
Photon-Mediated Spin-Exchange Dynamics of Spin-1 Atoms:
Supplemental Material

(Dated: December 15, 2018)

In this supplement, we elaborate on derivations of theoretical models in the main paper and on details from the
experimental sequence. In Sec. I, we derive the spin-exchange Hamiltonian, elaborate on the mean-field model
of the spin dynamics, and describe how to relate the strength of the interaction χ to parameters measured in the
experiment. Additionally, we derive the short-time behavior for the spin-mixing Hamiltonian. In Sec. II, we elaborate
on the experimental methods and describe the calibration of the vector light shift Ω(x) by Ramsey spectroscopy.

I. THEORETICAL BACKGROUND

A. Derivation of Spin-Exchange Hamiltonian

We here derive the spin-exchange Hamiltonian arising in a driven optical cavity with a magnetic field B perpendic-
ular to the cavity axis. We consider atoms with hyperfine spin f and let B define the quantization axis for the spins,
so that fzi denotes the spin projection of the ith atom along the magnetic field. The spins couple to the cavity mode
via the Faraday effect [1, 2], which is most conveniently described by defining the Stokes vector S of the intracavity
light. For the light, we choose the cavity axis as the quantization axis, defining

Sz =
(
a†+a+ − a†−a−

)
/2, (S1)

where a± are the annihilation operators for σ±-polarized cavity modes. The Faraday interaction then takes the form

HI = ΩSzFx, (S2)

where F =
∑
i ξifi denotes the collective spin of the ensemble, weighted according to factors Ωξi = g2

i /∆i that account
for any inhomogeneity in the vacuum Rabi frequency gi, or of the atomic transition frequency ωi = ωNc −∆i, where
ωNc denotes the cavity mode frequency in the presence of N atoms. The Faraday interaction generates a rotation in
the cavity mode polarization by an angle proportional to the ‘magnetic field’ produced by the atoms along Fx.

The microscopic mechanism for the flip-flop dynamics is more evident if we rewrite the Faraday interaction in terms
of operators H,V representing the two orthogonal linearly polarized cavity modes:

H =
a+ + a−√

2
(S3)

V =
a+ − a−
i
√

2
. (S4)

In terms of the linearly polarized modes, the Stokes vector has z-component

Sz =
V†H−H†V

2i
, (S5)

yielding an interaction Hamiltonian

HI =
Ω

4i

(
V†H−H†V

)
(F+ + F−) . (S6)

Thus, HI describes processes wherein an atom flips its spin and transfers a photon between the two linearly polarized
cavity modes. These Raman processes are resonant when the drive field is tuned to a frequency ωNc ± ωZ . More
generally, tuning the drive field to a frequency ωd = ωNc + δc results in detunings δ± ≡ δc ∓ ωZ from the two Raman
resonances.

The dynamics in the driven cavity are described by a master equation with a Hamiltonian of the form

H = HI + ωZFz +
∑
±

[
ωca
†
±a± + ε±e

−iωdta†± + ε∗±e
iωdta±

]
, (S7)
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where F =
∑
i fi denotes the uniformly weighted collective spin that couples to the magnetic field and ε± describe

coherent fields driving the cavity on the σ± polarized cavity modes. We will analyze the time evolution in an interaction
picture wherein states evolve with the trivial portion of the Hamiltonian,

H0 = ωZFz +
∑
±

[
ωca
†
±a±

]
. (S8)

The remaining dynamics, encoded in the operators, are governed by an effective Hamiltonian H̃ = UHU†−H0, where
U = e−iH0t. This transformation yields

H̃ = H̃I + H̃drive, (S9)

where

H̃I =
Ω

4i

(
V†H−H†V

) (
F+e

iωZt + F−e−iωZt
)
, (S10)

and

H̃drive =
∑
±
ε±e

−iδcta†± + h.c.. (S11)

We will henceforth remain in the interaction picture and drop the tilde for notational simplicity.
If we include cavity decay in the model, the time evolution of each operator O is described by a master equation in

Lindblad form,

Ȯ = i[H,O] +
κ

2

∑
±

(
[a†±,O]a± + a†±[O, a±]

)
. (S12)

In the absence of atoms, the cavity field operators thus evolve as

ȧ± = −κ
2
a± − iε±e−iδct. (S13)

The steady-state field is given by

a±(t) =
−iε±e−iδct

κ/2− iδc
. (S14)

We will focus on the case of a cavity mode driven with horizontally polarized light, such that the steady-state fields
in the linear basis (Eqs. S3-S4) are V = 0 and

H =
−iεe−iδct

κ/2− iδc
, (S15)

where ε = (ε+ + ε−)/
√

2. Then the average number of photons in the driven cavity mode is

n ≡ |H|2 =
|ε|2

δ2
c + (κ/2)2

. (S16)

It will be useful to write the field operators in terms of the c-numbers H and V and the fluctuations ĥ, v̂ about these
values:

Ĥ = H+ ĥ, (S17)

V̂ = V + v̂, (S18)

where we have temporarily written explicit hats to emphasize which symbols are operators.
For small fluctuations about the steady-state field values, we can solve for the spin dynamics by including only

terms to lowest order in ĥ and v̂ in the interaction Hamiltonian. The atom-light interaction can thus be approximated
as

HI ≈
Ω/4√

δ2
c + (κ/2)2

(
εe−iδct−iφv† + ε∗eiδct+iφv

) (
F+e

iωZt + F−e−iωZt
)
. (S19)
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where φ is an unimportant phase factor that accounts for the phase delay between the drive field and the cavity field.
Here, we can see that resonant spin-flip processes occur only for a laser detuned from cavity resonance by δc = ±ωZ .
However, for arbitrary drive frequency δc = ±ωZ + δ±, resonant pairwise flip-flops can arise from HI in second-order
perturbation theory. To further analyze the spin dynamics, we will adiabatically eliminate the v̂ cavity mode by
assuming a weak drive ε and large detuning δ± from Raman resonance.

By adiabatically eliminating the cavity modes [3], we arrive at an effective Hamiltonian

Heff =
|Ωε/4|2

δ2
c + (κ/2)2

∑
±

(
δ±

δ2
± + (κ/2)2

F±F∓
)
. (S20)

The effective Hamiltonian can be written in the form

Heff =
∑
i,j

χij
(
fxi f

x
j + fyi f

y
j

)
+
∑
i

hif
z
i (S21a)

with the coupling constants χij = χ+
ij + χ−ij given by

χ±ij = n
ΩiΩj

16

δ±
δ2
± + (κ/2)2

. (S21b)

Here, Ωi = Ωξi represents the vector light shift imparted by a circularly polarized intracavity photon to the ith atom.
The extra ‘magnetic field’ term is generated by commutators of fxi , f

y
i , and has the form:

hi = n
Ω2
i

16

∑
±

(±1)δ±
δ2
± + (κ/2)2

. (S21c)

In the case of uniform coupling, we can ignore this longitudinal field in the dynamics by going into a rotating frame.
More generally, this term contributes some dephasing between spins at different positions in the cloud.

The Hamiltonian dynamics are generically accompanied by dissipation described by an effective Lindblad operator

Lv =
Ωε

4

√
κ

δc − iκ/2
∑
±

F±e−iδ±t−iφ

δ± + iκ/2
. (S22)

The Lindblad operator consists of two terms that rotate rapidly with respect to one another. We can therefore break
these two terms up into separate Lindblad operators:

L± =
√
γ±F±, (S23a)

where

γ± = n
Ω2

16

κ

δ2
± + (κ/2)2

(S23b)

and we have eliminated phase factors that are irrelevant to the dynamics. Comparing equations S21b and S23b, we
see that the interaction-to-decay ratio

χ±ij
γ±

=
δ±
κ
ξiξj (S24)

improves with increasing detuning δ± from Raman resonance.

B. Dynamics Including the Light Field

Even in the regime where the adiabatic elimination is not valid, we can write down a full set of Heisenberg equations
of motion including the cavity field operators as well as the spin operators. In particular, from the master equation
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(Eq. S12) for the Hamiltonian in Eq. S7 with H-polarized drive field, the Heisenberg equations are

V̇ = −ΩFxH/2−
(κ

2
− iδc

)
V (S25a)

Ḣ = ΩFxV/2−
(κ

2
− iδc

)
H− ε (S25b)

ḟxi = −ωZfyi (S25c)

ḟyi = ωZf
x
i − ΩiSzf

z
i (S25d)

ḟzi = ΩiSzf
y
i . (S25e)

Here Sz is the component of the Stokes vector along the cavity axis, which is given in terms of H and V in Eq. S5.
While Equations S25 are exact, evaluating the exact time evolution including atom-light correlations is non-trivial.

As a lowest-order approximation, we employ a mean-field treatment, calculating the approximate time-evolution of
the expectation values 〈V〉, 〈H〉, and 〈fi〉 by neglecting atom-field correlations on the right-hand side of Eqs. S25.

We numerically solve Eqs. S25 in the mean-field approximation to obtain Fig. 2c in the main text, using the
measurement of the vector light shift Ω(x) and the initial atomic state as inputs. The drive-cavity detuning δc =
−2π × 0.875 MHz is fit by eye to match the data qualitatively and agrees within error with the value set during
the experiment, δc = −2π × 1.1(3) MHz. The drive strength ε = 2π × 95 MHz used in the simulation corresponds
to n̄ = 12 × 103 intracavity photons (Eq. S16), consistent with the value n̄ = 9(2) × 103 inferred from the cavity
transmission.

Our simulation accounts for two different dissipation mechanisms that affect the coherence of the spin-exchange
oscillations, namely, thermal broadening and cavity decay. These contributions are examined in detail in Fig. S1,
where part (a) shows the model and data from Fig. 2 of the main text in terms of local magnetization Fz ≡ ρ〈fz〉,
where 〈fz〉 denotes local spin polarization and ρ denotes local density. At fixed longitudinal position xi, thermal
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FIG. S1: Effect of thermal broadening and supperradiant decay on the unitary dynamics. (a) The model including
thermal broadening (i) washes out the oscillations as in the experimental data (ii) compared to the zero-temperature model
at the same detuning δ− = 2π × 1.93 MHz (b.i), but artificially suppresses the relaxation rate compared to the data and the
zero-temperature model (b.i). (b) The zero-temperature model shows rapid relaxation near the Raman resonance δ− = 2π× .30
(ii) and slower relaxation at larger detunings δ− = −2π× 5.95,−2π× 14.7 MHz (iii, iv). (c) Schematic of drive detunings with
respect to cavity and Raman resonances. (d) The total magnetization

∑
x Fz(x) over the cloud is plotted vs time. Green curve

corresponds to the data in (a)ii; solid orange-dashed burgundy curves correspond to calculated dynamics in (b)i-iv at the drive
frequencies indicated by the lines in (c).
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broadening results in a range of radial couplings Ωi(r). The distribution of radial couplings is averaged over in
our data (Fig. S1a.ii). To incorporate the effect of thermal broadening in the simulated dynamics, we average
the dynamics over a Boltzmann distribution of atoms in the trap, assuming a Gaussian cloud of atoms in a three-
dimensional harmonic well at each lattice site. The oscillations are washed out in a thermal cloud (Fig. S1a.i)
compared to the dynamics at zero temperature (S1b.i) with all other parameters held fixed. The second mechanism is
superradiant decay due to loss of cavity photons, which manifests as a spin relaxation rate towards either mf = ±1,
depending on the Raman detunings δ±. In Fig. S1b.i-iv, we plot the zero-temperature dynamics at detunings
δ− = 2π× 1.93, 2π× .30,−2π× 5.95,−2π× 14.7 MHz (Fig. S1c) at fixed intracavity photon number. The relaxation
rate is highest near the Raman resonance δ− = 0, but is suppressed for larger detunings, as summarized in Fig. S1d
showing the total magnetization

∑
x Fz(x) vs time.

Compared with the zero-temperature models and with our experimental data, the model including thermal broaden-
ing (Fig. S1a.i) shows a reduced relaxation rate. We attribute this to the fact that the static inhomogeneous couplings
assumed in the model can lead to the formation of a dark state, which would decohere in the actual experiment due to
atomic motion. Nevertheless, the key features of our data are well captured by the combination of these two models.

C. Spin Mixing Dynamics

Here we derive the short-time equations of motion for the spin-mixing dynamics in the limit where atoms are
uniformly coupled to the cavity mode, applying a mean-field treatment. We show that the results are equivalent to
the well known mean-field treatments of spin-mixing in spinor Bose-Einstein condensates [4].

To model the spin mixing dynamics, we use a three-mode Schwinger boson representation for the collective spin F
of the atomic ensemble:

F+ =
√

2
(
a†c+ c†b

)
=
(
F−
)†

(S26a)

Fz = a†a− b†b. (S26b)

We obtain a Hamiltonian similar in form to a degenerate parametric oscillator with pump mode c (mf = 0) and side
modes a, b (mf = ±1):

Heff = 2χ
[
c†c†ab+ a†b†cc+ a†a(1 + c†c) + c†c(1 + b†b)

]
+ ha†a− hb†b+ q(a†a+ b†b), (S27)

where χ = χ+ + χ−, h = χ+ − χ−, and q represents the quadratic Zeeman shift. Then, by treating the pump mode
classically, ĉ→ ceiφ and ĉ† → ce−iφ we obtain a quadratic Hamiltonian in the side mode operators a, b:

Heff = 2χ
[
c2e−2iφab+ c2e2iφa†b† + a†a(1 + c2) + c2(1 + b†b)

]
+ ha†a− hb†b+ q(a†a+ b†b) (S28)

We can conceptually simplify this further by introducing the bilinears

Kz = (a†a+ b†b+ 1)/2 (S29a)

K+ = a†b† = (K−)† (S29b)

where 2Kz − 1 = Ns is the total side-mode population and K± are ‘pair-creation / annihilation’ operators. The
operators {Kz,K

±} form a closed SU(1, 1) algebra [5–7]:

[Kz,K
±] = ±K± (S30a)

[K+,K−] = −2Kz (S30b)

The magnetization Fz commutes with all of the operators K±,Kz, so we can simply treat it as a constant c-number.
The group SU(1, 1) is very similar to the more familiar group SU(2). In fact, the only difference is the minus sign in

the second row of Eq. (S30b). While SU(2) generates rotations in 3-dimensional Euclidean space, the group SU(1, 1)
generates rotations and boosts in (2+1)-dimensional Minkowski space. In terms of K, we can write the Hamiltonian
as:

Heff = M ·K (S31)

where Kx = (K+ +K−)/2, Ky = (K+ −K−)/2i, and

M = 〈4c2χ cos 2φ,−4c2χ sin 2φ, χ(2 + 4c2) + 2q〉 (S32)
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and where we have dropped an overall constant term (χ+ h)Fz − χ− q.
We solve for the motion of the system assuming that the pump field is static (i.e. c, φ are time-independent). By

performing a rotation in the x− y plane we can always pick a coordinate system for which φ = 0. Then our equations
of motion are:

d

dt

Kx

Ky

Kz

 =

 0 −Mz 0
Mz 0 Mx

0 Mx 0

Kx

Ky

Kz

 (S33)

whose eigenvalues are 0 and ±λ = ±
√
M2
x −M2

z , with Mx = 4c2χ,Mz = χ(2 + 4c2) + 2q. For |Mz| < |Mx|, the
eigenvalue λ is real and positive, resulting in the dynamical instability that we observe in our experiment. In terms
of the net quadratic Zeeman shift q̃ = q + χ and the number of “pump” atoms c2 ∼ N0 in the m = 0 mode, the
condition for instability is, ∣∣∣∣1 +

q̃

2N0χ

∣∣∣∣ < 1 (S34)

which is satisfied when q̃ and χ have opposite signs and the collective interaction strength 4N0|χ| exceeds the quadratic
Zeeman shift. These are the same conditions for instability found for spin-mixing dynamics in spinor BECs.

To compute the time-dependent expectation value and standard deviation of Ns(t), we assume that the system
starts in a number state |na, nb, nc〉. We then obtain:

〈Ns(t)〉 = α2 (Ns(0) + 1) (coshλt− 1) +Ns(0) (S35)

and

∆Ns(t) =

√
〈N2

s (t)〉 − 〈Ns(t)〉2 = (Ns(0) + 1)
√
α2
[
(α2 − 1)(coshλt− 1)2 + sinh2 λt

]
/2 (S36)

where

λ = 2
√
−q̃(q̃ + 4c2χ), (S37)

α =
4c2|χ|
λ

. (S38)

Although these equations of motion are applicable for perfectly uniform couplings Ω(x), accounting to lowest order

for the non-uniformity of the couplings shows that the growth rate scales as ξrms =
√∑

i ξ
2
i . We account for this

effect in the main text by plotting the growth in side-mode population in Fig. 4 as a function of
√
〈Ω2〉 = Ωξrms.

II. EXPERIMENTAL METHODS

A. Optical Cavity and Trapped Atoms

Our optical cavity has a near-concentric geometry with a maximum length L0 = 5 cm. The precise length, as well
as the mirror alignment, are fine-tuned with piezoelectric positioning stages. Our experiments were conducted at a
cavity length L = L0− 80 µm, which results in a mode waist of w780 = 16 µm for the 780-nm drive field. The mirrors
are additionally coated for 1560-nm light that is used to trap the atoms in one-dimensional lattice, with transverse
confinement set by the waist w1560 =

√
2w780. A typical trap depth during the experiment is h × 20 MHz at the

center of the cavity. The atomic cloud has an RMS width of 5 µm in the radial direction, is approximately 500 µm
in length, and is centered about one Rayleigh length from cavity center.

B. State Preparation and Detection

We provide here further details about the experimental sequence, including the state-sensitive imaging used to
obtain measurements of the population in the three different Zeeman states. The atoms are loaded into the 1560-nm
lattice from a 3D MOT, then placed in |f = 1,mf = −1〉 by optical pumping into |2,−2〉 on the D1 line followed by
an adiabatic microwave sweep. Additional microwave sweeps or optical Raman pulses are used to prepare the initial
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Zeeman states for the subsequent quench dynamics. For the quench dynamics of Figs. 2 and 3 [or Fig. 4] in the main
text, we apply a magnetic field Bz = 4.0 G [or Bz = 1.0 G], which adds to an ambient field Bx = 0.52 G, By = −0.14 G
(axes as depicted in Fig. 1 of the main text). After the quench dynamics in the f = 1 hyperfine manifold, we detect
the |1,−1〉 atoms by performing an adiabatic sweep on the |1,−1〉 → |2,−2〉 transition in a 4 G magnetic field
and imaging on the cycling transition. We then detect the |1, 1〉 atoms by performing a microwave sweep on the
|1, 1〉 → |2, 2〉 transition and imaging on the cycling transition. Finally, we image the remaining atoms in |1, 0〉 by
adding repumping light.

C. Measurement of Cavity Coupling
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FIG. S2: Contrast and phase of the magnetization from the Ramsey measurement of the vector light shift. We measure the
two quadratures fz

i (0), fz
i (π/2) as a function of time, and can thus extract the local phase Arg(fz

i (0) + ifz
i (π/2)) and contrast√

(fz
i (0))2 + (fz

i (π/2))2.

We measured the vector light shift Ω(x) (Fig. 2b in the main text) by performing Ramsey spectroscopy in the
f = 1 hyperfine manifold. After initializing the atoms in |1,−1〉 with respect to a magnetic bias field along the cavity
axis, we first apply a Raman π/2 pulse that rotates the Zeeman spin into the fx, fy-plane. We then drive the cavity
with a variable-length pulse of circularly polarized light that modifies the Larmor precession rate, before performing
a second π/2 pulse and reading out the local magnetization fzi . Fig. S2 shows the contrast and phase of the Ramsey
fringe as a function of the duration of the light pulse (Fig. S2). In the ideal case where the light shift Ω depends only
on the position xi, the magnetization would simply evolve as fzi (t)/fi = e−in̄Ωit. However, our data shows a decaying
contrast due to inhomogeneous broadening caused by a thermal distribution of radial couplings P (Ωi(r)) at a given
position xi in the trap.

To model the Ramsey fringe, we assume that the atoms are in a two-dimensional harmonic trap with a radial

distribution P (r) = 1
πρw2 e

−r2/ρw2

, where w = 16 µm is the waist of the cavity mode for the 780-nm drive field, and

ρ is the local ratio of temperature to trap depth. We parameterize the vector light shift Ωi(r) ≈ (−1 + 2r2/w2)Ωi in
terms of the magnitude Ωi of the light shift on cavity axis (r = 0) for an atom in a lattice site at position xi, averaged
over the fast axial motion within the lattice site. We expect the magnetization at position xi to evolve as

fzi
fi

(t) =

∫ Ωi

0

P (Ωi(r))e
−in̄Ωi(r)tdΩi(r) =

∫ 1

0

1

2ρΦi
Φ

1/2ρ
i e−in̄Φi(τ−τ0)dΦi, (S39)

where τ = Ωit, τ0 allows for an initial phase, and 0 ≤ Φi ≡ Ωi(r)/Ωi ≤ 1 is the local probe coupling in units of Ωi.
Fitting Eq. S39 to the data at xi yields a value for n̄Ωi, and we divide by the intracavity photon number n̄ to obtain
Ω(xi) ≡ Ωi.

D. Extracting the Interaction Strength from Flip-Flop Measurements

To measure the strength and sign of the couplings χij , we first use a pair of Raman beams to prepare a region (A)

of the atoms along F̂x and another region B along F̂y. In particular, after initializing all atoms in the |mf = −1〉
state, we use a focused Raman beam to apply a local π/2 rotation to only the atoms in region (A). A second Raman
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beam, phase-shifted by π/2 relative to the first beam, then addresses all atoms to apply a global π/2 rotation to the
entire cloud. We then turn on photon-mediated interactions. In addition to coherent four-photon processes that cause
each spin to precess about the mean field of the other spins, dissipative two-photon processes cause the spins to drift
toward mf = ±1, leading to a bias in the total magnetization. We extract both the mean interaction rate and mean
decay rate by analyzing the sums and differences of the magnetization signals in the (A) and (B) regions.

To analyze the mean-field flip-flop dynamics, we first write the Hamiltonian and Lindblad operators of Eqs. S21
and S23 explicitly in terms of the local magnetization Fn ≡ F(xn):

H = 2χ
∑
n,m

ξnξm (F xnF
x
m + F ynF

y
m) +

∑
n

hnF
z
n , (S40a)

L± =
√
γ±
∑
n

ξnF
±
n . (S40b)

The indices n,m label discrete regions in the 1-dimensional image obtained after summing over the transverse dimen-
sion of the cloud. Each region n corresponds to a sum over many individual atoms, e.g.:

Fn =
∑
i∈n

fi, (S41)

where we have assumed that the cavity couplings Ω(x) are approximately constant over the sites within each region.
This coarse-graining over individual atoms justifies a classical calculation of the time evolution, where we approximate
the 103−104 uniformly polarized quantum spins in each analysis region as a single classical spin and neglect quantum
correlations.

At short times, the classical spin model predicts the average magnetization F zn in region n to grow linearly in time
at a rate dependent on the initial spin texture:

d

dt
F zn = 2ξn (FxF yn −FyF xn )χ− ξn (FxF xn + FyF yn ) γ (S42)

where γ = γ− − γ+ and F =
∑
n ξnFn is the collective spin, weighted by the cavity couplings. By measuring the

linear growth rates in two different regions n,m we obtain a pair of linear equations:

d

dt

[
F zn
F zm

]
=M

[
χ
γ

]
(S43)

where the matrix M depends on the initial orientations of the spins in the two regions. We obtain an estimate for
the initial local spin polarization Fn using the known spatial dependence of the two Raman beams, and we use the
measured vector light shift Ω(x) (main text, Fig. 2b) to estimate the weights ξn. Inverting the matrix M then gives
an estimate of the interaction and decay rates χ, γ.
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