
Spin Squeezing by Rydberg Dressing in an Array of Atomic Ensembles:
Supplemental Material

In this supplement, we provide additional information about our experimental methods and theoretical models. In
Sec. I, we describe the experimental setup, calibrations, and data analysis methods. In Sec. II, we derive theoretical
models for the interactions induced by Rydberg dressing and the resulting spin squeezing, and we apply these models
to examine limits to squeezing imposed by the finite interaction range. We also present supporting information
regarding the contaminant atoms that require us to perform the Rydberg dressing stroboscopically.

I. EXPERIMENTAL DETAILS

A. Projection noise calibration

An accurate calibration of the atom number N is crucial to quantifying spin squeezing. We calibrate the number
of atoms by measuring the quantum projection noise of coherent spin states with variable initial tilt θ. These data
generically allow for distinguishing quantum projection noise from any technical noise sources via the dependence on
θ. Fitting the projection noise with the known variance of the binomial distribution then provides a precise calibration
of the atom number. Specifically, for a coherent state prepared at a polar angle θ on the Bloch sphere, the probability
that an atom is measured in state |↑⟩ is p = cos2 (θ/2). Accordingly, the fraction f↑ of atoms measured in |↑⟩ follows
a binomial distribution with mean p and variance σ2

f = p(1− p)/N . The variance of the fractional difference f↑ − f↓
in populations of the two spin states, where f↓ = 1− f↑, is then V[f↑ − f↓] = 4p(1− p)/N .

We prepare different initial states |θ⟩ by applying a resonant microwave drive pulse of varying length. We perform
100 measurements of f↑ at each initial state to determine the expectation value E[f↑] and variance V[f↑ − f↓]. The
results of a typical projection noise calibration are shown in Fig. S1. We post-process our measurements of f↑ by
performing a linear spatial regression across microtraps. This removes correlated noise that arises as a result of
common-mode experimental errors, such as microwave power fluctuations. The average amounts of technical noise
removed by the spatial regression across microtraps, normalized to the maximum variance, are on the 10% level. We
fit the remaining noise with the functional form

V[f↑ − f↓] =
4p(1− p)

N
+ ap2 +

(
b

N

)2

(S1)

with N , a, and b as free parameters. The term ap2 accounts for atom-related technical noise during imaging: a
small fraction of the atoms decay into |F = 3⟩ as they are imaged in |F = 4⟩, and a quantifies any fluctuations in
this fraction. The constant term b accounts for detection noise from our EMCCD camera. For the data plotted in
Fig. S1(a), we obtain mean values of N = 220(6) atoms, a = 0(2)× 10−5, and b = 2.3(1). The fit value for b represents
an atom number resolution equivalent to 3% of the projection noise variance, while the remaining technical noise is
consistent with zero.
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FIG. S1. Projection noise calibration. (a) Variance of f↑ − f↓ as a function of E[f↑] for microtrap 5 (purple dots), and fit
to functional form of Eq. S1 (purple line). (b) Summary of the fitted atom number N for all nine microtraps. (c) Summary of
the integrated fluorescence signal, measured in EMCCD camera counts, per atom.
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FIG. S2. Contrast calibration. (a) Schematic pulse train for contrast calibration with dressing light. Here Rϕ(θ) denotes a
microwave rotation about an axis ϕ by an angle θ. In the case of our baseline contrast calibration, the same pulse sequence is
performed with the omission of the dressing pulses (blue). (b) Fits to Ramsey fringe with (blue circles) and without (orange
triangles) the application of dressing light, for calibrating the contrast of microtrap 5. (c) Measured loss L within each microtrap
due to the application of dressing light.

B. Contrast calibration

We calibrate the contrast C used to calculate the Wineland squeezing parameter by Ramsey interferometry, as
shown in Fig. S2(a). This calibration is performed both with and without applying the dressing light [Fig. S2(b)]. In
both cases, we fix the Ramsey time to 4.8 ms and include spin-echo pulses, thereby calibrating the contrast under the
same conditions as in the squeezing measurement. We attribute the non-unity baseline contrast to inhomogeneous
trap light shifts that are imperfectly canceled by spin echo due to atomic motion. This calibration is carried out both
before and after the squeezing measurement, with results for the contrast consistent within error.

In calibrating the contrast with dressing pulses, we make a small correction to the fringe amplitude obtained from
the fit to account for atom loss from the microtraps. We determine the average loss directly from the atomic signal in
the data used for squeezing by comparing measurements with and without dressing light taken in alternate shots of
the experiment. The resulting ratio N/N0 of atom number in each microtrap with and without dressing determines
the loss L = 1 − N/N0 plotted in Fig. S2(c). We then multiply the amplitude of the Ramsey fringe measured after
dressing by N/N0 to obtain the contrast C including loss, which we apply in calculating the squeezing parameter. The
data shown in Fig. S2(b) yield a loss-adjusted contrast C = 0.95(2) with the dressing light and a baseline contrast
C0 = 0.96(2) in the absence of dressing light.

C. Atomic state preparation and detection

After initial cooling in a magneto-optical trap and optical molasses, cesium atoms are loaded into a 1064 nm optical
dipole trap with a ∼ 50 µm waist and trap depth h × 5(1) MHz. The atoms are then transported to a science
chamber by scanning the focus of an electrically tunable lens (Optotune). A bright molasses stage loads the atoms
into a one-dimensional array of 1064 nm microtraps, which is generated by a crossed acousto-optic deflector (AOD)
system. This array consists of a set of nine microtraps spaced 25 µm apart, each with a waist of 6 µm. The dipole trap
is briefly turned off to allow any atoms not confined in microtraps to escape, and is then turned back on to provide
additional confinement along the microtraps’ axial dimension. After state preparation, the measured temperature of
the atoms in each trap is T = 22(1) µK. The resulting rms cloud sizes are σ(x,y,z) = [1.7(2), 1.7(2), 19(2)] µm, where
ẑ denotes the vertical direction in the lab and x̂ denotes the axis of the array. With an average of N = 200 atoms per
trap, the peak atomic density is ρ0 = 2.3(3)× 1011 cm−3.
The science chamber contains an array of eight stainless steel electrodes with independently tunable voltages. We

calibrate these voltages to minimize the electric field along three orthogonal axes by measuring the quadratic Stark
shift of the

∣∣60P3/2

〉
Rydberg state. These calibrated voltages are fixed for the duration of the experimental sequence.

We perform state-sensitive fluorescence imaging on the D2 line using 852 nm light. Prior to imaging, we change
the spacing of the microtraps from 25 µm to 50 µm apart by ramping AOD frequencies, phases, and amplitudes with
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a jerk-minimizing polynomial ramp over 5–6 ms, such that fractional fluorescence from one microtrap detected in an
adjacent trap is at most 1%. During imaging, we first use light tuned to the |F = 4⟩ −→ |F ′ = 5⟩ transition to image
only the |F = 4⟩ atoms. After this, we reapply the same pulse to resonantly expel any remaining |F = 4⟩ atoms. We
then apply a microwave π pulse to transfer atoms from |F = 3,mF = 0⟩ −→ |F = 4,mF = 0⟩ and perform resonant
fluorescence imaging once again. Typically, around 5% of all atoms are in |F = 3,mF ̸= 0⟩ states due to imperfect
optical pumping; these atoms do not contribute to the experiment, as they are not affected by microwave pulses or
Rydberg dressing light and do not contribute to detected fluorescence during the imaging sequence. We measure a
3% decrease in our imaging efficiency for |F = 3⟩ atoms relative to |F = 4⟩. We attribute this to an imperfect π pulse
during |F = 3⟩ readout and calibrate our fluorescence signals to account for this effect.

D. Microwave parameters, sequences, and calibration

We measure an average microwave Rabi frequency ΩMW = 2π × 18.9(2) kHz, with percent-level inhomogeneity
in ΩMW across microtraps. One small but important source of calibration error and drift is the differential ac Stark
shift from the trapping light, which shifts the clock state resonance by approximately 500 Hz. We initially calibrate
our microtrap light intensities such that the ac Stark shift of the clock transition is the same to within 5 Hz across
all microtraps. During a typical measurement, the center of the dipole trap (which provides confinement in the
axial dimension of each microtrap) can drift by ±3 µm, which results in a measured microwave resonance drift of
approximately ±25 Hz, a non-negligible shift compared to the ∼ 200 Hz frequency scale set by typical Ramsey
sequence times.

We implement spin echoes primarily to cancel the average ac Stark shift from the Rydberg dressing light, as discussed
in Sec. I E, but secondarily to (a) cancel any remaining systematic drifts that result in microwave calibration error,
and (b) mitigate sensitivity to the percent-level gradient in microwave Rabi frequency. Borrowing spin-refocusing
techniques from NMR, we use the sequence MLEV-4 [1], in which every “unit” of 4 spin echoes takes the form of
rotations around (X, X, -X, -X), and where each pulse is a single π pulse rather than a composite pulse. This
sequence provides the best Ramsey contrast for our typical dressing Ramsey sequence times of ∼ 4.8 ms. The
microwave pulse train consists of 3 MLEV-4 “units” for a total of 12 π-pulses, one every ∼ 400 µs, and is used in every
sequence in this paper that requires spin echoes.

E. Rydberg dressing laser system, parameters, and pulse shaping

To generate the 319 nm Rydberg dressing light, we start with 1275 nm light from an external-cavity diode laser
(LEOS Solutions) that is used to seed a pre-amplifier (Thorlabs BOA1130P) followed by a Raman fiber amplifier (RFA,
MPB Communications). The seed light is frequency-stabilized by a Pound-Drever-Hall lock to a ULE reference cavity
(Stable Laser Systems). Light from the RFA is resonantly doubled in two stages (LEOS Solutions), each consisting
of an LBO crystal in a bow-tie optical cavity. We use an electro-optic polarization modulator (QUBIG GmbH) and
α-BBO Glan-Taylor polarizer (Eksma) to stabilize the power of the 319 nm light (Supplemental Material, [2]), followed
by an acousto-optic modulator (AOM) for generating and shaping the Rydberg dressing pulses. The dressing light is
then focused down to a waist of 55 µm and intersects the 1D array of microtraps at a 30◦ angle of incidence [Fig. 1(a)],
such that the beam addresses most of the microtraps but with a spatially varying intensity that allows us to explore
different Rabi frequencies within a single measurement.

We dress with the 60P3/2 Rydberg state, which has an attractive van der Waals interaction characterized by the

coefficient |C6| = 2π×359 GHzµm6. We use σ+–polarized light to couple from the ground state
∣∣6S1/2, F = 4,mF = 0

〉
to the

∣∣60P3/2, J = 3/2,mJ = 3/2
〉
and

∣∣60P3/2, J = 3/2,mJ = 1/2
〉
states. At our typical power of 300 mW and beam

waist of 55 µm, we measure Rabi frequencies Ω/(2π) = 1.3–1.5 MHz. As the sign of C6 is negative, we work at a
positive (blue) detuning ∆∗ ≈ 2π × 8 MHz from the

∣∣6S1/2, F = 4,mF = 0
〉
−→

∣∣60P3/2

〉
resonance to avoid crossing

the pair-state energy of two Rydberg atoms at any length scale. In prior work we operated at n = 43 due to an
enhanced C6 coefficient from a nearby Förster resonance [3], but we have since found that this near-Förster-resonant
dressing causes increased loss compared to n = 60 under similar experimental conditions.

We shape the Rydberg dressing pulses by applying a 2.5 MHz low-pass filter (Mini-Circuits BLP-1.9+) to a train
of square pulses produced by an arbitrary waveform generator, which is then used to modulate the RF power driving
the AOM. These shaped pulses allow us to avoid ∼ 2 MHz sidebands produced by square pulses of approximately
500 ns in length; the red-detuned 3rd and 4th–orders of these unwanted sidebands address the atoms at a frequency at
or very near resonance compared to our chosen +8 MHz detuning, leading to measurable excess loss. We characterize
the pulse shape by the intensity profile h(t) of our light as measured on a photodiode, normalized to a peak value
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FIG. S3. Twisting strength and contrast versus dressing pulse length. (a) Sample dataset showing measurements of
twisting strength Q (blue triangles) and contrast (red squares) as a function of total dressed interaction time Mτp varying τp,
with M = 48 in a typical dressing sequence [Fig. S2(a)]. A linear fit to Q (blue line) provides a mean-field interaction strength
of χ = 2π×6.4(8) kHz; a Gaussian fit to contrast (red line) is shown as an ansatz for decay. For these data, setting τ∗

p = 514 ns
yields a twisting strength Q = 1 rad while maintaining a contrast of 0.96(2). Dashed lines are shown as guides to the eye, while
shading denotes ±1σ fit errors. (b) Twisting strength Q vs normalized contrast at fixed total interaction time τint and fixed
pulse delay τd for three different pulse lengths: τp = 630 ns (orange triangles), 940 ns (green squares), and 1.9 µs (red circles).
The larger τp values show loss of contrast, despite shorter Ramsey time and correspondingly fewer spin echo pulses. Solid lines
depict fits of each dataset to Gaussian decay curves. (c) Measurement of twisting strength (orange circles) as a function of
measured atom number N , measured peak dressing Rabi frequency Ωp, dressing light detuning ∆, and total interaction time
τint (corrected for pulse shaping as described in Sec. I E). A linear fit (green dashed line) gives a slope Nc/N = 0.08(1), in
approximate agreement with the Nc/N = 0.07(1) extracted from the data in Fig. 2.

hmax = 1. The corresponding Rabi frequency is given in terms of the peak Rabi frequency Ωp as

Ω(t) ≡ Ωp

√
h(t). (S2)

For terms of order k > 0 in Ω2, such as the k = 1 and k = 2 terms in the expansion for U found in Eq. S11, we define
a corrected effective interaction time

Tk ≡
∫ ∞

−∞
hk(t)dt (S3)

for a single shaped pulse. We additionally define T0 = τp, representing the interaction time for an idealized square
pulse; for pulses typically used in our twisting and squeezing sequences, we find T1/T0 ≈ 0.95 and T2/T0 ≈ 0.83. We
account for these corrections in all fits that involve Ω.

F. Twisting and dressed pulse length calibrations

Once we determine a dressing pulse delay τd = 100 µs and fix our spin echo pulse separation at 400 µs [Fig. S2(a)],
we still have the freedom to choose a pulse length τp and total interaction time τint. Fixing the number of pulses
M = 48 and measuring the one axis twisting-like phase precession ϕ of states initialized at θ = 3π/4 and π/2 on the
Bloch sphere, we calculate the twisting strength Q via ϕ = −Q cos θ, as in Ref. [3]. In Fig. S3(a), Q is plotted as a
function of the total dressed interaction time τint = Mτp = 48τp. A linear fit gives a mean-field interaction strength
of χ = 2π × 6.4(8) kHz for these data. We generally choose τp such that one or more microtraps has a twisting
strength Q ≥ 1 rad, but also such that our contrast does not significantly decay.

After scanning τp at a fixed pulse number and thus a varying total interaction time, we may also ask whether the
contrast decay we observe for larger τp vanishes at fixed interaction time. In Fig. S3(b) we plot Q versus contrast
(normalized to the contrast with no dressing light) for three different pulse lengths τp = (630 ns, 940 ns, 1.9 µs) and
corresponding pulse numbers M = (48, 32, 16), chosen such that the interaction time τint = Mτp remains constant.
The pulse delay remained fixed at τd = 100 µs, and as a result the number of total spin echoes (12, 8, 4) and Ramsey
times (4.8, 3.2, 1.6) ms were allowed to vary between datasets. Here we observe that longer dressing pulses lead
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FIG. S4. Dicke ladders for a fully-blockaded system. The dressed ac Stark shift and its suppression due to Rydberg
blockade may be modeled as two coupled Dicke ladders in the Hilbert space of states |N↑, N↓, Nr⟩. The left ladder represents
states with no Rydberg excitations (Nr = 0), while the right ladder considers those with Nr = 1. States with equal population
in N↓ are coupled by the collective Rabi frequency

√
N↑Ω, which represents the coherent drive of a single excitation in |r⟩

shared between the N↑ atoms in |↑⟩.

to faster contrast decay at comparable values of Q; fitting the normalized contrast to a Gaussian decay of the form
exp(−Q2/2σ2

Q) yields σQ = [4.1(8), 2.1(4), 1.2(1)] rad, respectively. For the shortest pulses, the value σQ = 4.1(8) rad

is consistent with the prediction of the one-axis twisting Hamiltonian with Nc = 16(6) atoms within the interaction
range (Sec. II C 1).

To accompany every noise measurement shown in this Letter, we took independent measurements of the quantities
Q, dressing Rabi frequency Ωp, and atom number N for each microtrap. Plotting Q as a function of NΩ4

pτint/(16∆
3)

[Fig. S3(c)] allows us to observe an approximately linear relationship, with the slope describing the fraction of interact-
ing neighbors within each trap, Nc/N . While we cannot continuously measure Q and take other data simultaneously,
we calibrate Q both before and after every noise measurement.

II. THEORY

A. Collective interactions via Rydberg dressing

Here we derive an analytical expression for the ac Stark shift U induced by the Rydberg dressing light and the
resulting collective interaction strength χ. Consider a cloud of N Rydberg-dressed atoms in the fully blockaded regime,
where |C6| r−6

ij ≫ ∆,
√
NΩ for all pairwise distances rij in the cloud. The system will be approximately described by

a permutation-symmetric Hamiltonian of the general form

Heff =

∞∑
p=0

cpS
p
z (S4)

where Sz = (N↑ −N↓) /2. From this Hamiltonian we can calculate the light shift

U ≡ ∂Heff

∂Sz
, (S5)

which represents the ac Stark shift due to the dressing light, and the interaction strength

χ ≡ −Nc2 = −N

2

∂2Heff

∂S2
z

∣∣∣∣
Sz=0

, (S6)

which parametrizes one-axis twisting. To arrive at Heff , we diagonalize the full Hamiltonian in the Hilbert space of
states |N↑, N↓, Nr⟩, where we fix the total number of atoms N = N↑ + N↓ + Nr and allow only Nr = 0 or Nr = 1
excitations to |r⟩. Schematically, we have two coupled Dicke ladders, as shown in Fig. S4. This system is described
by a block-diagonal Hamiltonian with blocks

H (N↑) =

(
0

√
N↑Ω/2√

N↑Ω/2 −∆

)
(S7)
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whose eigenvalues are

E± = −∆

2

[
1∓

√
1 +N↑ (Ω/∆)

2

]
. (S8)

Using the constraint Sz = N↑ −N/2, we calculate the light shift

U =
∂E+

∂N↑
=

Ω2

4∆

1√
1 +N↑ (Ω/∆)

2
(S9)

and the interaction strength

χ = −N

2

∂2E+

∂N2
↑

∣∣∣∣∣
N↑=N/2

= N
Ω4

16∆3

1[
1 + (N/2) (Ω/∆)

2
]3/2 . (S10)

These results are consistent with the perturbative treatment of Refs. [4, 5] in the weak dressing limit N (Ω/2∆)
2 ≪ 1.

Here we can approximate the light shift as

U ≈ Ω2

4∆

[
1− N↑

2

(
Ω

∆

)2
]
, (S11)

leading to a collective interaction strength

χ ≈ N
Ω4

16∆3
. (S12)

The derivation of the dressing light shift and collective interaction strength is generalizable to a system of number

density ρ extending over more than one blockade radius rc =
(
C6/2

√
Ω2 +∆2

)1/6
by replacing N(↑) → N

(↑)
c , where

N
(↑)
c is the number of (interacting) atoms within a single blockade radius:

Nc = ρ · 4π
3
r3c = ρ · 4π

3

(
C6

2
√
Ω2 +∆2

)1/2

. (S13)

For atoms prepared in |θ⟩ = cos(θ/2) |↑⟩ + sin(θ/2) |↓⟩ we have N↑
c = Nc cos

2(θ/2). In fitting the dependence of the
light shift on detuning to extract Nc in Fig. 3 of the main text, we must account for the fact that Nc itself depends
on detuning. We define the constants W ≡

√
C6 · 4πρ/3 and W↑ = W cos2 (θ/2) such that

N↑
c =

W↑√
2(Ω2 +∆2)1/4

. (S14)

This allows us to rewrite Eq. S9 as

U =
Ω2

4∆

[
1 +

Ω2

∆2

W↑√
2 (Ω2 +∆2)

1/4

]−1/2

, (S15)

which we use to fit the data shown in Fig. 3(b) with Ω and W↑ as free parameters. We account for the pulse shape,
as discussed in Sec. I E, when stating values for Ωp, N

↑
c , and Nc in Fig. 3(c-d).

B. Rydberg-dressed ground state interaction potential and interaction strength distribution

To compare the measured interaction parameters (χ, Nc) with theoretical predictions, we calculate the dressed
ground-state interaction potential using Rydberg pair potentials [6], Rabi frequency Ω = 2π × 1.305 MHz, and
detuning ∆∗ = 2π × 8 MHz, as described in Ref. [3]. The interaction potential is shown in Fig. S5(a-b), where ϑ = 0
is referenced to the propagation direction of the Rydberg dressing beam, which is orthogonal to the axial (ẑ) direction
of the traps as defined in Sec. I C. From this interaction potential, we generate a matrix of pairwise interactions Jij
by simulating the spatial distribution of the atoms in a single microtrap, sampling atom positions from Gaussian
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FIG. S5. Rydberg interaction potential. (a) Radial dependence of the ground state interaction potential plotted for three
polar angles (θ). (b) Polar map of the ground state interaction potential as a function of θ. (c) Probability distribution of
normalized interaction strength for ensembles of spins simulated with our cloud sizes and the interaction potential shown in
(a).

distributions with experimentally calibrated standard deviations σ(x,y,z) = [1.7(2), 1.7(2), 19(2)] µm (Sec. I C). An
atom j then experiences a collective interaction strength

χj = −1

2

∑
i

Jij . (S16)

Figure S5(c) shows a histogram of the resulting values χ, normalized to the depth of the interaction potential |J0| =
2π× 2.1 kHz, for a cloud of N = 200 atoms. The average value ⟨χ⟩/ |J0| = 19(1) is approximately consistent with the
values Nc determined from the suppression of the ac Stark shift in Fig. 3 of the main text.

C. Squeezing dynamics

In Fig. 4 of the main text we compare the measured squeezing with a model of one-axis twisting with total spin
S = Nc/2. Here we give expressions for this model, including the effect of finite baseline contrast C0. We also
compare the model of one-axis twisting with Nc neighbors to an exact calculation of the Ising dynamics with pairwise
interactions given by the Rydberg-dressed potential, and to an opposite limit of ideal one-axis twisting with global
interactions among all N atoms.

1. Spin squeezing by one-axis twisting

Analytic expressions for the squeezing arising from the one-axis twisting Hamiltonian were derived by Kitagawa
and Ueda in Ref. [7]. Briefly, the approach is to calculate the time evolution of the variance ⟨S2

y⟩ and covariance

⟨SySz + SzSy⟩ under the Hamiltonian Htwist = −χS2
z/N for a system initialized in a coherent spin state along x̂.

From these quantities, as well as ⟨S2
z ⟩ = S/2 which remains invariant, one obtains the spin variance

⟨S2
α⟩ = ⟨S2

z ⟩ cos2 α+ ⟨S2
y⟩ sin2 α+ ⟨SySz + SzSy⟩ sinα cosα (S17)

as a function of rotation angle α. By symmetry ⟨Sy⟩ = ⟨Sz⟩ = 0, so extremizing Eq. S17 with respect to α yields the
minimum and maximum variances

⟨S2
min/max⟩ =

V+ ∓
√
W 2 + V 2

−

2
, (S18)

where

W = ⟨SySz + SzSy⟩, (S19a)

V± = ⟨S2
y ± S2

z ⟩. (S19b)

The orientation αopt of the squeezed quadrature is obtained from the minimization of ⟨S2
α⟩ as

αopt = −1

2
arctan

(
W

⟨S2
y⟩ − ⟨S2

z ⟩

)
. (S20)
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The variances in Eq. S18, together with the length |⟨S⟩| = ⟨Sx⟩ of the Bloch vector, determine the squeezing parameters

ξ2min/max =
N⟨S2

min/max⟩

|⟨Sx⟩|2
(S21)

for the squeezed and antisqueezed quadratures. For the data presented in Fig. 4 we fit the measured ξ2 versus α with
the sinusoidal function

ξ2(α) =
(
ξ2max − ξ2min

)
sin2 (α− αopt) + ξ2min (S22)

where αopt, ξ
2
min, and ξ2max are free parameters.

In modeling the squeezing in our experiment we account for imperfect initial contrast C0. We assume that the im-
perfect contrast is due to uncorrelated phase shifts ϕj , with ⟨ϕ⟩ = 0, applied to the atoms indexed j. Correspondingly,
the spin raising operator for the jth atom in the Heisenberg picture is modified as

s+j → s+j e
iϕj , (S23)

leading to a reduced length of the collective Bloch vector

⟨Sx⟩ → C0⟨Sx⟩, (S24)

where C0 = ⟨cosϕ⟩. In addition to shortening the Bloch vector, the imperfect contrast reduces the correlations
W = ⟨SySz + SzSy⟩ responsible for squeezing and modifies the variance ⟨S2

y⟩ as

W → C0W (S25a)

⟨S2
y⟩ → C2

0⟨S2
y⟩+ (1− C2

0)
S

2
. (S25b)

The resulting analytic expressions for one-axis twisting dynamics, building on Ref. [7], are given in terms of the
twisting strength Q =

∫
χ(t) dt:

⟨Sx⟩ = C0S cos2S−1

(
Q

2S

)
, (S26a)

⟨S2
y⟩ =

S

2
+

C2
0S(S − 1/2)

2

[
1− cos2S−2(Q/S)

]
, (S26b)

⟨SySz + SzSy⟩ = C0S(2S − 1) sin

(
Q

2S

)
cos2S−2

(
Q

2S

)
. (S26c)

We apply Eqs. S26(a-c) to model the squeezing and antisqueezing in the main text.
In addition, we compare Eq. S26a to the measured dependence of contrast on twisting strength in Sec. I F of the

supplement. In the experimentally relevant regime Q ≪ S, the length of the collective spin vector decays as a Gaussian

function of the twisting strength: ⟨Sx⟩ = Se−Q2/(2σ2
Q), where σQ = 2S/

√
2S − 1. Assuming an effective spin length

S = Nc/2 set by the number of neighbors in the interaction ellipsoid, a Gaussian fit to the contrast decay reveals Nc

via

Nc = σ2
Q

1 +
√

1− 4/σ2
Q

2

 . (S27)

2. Effects of finite interaction range

While all-to-all coupled systems preserve a permutation symmetry that conserves the total system spin S, no such
symmetry exists for systems with finite-range interactions, and we thus expect the squeezing ξ2min ultimately to be
limited by a decrease in signal |⟨S⟩| with increasing interaction time. This limitation is particularly fundamental for
the case of Ising interactions: due to the absence of non-commuting terms in the Hamiltonian, correlations form only
between pairs of atoms that interact directly and thus, in the idealized limit where the atomic positions are pinned,
the correlations cannot spread beyond the interaction range. An additional limitation arising from the locality of
interactions is that the interaction strength is sensitive to the local density.
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FIG. S6. Effects of finite interaction range and inhomogeneous density. Simulated squeezing dynamics for an in-
homogeneous cloud matching our experimental trap geometry and Rydberg interaction parameters from Fig. S5. Solid blue
line denotes average value over 1000 instances, while blue shading denotes ± 1σ values. The olive curves and shading show
analytical predictions for the range of expected squeezing for all-to-all coupled systems with Nc = 13 atoms (light olive dotted,
our empirical value) to Nc = 19 atoms (dark olive dash-dotted, based on the estimate Nc = ⟨χ⟩/ |J0| from the simulated
distribution of interaction strengths in Fig. S5). We additionally show the analytical all-to-all prediction for N = 63 atoms (red
dash-dot), which would be achieved by extending the system to be larger than the interaction range in all three dimensions at
fixed density ρ = 2 × 1011 cm−3, as well as simulated results for N = 200 (yellow dashed) and N = 1000 (orange dashed) on
a 3D lattice with the same density. The purple dash-dotted curve shows the analytical all-to-all prediction for our full system
size of N = 200 atoms.

To analyze the limits to squeezing with the local Ising interactions produced by Rydberg dressing, we perform a
full simulation of the squeezing dynamics in a Gaussian cloud of atoms. Because the Ising interactions contain no
non-commuting terms, one can efficiently compute the time evolution for any specified set of pairwise interactions

Jij [8]. Following the example of Ref. [8], we compute correlation functions of the form ⟨sαi s
β
j ⟩ between pairs of

individual spins (i, j). From these pairwise correlations we calculate moments of collective observables, and thus the
squeezing parameter, following Eqs. S17-S21.

The results of the simulation are shown in Fig. S6. Each instance of the simulation samples N = 200 atoms from
a three-dimensional Gaussian distribution with standard deviations σ(x,y,z) = (1.7, 1.7, 19) µm as measured in our
experiment, corresponding to a peak density ρ0 = 2.3×1011 cm−3. For simplicity, the atoms are assumed to be at rest
during the simulation. From the atomic coordinates and the calculated Rydberg-dressed potential shown in Sec. II B,
we generate a pairwise interaction matrix and calculate the corresponding local mean-field interaction strengths χ
(Fig. S5). We then calculate the average twisting strength Q = ⟨χ⟩τint as a function of the interaction time τint. In
Fig. S6, we plot the squeezing parameter ξ2min averaged over 1000 instances as a function of Q in solid blue, with
shading at ±1σ.

To examine the impact of the finite interaction range and the spatial inhomogeneity on the squeezing, we compare
the full simulation of the short-range interactions with models of ideal one-axis twisting. The olive curves and shading
in Fig. S6 account for the finite interaction range by showing analytical predictions for all-to-all coupled one-axis
twisting with total spin S = Nc/2, where we set either (1) Nc = ⟨χ⟩/J0 = 19 atoms (dark olive dash-dot), the average
number of neighbors predicted for our atomic cloud based on the calculated interaction potential; or (2) Nc = 13 atoms
(light olive dotted), the average extracted value across microtraps from the fits in Fig. 3. The purple dash-dotted curve
compares these to an all-to-all coupled system with N = 200 atoms, the number typically found within a microtrap.
All simulations obey the limiting early-time behavior ξ2min ≈ 1 − Q. At the twisting strengths Q < 0.7 rad accessed
in Fig. 4 of the main text, the three models examined here are indistinguishable within experimental error, showing
that the short-range character of the interactions is not the limiting factor in the present experiment.

For stronger twisting, both the finite number of neighbors and the inhomogeneous twisting strength pose limitations
to the squeezing. At fixed density and dressing parameters, the number of neighbors could be increased by modifying
the microtrap geometry. In our present experiment with rms cloud sizes σ(x,y,z) = (1.7, 1.7, 19) µm (Sec. I C) and

interaction radii ∼ r
(x,y,z)
c = (3, 5, 5) µm (Sec. II B), the cloud is larger than the interaction radius in only one

dimension. Increasing the radial cloud sizes at fixed density ρ = 2 × 1011 cm−3 would produce Nc = 63 neighbors
within the interaction ellipsoid. In Fig. S6, we plot the analytical prediction (red dash-dotted curve) for an all-to-all
coupled system with N = 63 which achieves a minimum squeezing parameter ξ2min = 0.09 (equivalently 10.5 dB).
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To confirm that the one-axis twisting model provides a good approximation of the attainable squeezing in a realistic
system with uniform density, we additionally simulate the full Ising dynamics on a 3-dimensional lattice of spacing
ρ−1/3 = 1.7 µm with unity filling within a spherical region containing N = 200 (yellow dashed curve) or N = 1000
(orange dashed curve) atoms. These simulations are consistent with the squeezing approaching 10 dB in an ordered
array of dimensions larger than the interaction range.

3. Comparison with alternative platforms

The predicted squeezing attainable by Rydberg dressing in a large system at uniform density, at the level of 10 dB,
is less than the record spin squeezing attained in optical cavities [9, 10] but comparable to the largest enhancements
in spectroscopic sensitivity observed to date. For reference, a clock stability 10.5 dB beyond the standard quantum
limit has been demonstrated by Ramsey spectroscopy using input states squeezed by 20 dB via cavity-based quantum
non-demolition measurement [9]. A larger spectroscopic enhancement of 11.8 dB has been accessed by an echo
protocol employing cavity-mediated interactions both to generate a non-Gaussian entangled state and facilitate its
detection [11]. This protocol, which achieves a Heisenberg scaling in metrological gain through one-axis twisting,
could also be applied in future experiments with Rydberg-dressed atoms to access a larger benefit than from squeezing
alone [12, 13].

Compared with alternative methods of generating entanglement, Rydberg dressing is particularly well suited to
applications that benefit from independent control of squeezing in multiple ensembles. Prior work in this context
has leveraged collisional interactions in BECs to access 3.4 dB of metrological squeezing across an array of up to 30
ensembles and a 24% enhancement in magnetic field gradiometry [14]. Rydberg dressing offers promise for achieving
larger metrological gain, with the added benefit of optical control for switching off interactions during the operation
of a sensor or clock.

D. Contaminant Rydberg states

In Fig. 2 of the main text, we show that introducing a delay between Rydberg dressing pulses significantly reduces
super-Poissonian loss that we attribute to the presence of atoms in contaminant Rydberg states. Here we identify
the dominant contaminant states based on their branching ratios, lifetimes, and range of influence within the system
of Rydberg-dressed atoms. We also explore how the creation of contaminant atoms and their influence on the larger
system depend on system size and dimensionality.

1. Decay channels and lifetimes

We calculate decay rates from |r⟩ =
∣∣60P3/2,mJ = 3/2

〉
to nearby S and D states, as well as C3 coefficients and

lifetimes for these contaminant states, using the Alkali Rydberg Calculator (ARC) [6]. We focus our attention on
states with C3 coefficients sufficiently large to shift atoms in our ensembles into resonance with the dressing beam. We
estimate a threshold C3 coefficient from our dressing detuning (∆∗ = 2π × 8 MHz) and typical interatomic distance
of ri = 1.8 µm as

C3 ≥ ∆∗r
3
i = 2π × 47 MHz µm3. (S28)

Figure S7(a) shows the branching ratio into a given contaminant state plotted against the characteristic distance,
d = (C3/∆∗)

1/3, at which the interaction shift equals the detuning of the dressing light. The branching ratio is
calculated by taking the product of the decay rate into a given state from |r⟩ and the lifetime of |r⟩. For the states
shown here, the lifetimes of the S and D states are on the order of 75 µs and 100 µs, respectively. The lifetime of |r⟩
is 150 µs.

When an atom transitions into a contaminant Rydberg state, a natural question to ask is whether the lifetime of the
resulting excitation is set by the radiative lifetime of the state, or is instead set by the antitrapping experienced by the
Rydberg atom in the presence of 1064 nm light. To estimate the antitrapping lifetime, we neglect the small thermal
velocity for atoms at 22 µK and assume atoms start at rest with an initial spatial distribution corresponding to our
measured cloud σrms values from Sec. I C. We calculate the force an atom would feel were it to decay to

∣∣60S1/2

〉
at

t = 0, an illustrative example contaminant state which has both a high branching ratio from
∣∣60P3/2,mJ = 3/2

〉
and

a large C3 coefficient. We then calculate the time required for the atom to be forced outside of the 2σrms cloud radii in
any direction. The results of 2000 independent simulation instances are shown in Fig. S7(b). We find that the mean
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FIG. S7. Contaminant Rydberg states. (a) Branching ratio into a given contaminant state plotted against the characteristic
distance d at which the interaction shift equals the detuning ∆∗ = 2π × 8 MHz. (b) Thermal lifetime of antitrapped

∣∣60S1/2

〉
in atomic cloud.

thermal timescale for trap expulsion is 115 µs, which is comparable to the radiative lifetimes of the contaminant states.
We conclude that both effects must be contributing to the effective lifetimes of any contaminant state excitations in
the cloud.

2. Effects of system size and dimensionality

The stroboscopic dressing technique introduced in this work is of particular importance for systems with large atom
number N . To understand why, we consider how system size affects the typical interaction time needed to create a
contaminant atom in a simple model that assumes adiabatic dressing pulses but allows for an enhanced excitation
rate due to laser phase noise. The rate γexc of incoherent excitation from the ground state |↑⟩ to the Rydberg state
|r⟩ is given by

γexc =
(γL + Γr) Ω

2

(γL + Γr)
2
+ 4∆2

, (S29)

where Γr is the linewidth of the Rydberg state |r⟩ with which we are dressing and the γL is the linewidth of the dressing
laser, presumed to be Lorentzian. Atoms also undergo two-photon scattering directly from |↑⟩ into contaminant
Rydberg states at a rate (Ω/2∆)2γBB, where γBB is the blackbody decay rate from |r⟩. However, this rate is
insufficient to explain the loss in our experiments, suggesting that the dominant pathway is excitation to |r⟩ at a
rate γexc that is governed by laser noise, followed by decay to contaminant states at rate γBB. For sufficiently short
interaction times τint we may take the total number of atoms N↑ in the state |↑⟩ to be constant, and the expected
number of excitations to |r⟩ is then Nr = γexcτintN

↑. For a decay rate γBB from |r⟩ to a contaminant Rydberg state
|c⟩, the expected time Tc to produce a single atom in |c⟩ is then

Tc =

√
2

γexcγBBN↑ . (S30)

For the 60P3/2 Rydberg state, the room-temperature blackbody transition rate is γBB ≈ 2π× 800 Hz and the linewidth
is Γr ≈ 2π × 1 kHz. For a representative laser linewidth γL = 2π × 10 kHz, Rabi frequency Ω = 2π × 1.2 MHz,
detuning ∆ = 2π × 8 MHz, and system with N↑ = 100 atoms in |↑⟩, the continuous interaction time expected to

produce a single contaminant atom is Tc ≈ 100 µs. Note that Tc decreases with larger system sizes as Tc ∝ 1/
√
N↑,

a scaling that highlights the particular importance of stroboscopic dressing techniques in larger systems.
We now consider how the influence of a contaminant atom on neighboring ground-state atoms depends on system

size and dimensionality. As shown in Fig. S7(a), the characteristic distance d = (C3/∆)1/3 over which a contaminant
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atom strongly affects ground-state atoms is d ≈ 10 µm. We define Nd to be the number of atoms within a distance d of
a contaminant atom. For simplicity, we consider the worst-case condition that all Nd atoms are lost from the system,
corresponding to a super-Poissonian loss process in which atoms are lost in groups of size g = 1 + Nd. For a small
fractional atom loss ℓ, this process adds an amount gℓ of noise to the normalized variance σ2, as observed in Fig. 2(d).
If a system of N atoms is small compared to d in all dimensions, a single contaminant atom interacts with all ground-
state atoms and we have Nd = N↑ = N/2. This is approximately the case in our present work, where d for relevant
contaminant states is larger than the radius σx,y of each cloud and comparable to the length σz. For systems of density
ρ that are larger than d in D dimensions, however, the number of ground-state atoms affected by a contaminant atom
becomes Nd ∝ ρ × (C3/∆)D/3. This adverse scaling with density ρ and dimensionality D corroborates the myriad
of experimental results that have observed avalanche decay when implementing Rydberg-dressed interactions in large
systems [15–18].
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