþi ¼

1=
ffiffiffi
2

p ðcf0 j0i þ cf1 j1iÞ can be generated with the same
technique, which allows for encoding arbitary qubit states
in the oscillator. For example, to prepare the equal super-
position cf0 ¼ cf1 ¼ 1=

ffiffiffi
2

p
starting from the undisplaced

vacuum, we require a drive field

EðtÞ ¼ ϵAe−iðωc−X2
1
ΩMÞt−κt=2ðX1 þ e−iΩMtÞ; ð15Þ

where A ¼ eX
2
1
=2=ð2π ffiffiffi

2
p

X1Þ. The engineered driving is not
significantly more complex than what is needed to generate
a Fock state, demonstrating the versatility of the paintbrush
technique.
In principle, even in a lossy cavity, shaping the input

pulse according to the loss rate κ enables heralded
preparation of arbitrary target states with perfect fidelity.
In practice, the heralding rate must compete with the dark
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count rate of the photodetector. At the same time, the input
field must be weak enough to ensure that the detected
photon is the only one that has interacted with the system.
To analyze this trade-off, we consider the general case
where the input field is not necessarily weak.
The heralded state for arbitrary drive strength [Eq. (6)] can

be evaluated analytically for the spin system [34] or numeri-
cally for the oscillator. We define the success rate RsðtÞ ¼
hψ1jψ1i as the probability per unit time that a single photon
is transmitted after time T and no other photons are trans-
mitted in the same trial. In this case, the target state is
prepared with fidelity Fϵ ¼ jhψ1jψ�ij2=hψ1jψ1i in the
absence of dark counts. With increasing drive strength,
Fϵ decreases more slowly than does the success rate Rs,
so in practice the fidelity is limited by effects of imperfect
detection.
Two practical limitations are finite quantum efficiencyQ

and the dark count rate Rd of the detector. Accounting for
these effects, a lower bound on the fidelity of the state
heralded by a detector click at time t > T is [34]

FminðtÞ ¼
FϵðtÞRsðtÞ

RtðtÞ þ Rd=Q
; ð16Þ

where RtðtÞ ¼ κhc†ðtÞcðtÞi is the transmission rate. In the
weak drive limit, Rt ¼ Rs, but Rs decreases for increasing
drive strength because of multiphoton events, reducing
the fidelity. For spins driven by the field in Eq. (14),
RtðtÞ ¼ κjϵ=Ωj2e−κt, while Rs=Rt ≈ e−jϵ=Ωj2 [34].
Figure 2(a) shows the dependence of fidelity on drive

strength and dark count rate for spin cat states of angular
separation Φ ¼ ΩST ¼ 2π=3. At a low dark count rate Rd,
the fidelity is near unity in the weak-drive limit, at the
expense of a low detection rateQRt ∝ jϵj2. With increasing
dark counts, the optimum drive strength increases, and
multiphoton events begin to reduce the fidelity. High
fidelity is attainable for Rd ≪ Qκe−κT, a condition easily

satisfied if the time T required to rotate the spins is not
much longer than the cavity lifetime.
Finite atom-light coupling strength limits the rotation

induced by a single photon [34]. Specifically, the dispersive
coupling is accompanied by absorption that broadens the
cavity linewidth to κN for N atoms, reducing the single-
photon phase shift imparted within the cavity lifetime to
Φc ¼ ΩS=κN . A fundamental limit Φc ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=ð2NÞp

is set
by the single-atom cooperativity η ¼ G2=ðκΓÞ, where G is
the vacuum Rabi frequency and Γ is the linewidth of the
atomic transition to which the cavity couples. Rotations
larger than Φc occur only at an exponentially decaying
success rate.
The effect of finite cooperativity is illustrated in

Fig. 2(b). The maximum cat size attainable with high
fidelity, in units of the coherent state width, is roughly
Φc

ffiffiffiffi
N

p ¼ ffiffiffiffiffiffiffiffi
η=2

p
. Yet the attainable cat size furthermore

depends logarithmically onQκ=Rd and is thus enhanced by
the fact that Qκ ∼ 103–106=s can be orders of magnitude
higher than the dark count rate. For Qκ=Rd ¼ 105, a spin
cat of size Φ

ffiffiffiffi
N

p ¼ 11 can be prepared with 95% fidelity at
cooperativity η ¼ 50.
For motional cat states generated using the double-pulse

sequence in Eq. (12), the cat size is at most ∼g0=ΩM. To
produce this separation, the two pulses must have an
amplitude ratio on the order of e−πκ=2ΩM , leading to an
exponential suppression of count rates as κ becomes larger
than ΩM. Making κ and ΩM approximately equal, we find
that g0 > κ is required to generate large cat states. Small
motional cat states could be prepared in current atom
optomechanics experiments harnessing a Bose-Einstein
condensate as a low-mass oscillator to achieve g0 ≈ κ
[36]. Figure 3 shows figures of merit (red curves) for
generating a state separated by 3 times the coherent-state
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FIG. 2. Fidelity of spin cat states at dark count rates
Rd=ðQκÞ ¼ 10−5, 10−4, 10−3, 10−2 (dark red to light yellow).
(a) FminðTÞ vs detection rate QRtðTÞ for ΩS ¼ κ, T ¼ ð2π=3Þκ,
and Φ ¼ 2π=3. (b) FminðTÞ vs cat size Φ

ffiffiffiffi
N

p
or Φ=Φc at η ¼ 50

for optimum drive strength. Black dots correspond to states
illustrated in (c) at N ¼ 30, Φ ¼ 2π=3. At high drive strength
ϵ ¼ ΩS [shown in (ii)], undetected transmitted photons cause
mild dephasing.
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FIG. 3. Nonclassical states of motion. (i) Schrödinger cat state of
atomic motion for g0 ¼ κ ¼ 2π × 100 kHz, ΩM ¼ g0=8, and
T ¼ 3=κ. Dashed red curves show Fmin averaged over detection
times T < td < T þ 2=κ for dark count rates Rd=ðQκÞ ¼ 10−6,
10−5, 10−4, 10−3 (dark to light). (ii) Qubit state jψþi of a
mechanical oscillator. Solid blue curves show Fmin for
Rd=ðQκÞ ¼ 10−10, 10−9, 10−8, 10−7 (dark to light) for κ ¼
2π × 500 MHz, ΩM ¼ 2π × 4 GHz, and g0 ¼ 2π × 1 MHz; the
detection rate is suppressed by the factor A−2 ≈ 8π2X2

1.

PHYSICAL REVIEW LETTERS 121, 123602 (2018)

123602-4



width [Wigner function in Fig. 3(i)] with κN ¼ g0 ¼
8ΩM [34].
Painting arbitrary superpositions of Fock states

[Eq. (14)] poses requirements on the system rates similar
to those for preparing cat states. The success rate is
restricted by the overlap between the displaced Fock state
jã†ã ¼ mi and the undisplaced vacuum, thus scaling as
X2m
1 for small X1 ¼ g0=ΩM. In this regime, it quickly

becomes impractical to access large Fock states. Similarly,
the rapid suppression of count rates for large κ=ΩM ratios
makes it preferable to have κ and ΩM of the same order.
Complex states with many phonons can be generated
efficiently when g0 > κ.
In near-term experiments, a weaker optomechanical

coupling g0 < κ suffices to paint the mechanical qubit
state jψþi, illustrated in Fig. 3 for parameters similar to
those in Ref. [35]. Despite the suppression of the success
rate by X2

1 ¼ ðg0=ΩMÞ2 ∼ 10−7, the fast cavity bandwidth
enables a heralding rate ∼800=s. Preparing similar states in
other demonstrated optomechanical systems, such as mem-
brane-in-the-middle (X2

1 ∼ 10−9) [37,38] or superfluid res-
onators (X2

1 ∼ 10−10) [39], may also be possible if dark
counts can be sufficiently suppressed.
We have demonstrated how to prepare arbitrary target

states of spin or motion using a robust single-photon
heralding scheme. A weak, time-shaped coherent pulse
of light enables high-fidelity preparation of nonclassical
states even in the presence of photon loss. The generation
of cat states can be made more deterministic by driving an
ancilla qubit to emit a single time-shaped photon into the
cavity. Extended to multiple spatially separated cavities, the
painting scheme could generate long-distance entangled
states in quantum networks [40].
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Sørensen, J. H. Müller, J. Appel, and E. S. Polzik, Phys.
Rev. A 89, 033801 (2014).

[26] R. McConnell, H. Zhang, J. Hu, S. Ćuk, and V. Vuletić,
Nature (London) 519, 439 (2015).

[27] B. Casabone, A. Stute, K. Friebe, B. Brandstätter, K.
Schüppert, R. Blatt, and T. E. Northup, Phys. Rev. Lett.
111, 100505 (2013).

[28] R. Riedinger, S. Hong, R. Norte, J. Slater, J. Shang, A.
Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher,
Nature (London) 530, 313 (2016).

PHYSICAL REVIEW LETTERS 121, 123602 (2018)

123602-5

https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.112.190403
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1103/PhysRevA.64.022313
https://doi.org/10.1103/PhysRevA.64.022313
https://doi.org/10.1103/PhysRevLett.107.020405
https://doi.org/10.1103/PhysRevLett.107.020405
https://doi.org/10.1103/PhysRevLett.112.190402
https://doi.org/10.1103/PhysRevLett.112.190402
https://doi.org/10.1038/nphys2863
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.1126/science.1122858
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1038/nature07288
https://doi.org/10.1038/nature07288
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1038/nature04251
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevA.97.042337
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.1103/PhysRevLett.102.240502
https://doi.org/10.1103/PhysRevLett.102.240502
https://doi.org/10.1103/PhysRevA.45.5193
https://doi.org/10.1038/nphys943
https://doi.org/10.1038/nphys943
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevA.88.063802
https://doi.org/10.1103/PhysRevLett.112.143602
https://doi.org/10.1103/PhysRevA.89.033801
https://doi.org/10.1103/PhysRevA.89.033801
https://doi.org/10.1038/nature14293
https://doi.org/10.1103/PhysRevLett.111.100505
https://doi.org/10.1103/PhysRevLett.111.100505
https://doi.org/10.1038/nature16536


[29] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe,
Phys. Rev. Lett. 118, 210503 (2017).

[30] G. Barontini, L. Hohmann, F. Haas, J. Estève, and J.
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