
Painting Non-Classical States of Spin or Motion with Shaped Single Photons:

Supplemental Material
Department of Physics, Stanford University, Stanford, California 94305, USA

(Dated: June 25, 2018)

In this supplement, we elaborate on details of derivations of the results in the main paper. In Sec. I, we provide
analytic expressions for the final heralded state, fidelity Fmin, and detection rate at arbitrary drive strength in the
spin system. In Sec. II we provide detailed derivations of the limits set by the single-atom cooperativity in painting
non-classical states of spin or motion in atomic cavity-QED systems.

I. ANALYTIC RESULTS FOR COLLECTIVE SPIN STATES

The conditional evolution of the spin ensemble or oscillator is governed by the non-Hermitian Hamiltonian

Heff = HS/M + Ec† + E∗c+
(

ωc − i
κ

2

)

c†c, (S1)

where HS/M are the Hamiltonians for the spin/oscillator defined in Eqs. 1 and 3 of the main text. From Heff , we
can obtain the composite state of the system and cavity field conditioned on no photon having exited the cavity up
to time t,

|Ψ(t)〉 ≡ e−iHeff t |ψ0〉 ⊗ |0〉 . (S2)

Furthermore, conditioned on one photon exiting the cavity at time td, and no photons exiting before td, the composite
state is given by

|Ψ1〉 =
√
κcT̂ e−i

∫ t
d

0
Heff(t)dt |ψ0〉 ⊗ |0c〉 . (S3)

This result is valid for any strength of the drive field.
In the main text, we first proceeded to analyze the conditional dynamics for the limit of a weak drive field, which

offers the closest analogy between the spin ensemble and the mechanical oscillator. In the more general case, the spin
system is easier to analyze analytically because the atom-light interaction Hamiltonian ∝ c†cSz commutes with the
system Hamiltonian. We here derive the conditional state of the spin system for arbitrary drive strength to arrive at
an analytic expression for the fidelity Fmin.

A. Heralded Spin State for Arbitrary Drive Strength

In the spin ensemble, we can get the exact analytic form of the time evolution for arbitrary drive strength, because
the cavity response depends on the spin state only through Jz, which is a constant of motion. To solve for the time
evolution, we expand the composite state of the spins and field in the Dicke basis,

|Ψ(t)〉 =
∑

m

cm(t) |m〉 ⊗ |αm(t)〉 , (S4)

where |αm(t)〉 denotes a coherent field of the cavity that depends on time and on Jz = m, and cm(t) is a complex
amplitude. The Schrödinger equation with effective Hamiltonian Heff then yields

iα̇m =ωmαm + E(t) (S5a)

˙cm
cm

=
1

2
[α̇mα

∗
m + αmα̇

∗
m]− iE∗(t)αm, (S5b)

where ωm = ωc +mΩS − iκ2 is the complex frequency of the cavity resonance, accounting the finite cavity linewidth
and the atom-induced dispersive shift. To arrive at Eqs. S5, we have used the relation

∂

∂t
|α(t)〉 = −1

2
[α̇(t)α∗(t) + α(t)α̇∗(t)] |α(t)〉+ α̇(t)a† |α(t)〉 . (S6)
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We solve the differential Equations S5 for initial conditions αm(0) = 0 and cm(0) = c0m, corresponding to a product
state of the atoms in state |ψ0〉 and the vacuum field in the cavity. We thus obtain

αm(t) =− i

∫ t

0

E(t′)e−iωm(t−t′)dt′, (S7a)

cm(t) =c0m exp

(

1

2
|αm(t)|2 − i

∫ t

0

[E∗(t′)αm] dt′
)

. (S7b)

For times t ≥ T , after the drive pulse has ended, we can conveniently express both αm(t) and the complex amplitude
cm(t) in terms of the Fourier transform of the drive pulse:

Ẽ(ω) = 1√
2π

∫ T

0

E(t)eiωtdt. (S8)

In terms of Ẽ , we have

αm(t) = −i
√
2πe−iωmtẼ(ωm), (S9a)

cm(t) = exp

[

1

2
|αm(t)|2 − i

∫ ∞

−∞

|Ẽ(ω)|2
ω − ωm

]

c0m (S9b)

for t > T . Thus, for a given Dicke state |m〉, the coherent field in the cavity is determined by the component of the
drive field at the m-dependent complex resonance frequency ωm. The resulting atom-light entanglement enables the
heralded generation of non-classical spin states. In the ideal limit of a weak drive, the complex amplitude cm(t) is
the same as in the initial state, cm(t) = c0m, before conditioning on a detected photon. To see the effect of a stronger
drive, we now examine the final heralded state for arbitrary drive strength.
Conditioned on detecting a single photon at time td, the heralded atomic state is

|ψ1(td)〉 =
√
κ 〈0| ĉ |Ψ(t)〉 = −i

√
2πκ

∑

m

ξme
−iωmtd Ẽ(ωm)c0m |m〉 , (S10)

where

ξm = exp

[

−i
∫ ∞

−∞

|Ẽ(ω)|2
ω − ωm

]

. (S11)

In the limit of a weak drive, ξm = 1 for all m, and Eq. S10 reduces to the recipe of Eq. 14 of the main text for
preparing the target state |ψ∗〉 with coefficients cfm ∝ c0mẼ(ωm). At larger drive strength, ξm accounts for the effect of
light that enters the cavity and leaks back out the input mirror before time td. This factor can generically reduce the
fidelity Fǫ ≡ |〈ψ1|ψ∗〉|2 / 〈ψ1|ψ1〉 even for perfect detection. However, for the states and drive strengths considered in
this paper, Fǫ ≈ 1 to a very good approximation, with the fidelity instead being limited by the effects of imperfect
detection considered in Sec. I B.

B. Fidelity of Heralded Spin States

To determine the fidelity of the final heralded state, we must account for dark counts and finite quantum efficiency
in photodetection. Due to these imperfections, we will generically prepare an incoherent mixture of the state produced
for a single transmitted photon and states produced when either no photon is transmitted (and we detect a dark count)
or multiple photons are transmitted. We calculate the lower bound Fmin on the fidelity by assuming that the state
conditioned on transmission of a single photon is orthogonal to the states produced when either no photon or more
than one photon is transmitted. Then the fidelity is limited by the ratio of successful detector clicks to unsuccessful
detector clicks:

Fmin(t) ≡
Fǫ(t)Rs(t)

Rt(t) +Rd/Q
, T < t < tmax, (S12)

in terms of the transmission rate Rt = κ〈c†c〉, success rate Rs = 〈ψ1|ψ1〉, and dark count rate Rd.
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At the modest drive strengths of interest, where Fǫ ≈ 1 (see Sec. I A), the success rate is approximately

Rs(t) ≈ κ
∣

∣

∣

ǫ

Ω

∣

∣

∣

2

e−| ǫ

Ω
|2e−κt, T < t < tmax, (S13)

where ǫ parametrizes the drive strength according to Eq. 14 of the main text. The fidelity (Eq. S12) then reduces to

Fmin(t) ≈
e−|ǫ/Ω|2

1 + ρǫeκt
, T < t < tmax, (S14)

where ρǫ = Rd/(Qκ |ǫ/Ω|2). We use Eq. S14 for plotting Fmin in Fig. 2a.
It should be emphasized that Fmin is a conservative estimate of the fidelity, and we can also determine the actual

fidelity at larger drive strengths. We calculate the atomic state for n transmitted photons, then trace over the detection
times of n−1 photons. This yields a density matrix for the atoms corresponding to the detection at time td of a single
heralding photon in the window T < t < tmax, with n− 1 additional transmitted but undetected photons. Roughly,
the undetected photons smear the state with extra rotations about the z-axis. The smearing angle ≈ ΩS/κ can be
small for ΩS/κ . 1. In Figure 2c ii, we plotted the Wigner function of the density matrix for a larger drive ǫ = ΩS .
The fidelity is F = 0.72, which is significantly higher than Fmin = 0.37.

II. ROLE OF THE COOPERATIVITY IN ATOMIC ENSEMBLES

Finite atom-light coupling strength limits the spin rotation or phase-space displacement that a single photon
can induce in an atomic ensemble within the cavity lifetime. In particular, the dispersive atom-light coupling is
accompanied by absorption that broadens the cavity linewidth to a value κN at atom number N , decreasing the spin
rotation ΦN = ΩS/κN or phase-space displacement DN . g0/κN that the photon imparts within its lifetime 1/κN .
Fundamental limits on ΦN and DN are set by the single-atom cooperativity η = G2/(κΓ), where G is the vacuum
Rabi frequency and Γ is the linewidth of the optical transition to which the cavity mode couples. The average spin
rotation produced by a single photon is thus limited to ΦN ≤

√

η/(2N), while the average displacement is limited to

DN .
√

ηωr/(2ΩM), where ωr is the single-atom recoil frequency. Larger rotations or displacements can be attained
only with an exponentially decaying success probability. Below, we elaborate on the derivation of these limits.

A. Atomic Spin Ensembles

To determine the size of the spin rotation that can be induced by a single photon within the cavity lifetime, we
consider three-level atoms with ground states |↓〉 , |↑〉 and excited state |e〉. We assume that the cavity mode couples
state |↑〉 to an excited state |e〉 with vacuum Rabi frequency g, and that the other spin state |↓〉 is unaffected by the
light (e.g., the cavity mode is far detuned from transitions involving state |↓〉). For a detuning ∆ of the resonator
mode from the |↑〉 → |e〉 transition, a single photon induces a differential ac Stark shift ΩS = g2/∆ between the two
ground spin states |↓〉 and |↑〉.
The interaction time of the photon with the ensemble is limited by the intrinsic loss rate κ0 of the cavity and an

additional loss rate (N/2)Γsc = (N/2)(g/∆)2Γ, where Γ is the linewidth of the atomic excited state |e〉, due to the
possibility of the photon being scattered out of the resonator by one of the approximately N/2 atoms in state |↑〉.
The atomic scattering results in a broadened cavity linewidth

κN = κ0 +
N

2

g2

∆2
Γ = κ0 +

NΩ2Γ

2g2
. (S15)

The phase shift Ω/κN imparted in the cavity lifetime is maximized by operating at a detuning ∆ = Γ
√

η/(2N),
where η = 4g2/(κ0Γ) is the single-atom cooperativity. Atomic decay then doubles the cavity linewidth (κN = 2κ0),

resulting in a ratio ΩS/κN =
√

η/(8N).
The phase shift ΦN ≡ Ω/κN imparted in the cavity lifetime is an indication of how large a cat can realistically

be prepared. Whereas the success probability is approximately constant for Φ < ΦN , for larger angles the success
probability decays exponentially. Thus, the threshold cooperativity for preparing anN -atom cat with phase separation
Φ is ηmin ∼ NΦ2. More generally, the fidelity of preparing a cat of a given “size” in units of the coherent state width,
Φ
√
N , is set by the single-atom cooperativity and is independent of atom number.
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B. Collective Atomic Motion

The optomechanical interaction Hamiltonian for an ensemble of N atoms linearly coupled to a standing-wave cavity
mode is approximately given by [1, 2]

H ≈ kU0c
†c

N
∑

i=1

xi = NkU0c
†cX ≡ g0c

†cX/X0, (S16)

where U0 is the AC Stark shift due to a single atom at an antinode of the standing wave, X represents the center-
of-mass coordinate, and the zero-point motion X0 of the center of mass is related to oscillator length x0 of a single
atom by X0 ≈ x0/

√
N . Thus, the optomechanical coupling strength is g0 =

√
NU0ζ, where ζ = kx0 =

√

ωr/ΩM is
the Lamb-Dicke parameter set by the single-atom recoil frequency ωr at the cavity wavenumber k and by the trap
frequency ΩM.
How large can one make the ratio g0/κN that limits the phase-space displacement DN? We first note that the

ac Stark shift is U0 = G2/∆ in terms of the detuning ∆ of the cavity mode from the atomic excited state, i.e., U0

is identical to the value which we called ΩS for the spin system in Sec. II A. Thus, the cooperativity sets a limit√
NU0/κN ≤

√

η/8 at an optimal detuning ∆/Γ =
√
Nη/2 where κN = 2κ0. Hence, g0/κN ≤ ζ

√

η/8. The Lamb-
Dicke parameter ζ must be small to approximate the sinusoidal potential as a harmonic trap; in seminal experiments by
Murch et al. [1], ζ ≈ 0.3 [1]. Achieving a collective optomechanical coupling g0 > κN then requires large single-atom

cooperativity η ≫ 1. Rewriting the limit on g0/κN in terms of the recoil frequency ωr, we find that the single-photon

displacement within the cavity lifetime is limited to DN .
√

ηωr/(2ΩM). Thus, for preparing motional cat states, it
is advantageous to operate in a regime of not only high cooperativity but also relatively low trap frequency, which
also facilitates meeting the additional requirement X1 = g0/ΩM > 1.
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