
CME 193: Introduction to Scientific Python

Lecture 1: Introduction

Sven Schmit

stanford.edu/~schmit/cme193

1: Introduction 1-1

stanford.edu/~schmit/cme193

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-2

Feedback

If you have comments, like things to be done differently, please let me

know and let me know asap.

Questionnaires at the end of the quarter are nice, but they won’t help

you.

1: Introduction 1-3

Content of course

Variables

Functions

Data types
Strings, Lists, Tuples, Dictionaries

File input and output (I/O)

Classes

Exception handling

Recursion

Numpy, Scipy and Matplotlib

Pandas, Statsmodels and IPython

Unit tests

More packages
1: Introduction 1-4

Setup of course

Lectures: first half lecture, second half exercises

Portfolio

Final project

1: Introduction 1-5

More abstract setup of course

My job is to show you the possibilities and some resources (exercises

etc.)

Your job is to teach yourself Python

If you think you can learn Python by just listening to me, you are grossly

overestimating my abilities.

1: Introduction 1-6

Exercises

Exercises in second half of the class. Try to finish them in class, else

make sure you understand them all before next class.

At the end of the course, hand in a portfolio with your solutions for

exercises.

Feel free (or: You are strongly encouraged) to work in pairs on the

exercises. It’s acceptable to hand in the same copy of code for your

portfolio if you work in pairs, but do mention your partner.

1: Introduction 1-7

Portfolio

You are required to hand in a portfolio with your solutions to the

exercises you attempted.

This is to show your active participation in class

You are expected to do at least 2/3rd of the assigned exercises. Feel free

to skip some problems, for example if you lack some required math

background knowledge.

1: Introduction 1-8

Final project

Besides the portfolio, you are required to submit a project, due one week

after the final class.

One paragraph proposal due before lecture 4.

Have fun by working on a project that interests you while learning

Python.

You are encouraged to use material not taught in class: we can’t cover

everything in class.

No teams :(

1: Introduction 1-9

Final project ideas

Some more pointers

See course website for some possible projects

Focus on Python, not the application (no research)

Some successful previous projects

Predicting stock movement, obtaining data using Quandl Api

Crawling and analyzing data from a large forum

Finding recent earthquakes close to a given location using Google

maps API and USGS data

1: Introduction 1-10

Workload

The only way to learn Python, is by writing Python... a lot. So you are

expected to put in effort.

From past experience: If you are new to programming, consider this a

hard 3 unit class where you will have to figure out quite a bit on your

own. However, if you have a solid background in another language, this

class should be pretty easy.

1: Introduction 1-11

To new programmers

Be warned, this will be difficult.

The problem: 8 weeks, 8 lectures, 1 unit. We will simply go too fast.

Alternative: spend some time learning on your own (Codecademy /

Udacity etc). There are so many excellent resources online these days.

Then you can always come back in Fall; this course will be offered again.

1: Introduction 1-12

Misc

Website stanford.edu/~schmit/cme193

Piazza Use Piazza for discussing problems. An active user on

Piazza has more leeway when it comes to portfolio, as it

shows involvement.

Office hours After class or by appointment (shoot me an email).

1: Introduction 1-13

stanford.edu/~schmit/cme193

References

The internet is an excellent source, and Google is a perfect starting

point.

The official documentation is also good, always worth a try:

https://docs.python.org/2/.

Course website has a list of useful references.

1: Introduction 1-14

https://docs.python.org/2/

Last words before we get to it

Work

Make friends

Fail often

Fail gently

1: Introduction 1-15

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-16

Python

1: Introduction 1-17

Python

Relatively easy to learn

Fast to write code

Intuitive

Very versatile (vs Matlab/R)

Less control, worse performance (vs. C)

Less safety handles, responsibility for user

1: Introduction 1-18

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-19

How to install Python

Many alternatives, but I suggest installing using a prepackaged

distribution, such as Anaconda

https://store.continuum.io/cshop/anaconda/

This is very easy to install and also comes with a lot of packages.

See the getting started instructions on the course website for more

information.

1: Introduction 1-20

https://store.continuum.io/cshop/anaconda/

Packages

Packages enhance the capabilities of Python, so you don’t have to

progam everything by yourself (it’s faster too!).

For example: Numpy is a package that adds many linear algebra

capabilities, more on that later

1: Introduction 1-21

How to install packages

To install a package that you do not have, use pip, which is the Python

package manager.

such as

$ pip install seaborn

1: Introduction 1-22

Python 3

Python 3 has been around for a while and is slowly gaining traction.

However, many people still use Python 2, so we will stick with that.

Differences are not too big, so you can easily switch.

1: Introduction 1-23

Cloud9 demo

Please log into your Cloud9 account on c9.io

Clone the code using: $ git clone

https://github.com/schmit/hangman.git

If you don’t have git and want a local copy, download the code using

https://github.com/schmit/hangman/archive/master.zip

1: Introduction 1-24

https://github.com/schmit/hangman/archive/master.zip

How to use Python

There are two ways to use Python:

command-line mode: talk directly to the interpreter

scripting-mode: write code in a file (called script) and run code by typing

$ python scriptname.py

in the terminal.

The latter is what we will focus on in this course, though using the

command-line can be useful to quickly check functionality.

1: Introduction 1-25

The interpreter

We can start the intepreter by typing ‘python’ in the terminal.

Now we can interactively give instructions to the computer, using the

Python language.

1: Introduction 1-26

Scripting mode

A more conveniened way to interact with Python is to write a script.

A script contains all code you want to execute. Then you call Python on

the script to run the script.

First browse, using the terminal, to where the script is saved

Then call python scriptname.py

1: Introduction 1-27

Scripting mode

Suppose the Python script is saved in a folder /Documents/Python

called firstscript.py.

Then browse to the folder by entering the following command into the

terminal

$ cd ~/Documents/Python

And then run the script by entering

$ python firstscript.py

1: Introduction 1-28

Print statement

We can print output to screen using the print command

print "Hello, world!"

1: Introduction 1-29

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-30

Values

A value is the fundamental thing that a program manipulates.

Values can be “Hello, world!”, 42, 12.34, True

Values have types. . .

1: Introduction 1-31

Types

Boolean True/False

String “Hello, world!”

Integer 92

Float 3.1415

Use type to find out the type of a variable, as in

»> type("Hello, world!")

<type ‘str’>

1: Introduction 1-32

Variables

One of the most basic and powerful concepts is that of a variable.

A variable assigns a name to a value.

message = "Hello, world!"
n = 42
e = 2.71

note we can print variables:
print n # yields 42

note: everything after pound sign is a comment

Try it!

1: Introduction 1-33

Variables

Almost always preferred to use variables over values:

Easier to update code

Easier to understand code (useful naming)

What does the following code do:

print 4.2 * 3.5

length = 4.2
height = 3.5
area = length * height
print area

1: Introduction 1-34

Variables

Almost always preferred to use variables over values:

Easier to update code

Easier to understand code (useful naming)

What does the following code do:

print 4.2 * 3.5

length = 4.2
height = 3.5
area = length * height
print area

1: Introduction 1-35

Keywords

Not allowed to use keywords, they define structure and rules of a

language.

Python has 29 keywords, they include:

and

def

for

return

is

in

class

1: Introduction 1-36

Integers

Operators for integers

+ - * / % **

Note: / uses integer division:

5 / 2 yields 2

But, if one of the operands is a float, the return value is a float:

5 / 2.0 yields 2.5

Note: Python automatically uses long integers for very large integers.

1: Introduction 1-37

Floats

A floating point number approximates a real number.

Note: only finite precision, and finite range (overflow)!

Operators for floats

+ addition

- subtraction

* multiplication

/ division

** power

1: Introduction 1-38

Booleans

Boolean expressions:

== equals: 5 == 5 yields True

! = does not equal: 5 != 5 yields False

> greater than: 5 > 4 yields True

>= greater than or equal: 5 >= 5 yields True

Similarly, we have < and <=.

Logical operators:

True and False yields False

True or False yields True

not True yields False

1: Introduction 1-39

Booleans

Boolean expressions:

== equals: 5 == 5 yields True

! = does not equal: 5 != 5 yields False

> greater than: 5 > 4 yields True

>= greater than or equal: 5 >= 5 yields True

Similarly, we have < and <=.

Logical operators:

True and False yields False

True or False yields True

not True yields False

1: Introduction 1-40

Modules

Not all functionality avaible comes automatically when starting python,

and with good reasons.

We can add extra functionality by importing modules:

»> import math

»> math.pi

3.141592653589793

Useful modules: math, string, random, and as we will see later numpy,

scipy and matplotlib.

More on modules later!

1: Introduction 1-41

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-42

Control statements

Control statements allow you to do more complicated tasks.

If

For

While

1: Introduction 1-43

If statements

Using if, we can execute part of a program conditional on some

statement being true.

if traffic_light == ’green’:
move()

1: Introduction 1-44

Indentation

In Python, blocks of code are defined using indentation.

This means that everything indented after an if statement is only

executed if the statement is True.

If the statement is False, the program skips all indented code and

resumes at the first line of unindented code

if statement:
if statement is True, then all code here
gets executed but not if statement is False
print "The statement is true"
print "Else, this would not be printed"

the next lines get executed either way
print "Hello, world,"
print "Bye, world!"

1: Introduction 1-45

If-Else statement

We can add more conditions to the If statement using else and elif

(short for else if)

if traffic_light == ’green’:
drive()

elif traffic_light == ’orange’:
accelerate()

else:
stop()

1: Introduction 1-46

For loops

Very often, one wants to repeat some action. This can be achieved by a

for loop

for i in range(5):
print i**2,

0 1 4 9 16

Here, range(n) gives us a list with integers 0, . . . , n − 1. More on this

later!

1: Introduction 1-47

While loops

When we not know how many iterations are needed, we can use while.

i = 1
while i < 100:

print i**2,
i += i**2 # a += b is short for a = a + b

1 4 36 1764

1: Introduction 1-48

Continue

continue continues with the next iteration of the smallest enclosing

loop.

for num in range(2, 10):
if num % 2 == 0:

print "Found an even number", num
continue

print "Found an odd number", num

from: Python documentation

1: Introduction 1-49

Continue

continue continues with the next iteration of the smallest enclosing

loop.

for num in range(2, 10):
if num % 2 == 0:

print "Found an even number", num
continue

print "Found an odd number", num

from: Python documentation

1: Introduction 1-50

Break

The break statement allows us to jump out of the smallest enclosing

for or while loop.

Finding prime numbers:

max_n = 10
for n in range(2, max_n):

for x in range(2, n):
if n % x == 0: # n divisible by x

print n, ’equals’, x, ’*’, n/x
break

else: # executed if no break in for loop
loop fell through without finding a factor
print n, ’is a prime number’

from: Python documentation

1: Introduction 1-51

Break

The break statement allows us to jump out of the smallest enclosing

for or while loop.

Finding prime numbers:

max_n = 10
for n in range(2, max_n):

for x in range(2, n):
if n % x == 0: # n divisible by x

print n, ’equals’, x, ’*’, n/x
break

else: # executed if no break in for loop
loop fell through without finding a factor
print n, ’is a prime number’

from: Python documentation

1: Introduction 1-52

Pass

The pass statement does nothing, which can come in handy when you

are working on something and want to implement some part of your

code later.

if traffic_light == ’green’:
pass # to implement

else:
stop()

1: Introduction 1-53

Contents

Administrivia

Introduction

Basics

Variables

Control statements

Exercises

1: Introduction 1-54

Exercises

See course website for exercises for this week.

Get to know the person next to you and do them in pairs!

Let me know if you have any question

Class ends at 5:35pm.

1: Introduction 1-55

