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mere classical information. The quantum 
data can be used by the quantum computer 
to predict future results while requiring far 
fewer experiments.

One cannot input quantum data into 
a classical computer. Intuitively, one may 
think that this would give the quantum 
device a straightforward advantage. But 
the actual scenario is more nuanced. For 
a classical setup, the quantum state of an 
experiment can be measured and used as 
input, with each measurement freely cho-
sen by the classical learning algorithm. 
Because the classical computer can arbi-
trarily choose when to measure each of the 
experiments, then at least in principle, all 
the information encoded in quantum states 
can be accessible. For a quantum setup, the 
quantum computer provides a minimal but 
key additional capacity: a small quantum 
memory that enables joint measurements 
on two copies of quantum data. 

So in both cases, all the quantum data 
are converted to classical information be-
fore calculation, but in slightly different 
manners. Joint measurements—used in the 
quantum-enhanced scenario—unravel cor-
related properties of two separate quantum 
systems. This fundamentally exploits quan-
tum entanglement (when the quantum states 
of two or more objects are intertwined with 
each other) and cannot be substituted by 
pairs of individual measurements. Since the 
early days of quantum information theory, 
it has been known that joint measurements 
can help distinguish quantum states, even 
when the states are uncorrelated (3). But 
until recently, it was not clear just how large 
an advantage this exploit can give quantum 
computers over their classical counterparts. 

Building from the research line on so-
called shadow tomography (4–6), Huang et 
al. argued that joint measurements lead to 
substantial advantages for learning about 
quantum systems. Namely, the quantum-
enhanced strategy is exponentially more 
economical in terms of the number of quan-
tum experiments needed for predicting the 
outcomes of just two measurements (6). 
The authors demonstrated the advantages 
of a quantum learning experiment using 
the Google Sycamore processor. The natural 
scenario of quantum data learning involves 
a “transducer” that transports the quantum 
state of results from an experiment into the 
quantum computer. Their experiment was 
simulated in the same quantum processor 
that analyzes the data, in a lab-on-a-chip set-
ting. Once the quantum state is prepared, 

it is analyzed with classical and quantum-
enhanced methods. 

For the optimal predictions, the exact 
joint measurements may be known, at least 
in idealized settings. However, in the real 
experiment, the state preparation is im-
perfect, as is the measurement performed. 
To counteract this, the quantum process-
ing is supplemented with classical machine 
learning to extract the strongest signals in 
the presence of experimental errors. This 
classical-quantum hybrid approach demon-
strates advantages in our capacity to learn 
various fundamental properties of quantum 
systems—for example, predicting whether 
an unknown quantum process satisfies time-
reversal symmetry. Their tests show that 
quantum computers can maintain their ad-
vantages in solving certain problems, even 
when errors specific to quantum computers 
are taken into account. 

The work of Huang et al. intertwines the 
ability to characterize quantum systems (4–
6) with machine learning, with implications 
for near-term quantum computers and per-
haps even quantum sensing. The introduced 
generalization of classical machine learning 
to allow quantum data as inputs allows for 
certain benefits; namely, difficult proofs of 
advantages of quantum computers become 
easier. However, because of the hardware 
required to transfer quantum data in its un-
perturbed state from an experiment into the 
quantum computer, this method may be dif-
ficult to implement in certain settings, such 
as the high-energy physics experiments at 
the Large Hadron Collider. In smaller-scale 
experiments, however, transduction may 
be reasonable—for example, in quantum-
optical experiments with nitrogen-vacancy 
centers in diamonds (7), which are often de-
signed with transporting quantum informa-
tion in mind. In a related vein, this work also 
opens a frontier for quantum sensing that 
involves quantum states and may lead to 
better advantages (8). Huang et al. proved in 
detail that for the data-driven prediction of 
properties of quantum experiments, no clas-
sical computer will ever pose a challenge to 
quantum ones—and that quantum comput-
ers may soon help expand human knowledge 
into new echelons.        j
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QUANTUM COMPUTATION

Solving a 
puzzle with 
atomic qubits
A quantum com puter makes 
light work of the maximum 
independent set problem

By Monika Schleier-Smith

I
magine that you are asked to color a 
map of the world.  Starting with your 
favorite color, you endeavor to fill in 
as many countries as possible with-
out giving any neighboring countries 
the same color. This puzzle, despite its 

straightforward premise, is notorious for its 
computational complexity. On page 1209 of 
this issue, Ebadi et al. (1) report a quantum 
algorithm for solving the puzzle—known 
as the maximum independent set (MIS) 
problem—using individual atoms trapped 
in optical tweezers to represent the coun-
tries on the map. The demonstration is an 
important milestone in the broad effort to 
understand which computational problems 
stand to benefit from quantum computers. 

To date, only a few quantum algorithms 
have been proven to offer clear advantages 
over classical computers. Moreover, even in 
cases where quantum computers theoreti-
cally provide a benefit—such as for factor-
ing large numbers—practical applications 
will require major advances in quantum 
hardware beyond the current state of the 
art. By contrast, the coloring puzzle pre-
sented by Ebadi et al. belongs to a large 
class of optimization problems (2) that are 
potentially easier to solve using near-term 
quantum devices (3) but for which the at-
tainable quantum speedup remains largely 
an open question (4–6). Such optimization 
problems, with technological relevance in 
areas such as supply chain logistics, can ge-
nerically be framed as minimizing what is 
known as a cost function. The solution can 
be calculated by tasking the quantum com-
puter to minimize the energy of a system 
of interacting particles or qubits, where the 
specific problem is encoded in the structure 
of the interactions.

To generate the structure of interactions 
required to represent MIS problems, Ebadi 
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By harnessing the power of the Google Sycamore 
processor (pictured here), Huang et al. showcase the 
exponential advantages offered by quantum computers 
for analyzing data from quantum experiments.
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et al. used qubits encoded in the internal 
states of optically trapped atoms. Each 
atom can either be in the electronic ground 
state or a highly excited state known as a 
Rydberg state, where the electron cloud 
is thousands of times larger than in the 
ground state. An atom can be excited to 
the Rydberg state by a laser.  However, 
any attempt to excite multiple neighbor-
ing atoms is constrained by strong interac-
tions between atoms in the Rydberg state. 
Specifically, no more than a single atom 
can be excited within a minimum distance 
known as the blockade radius (7–9). Thus, 
atoms that are closer to one another than 
the blockade radius are equivalent to coun-
tries that share a border, where only one 
but not both can be colored blue, or in this 
case, be excited to the Rydberg state.

The method was put to test using a quan-
tum processor with up to 289 atomic qubits, 
with each qubit trapped at the focus of a la-
ser beam. By controlling the positions of the 
atoms, Ebadi et al. programmed specific in-
stances of the MIS problem, each of which 
can be visualized as a graph with an atom 
at each node and with bonds between block-
aded pairs (see the figure). They sought to 
solve the problem using an approach known 
as adiabatic quantum computation (4, 10).  
Here, the system parameters are ramped 
from an initial state in which the minimum-
energy configuration is simple and known 
to a final state where the minimum-energy 
configuration provides a solution for the MIS 
problem. In the laser-driven atomic system, 
depending on whether the photon energy is 
lower or higher than the energy of a Rydberg 
excitation, the minimum-energy configura-
tion can either have all atoms in the ground 
state or have as many atoms in the Rydberg 
state as possible without violating the block-
ade constraint. Thus, by ramping the fre-
quency and intensity of the lasers, the atoms 
are driven from their initial ground states 
into a configuration of Rydberg excitations 
that, ideally, forms an MIS.

The key to this method is the mainte-
nance of adiabaticity within the system—to 
ensure that the quantum system remains 
in its lowest-energy state throughout the 
ramping process. As an analogy, think of 
a waiter delivering an ice cream float to a 
diner. If the waiter moves too quickly, the 
drink may spill out, yet if he moves too 
slowly, the ice cream will melt—both of 
which are undesirable from the perspective 
of the diner. Similarly, in the quantum ex-
periment, the system parameters must in-
crease slowly enough for the atoms to settle 
into the MIS and yet fast enough for the 
quantum system to maintain its coherence, 
which is ultimately limited by the lifetime 
of the Rydberg states.

A crucial question is whether this quan-
tum algorithm provides a speedup over clas-
sical approaches. State-of-the-art classical 
algorithms employ a strategy known as sim-
ulated annealing, which mimics a physical 
process of preparing the interacting system 
at a high temperature and gradually reduc-
ing the temperature to reach the lowest-
energy state. In practice, neither the quan-
tum nor the classical algorithm always suc-
ceeds in finding the optimal solution. Thus, 
a figure of merit for the performance of the 
algorithm is the average number of times 
(t) that the algorithm would need to be run 
to succeed in finding the MIS. For the clas-
sical approach, this number of iterations t 
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is proportional to the ratio of the number of 
near-perfect solutions to the number of per-
fect solutions, where a near-perfect solution 
is defined as having one fewer “country” in 
its set than a perfect solution.

By contrast, the performance of the 
quantum algorithm not only depended 
on how many near-perfect solutions there 
are for every perfect one, it also depended 
on the gap in energy between the lowest-
energy state and the first excited state. The 
smaller this gap, the slower a ramp one 
theoretically expects to require for the sys-
tem to remain in its lowest-energy state to 
reach the perfect solutions. In cases where 

a sufficiently slow ramp could be per-
formed within the time scale of the experi-
ment, the quantum algorithm provided a 
speedup compared with the classical one. 
Specifically, the number of tries required 
by the quantum algorithm to solve the MIS 
problem scaled as the three-fifths power 
of the number of tries t

SA
 required classi-

cally, meaning that if the MIS problem is 
made more difficult such that the time re-
quired to solve it classically increases, for 
example, by a factor of 32, then the time re-
quired by the quantum computer will only 
increase by a factor of 8.

Although the experiment by Ebadi et al. 
is not the first to explore quantum optimi-
zation algorithms (11–13), it stands out for 
operating both with a large number of qu-
bits and with sufficiently coherent interac-
tions for quantum information to spread 
across the entire system within the time 
scale of the experiment (14). This combina-
tion appears to be crucial for the observed 
quantum speedup. 

An important question for future work 
is whether the improved scaling of the 
quantum algorithm persists as the dif-
ficulty of the problems is increased, for 
example, by increasing the number of qu-
bits. A potential challenge is that the gap 
in energy separating perfect from near-
perfect solutions is expected to shrink as 
the number of qubits grows (3, 11), placing 
ever more stringent demands on how slowly 
the system parameters must be swept, and 
hence also on the coherence time of the 
experiment. One hope is to adopt the ap-
proach of an experienced waiter who moves 
so quickly that the drink begins to slosh, 
but ultimately executes just the right mo-
tions to bring it back to rest (15). Finding 
the right motions in a complex quantum 
system is bound to be a challenge, offering 
fertile ground for future research. j
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Map puzzle

Node network

Coloring a map with a 
quantum computer
How many blue regions can this map have without 
any of them sharing a border?  Instead of examining 
all the possibilities classically, Ebadi et al. solved the 
puzzle by using a quantum computer, composed 
of individual atoms that can only be excited (shown 
as d) if all neighboring atoms are in their ground 
states (d). The map puzzle is encoded as a 
network of nodes, which represent the regions, and 
connections, which represent the shared borders.
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