
CME 193: Introduction to Scientific Python

Lecture 2: Functions and lists

Sven Schmit

stanford.edu/~schmit/cme193

2: Functions and lists 2-1

stanford.edu/~schmit/cme193

Contents

Functions

Lists

Exercises

2: Functions and lists 2-2

Simple example

Example: Suppose we want to find the circumference of a circle with

radius 2.5. We could write

radius = 2.5
circumference = math.pi * radius

2: Functions and lists 2-3

Functions

Functions are used to abstract components of a program.

Much like a mathematical function, they take some input and then do

something to find the result.

2: Functions and lists 2-4

Functions: def

Start a function definition with the keyword def

Then comes the function name, with arguments in braces, and then a

colon

def func(arg1, arg2):

2: Functions and lists 2-5

Functions: def

Start a function definition with the keyword def

Then comes the function name, with arguments in braces, and then a

colon

def func(arg1, arg2):

2: Functions and lists 2-6

Functions: body

Then comes, indented, the body of the function

Use return to specify the output

return result

def calc_circumference(radius):
circumference = math.pi * radius
return circumference

2: Functions and lists 2-7

Functions: body

Then comes, indented, the body of the function

Use return to specify the output

return result

def calc_circumference(radius):
circumference = math.pi * radius
return circumference

2: Functions and lists 2-8

Return

By default, Python returns None

Once Python hits return, it will return the output and jump out of the

function

def loop():
for x in xrange(10):

print x
if x == 3:

return

What does this function do?

2: Functions and lists 2-9

Return

By default, Python returns None

Once Python hits return, it will return the output and jump out of the

function

def loop():
for x in xrange(10):

print x
if x == 3:

return

What does this function do?

2: Functions and lists 2-10

How to call a function

Calling a function is simple (i.e. run/execute):

»> func(2.3, 4)

2: Functions and lists 2-11

Quick question

What is the difference between print and return?

2: Functions and lists 2-12

Exercise

1. Write a function that prints ‘Hello, world!’

2. Write a function that returns ‘Hello, name!’, where name is a variable

2: Functions and lists 2-13

Exercise solution

def hello_world():
print ’Hello, world!’

def hello_name(name):
string formatting: more on this later.
return ’Hello, {}!’.format(name)

2: Functions and lists 2-14

Everything is an object

Everything is Python is an object, which means we can pass functions:

def twice(f, x):
’’’ apply f twice ’’’
return f(f(x))

2: Functions and lists 2-15

Scope

Variables defined within a function (local), are only accessible within the

function.

x = 1

def add_one(x):
x = x + 1 # local x
return x

y = add_one(x)
x = 1, y = 2

2: Functions and lists 2-16

Functions within functions

It is also possible to define functions within functions, just as we can

define variables within functions.

def function1(x):
def function2(y):

print y + 2
return y + 2

return 3 * function2(x)

a = function1(2) # 4
print a # 12
b = function2(2.5) # error: undefined name

2: Functions and lists 2-17

Global keyword

We could (but should not) change global variables within a function

x = 0

def incr_x():
x = x + 1 # does not work

def incr_x2():
global x
x = x + 1 # does work

Question: What is the difference between the last two functions?

2: Functions and lists 2-18

Scope questions

def f1():
global x
x = x + 1
return x

def f2():
return x + 1

def f3():
x = 5
return x + 1

x = 0
print f1() # output? x?
print f2() # output? x?
print f3() # output? x?

2: Functions and lists 2-19

Default arguments

It is sometimes convenient to have default arguments

def func(x, a=1):
return x + a

print func(1) # 2
print func(1, 2) # 3

The default value is used if the user doesn’t supply a value.

2: Functions and lists 2-20

More on default arguments

Consider the function prototype: func(x, a=1, b=2)

Suppose we want to use the default value for a, but change b:

def func(x, a=1, b=3):
return x + a - b

print func(2) # 0
print func(5, 2) # 4
print func(3, b=0) # 4

2: Functions and lists 2-21

Docstring

It is important that others, including you-in-3-months-time are able to

understand what your code does.

This can be easily done using a so called ‘docstring’, as follows:

def nothing():
""" This function doesn’t do anything. """
pass

We can then read the docstring from the interpreter using:

»> help(nothing)

This function doesn’t do anything.

2: Functions and lists 2-22

Docstring

It is important that others, including you-in-3-months-time are able to

understand what your code does.

This can be easily done using a so called ‘docstring’, as follows:

def nothing():
""" This function doesn’t do anything. """
pass

We can then read the docstring from the interpreter using:

»> help(nothing)

This function doesn’t do anything.

2: Functions and lists 2-23

Question

def nothing():
""" This function doesn’t do anything. """
pass

Question: what does nothing() return?

2: Functions and lists 2-24

Lambda functions

An alternative way to define short functions:

cube = lambda x: x*x*x

print cube(3)

Pros:

One line / in line

No need to name a function

Try to use these for the homework if you can.

2: Functions and lists 2-25

Contents

Functions

Lists

Exercises

2: Functions and lists 2-26

Lists

Group variables together

Specific order

Access items using square brackets: []

2: Functions and lists 2-27

Accessing elements

First item: [0]

Last item: [-1]

myList = [5, 2.3, ’hello’]

myList[0] # 5
myList[2] # ’hello’
myList[3] # ! IndexError
myList[-1] # ’hello’
myList[-3] # ?

Note: can mix element types!

2: Functions and lists 2-28

Slicing and adding

Lists can be sliced: [2:5]

Lists can be multiplied

Lists can be added

myList = [5, 2.3, ’hello’]

myList[0:2] # [5, 2.3]

mySecondList = [’a’, ’3’]

concatList = myList + mySecondList
[5, 2.3, ’hello’, ’a’, ’3’]

2: Functions and lists 2-29

Multiplication

We can even multiply a list by an integer

myList = [’hello’, ’world’]

myList * 2
[’hello’, ’world’, ’hello’, ’world’]

2 * myList
[’hello’, ’world’, ’hello’, ’world’]

2: Functions and lists 2-30

Lists are mutable

Lists are mutable, this means that individual elements can be changed.

myList = [’a’, 43, 1.234]

myList[0] = -3
[-3, 43, 1.234]

x = 2
myList[1:3] = [x, 2.3] # or: myList[1:] = [x, 2.3]
[-3, 2, 2.3]

x = 4
What is myList now?

2: Functions and lists 2-31

Copying a list

How to copy a list?

a = [’a’, ’b’, ’c’]
b = a # let’s copy list1
print b

b[1] = 1 # now we want to change an element

print b
[’a’, 1, ’c’]

print a
[’a’, 1, ’c’]

.

2: Functions and lists 2-32

What just happened?

Variables in Python really are tags:

So b = a means: b is same tag as a.

Image from http://henry.precheur.org/python/copy_list.html

2: Functions and lists 2-33

http://henry.precheur.org/python/copy_list.html

Copying a list

Instead: we want:

Figure: b = list(a) or b = a[:]

Image from http://henry.precheur.org/python/copy_list.html

2: Functions and lists 2-34

http://henry.precheur.org/python/copy_list.html

Copying a list

a = [1, 2, 3]
b = a
c = list(a)
print id(a), id(b), id(c)

2: Functions and lists 2-35

Functions modify lists

Consider the following function:

def set_first_to_zero(xs):
xs[0] = 0

l = [1, 2, 3]
print l
set_first_to_zero(l)
print l

What is printed?

[1, 2, 3], [0, 2, 3]

Why does the list change, but variables do not?

2: Functions and lists 2-36

Functions modify lists

Consider the following function:

def set_first_to_zero(xs):
xs[0] = 0

l = [1, 2, 3]
print l
set_first_to_zero(l)
print l

What is printed?

[1, 2, 3], [0, 2, 3]

Why does the list change, but variables do not?

2: Functions and lists 2-37

Why does the list change, but variables do not?

We have not changed the tag, only the contents of the list. The variable

l, that is attached to the list, becomes local. The elements however, do

not!

What happens in this case?

def list_function(l):
l = [2, 3, 4]
return l

l = [1, 2, 3]
print list_function(l)
print l

2: Functions and lists 2-38

Why does the list change, but variables do not?

We have not changed the tag, only the contents of the list. The variable

l, that is attached to the list, becomes local. The elements however, do

not!

What happens in this case?

def list_function(l):
l = [2, 3, 4]
return l

l = [1, 2, 3]
print list_function(l)
print l

2: Functions and lists 2-39

More control over lists

len(xs)

xs.append(x)

xs.count(x)

xs.insert(i, x)

xs.sort() and sorted(xs): what’s the difference?

xs.remove(x)

xs.pop() or xs.pop(i)

x in xs

All these can be found in the Python documentation, google: ‘python

list’

Or using dir(xs) / dir([])
2: Functions and lists 2-40

More control over lists

len(xs)

xs.append(x)

xs.count(x)

xs.insert(i, x)

xs.sort() and sorted(xs): what’s the difference?

xs.remove(x)

xs.pop() or xs.pop(i)

x in xs

All these can be found in the Python documentation, google: ‘python

list’

Or using dir(xs) / dir([])
2: Functions and lists 2-41

Looping over elements

It is very easy to loop over elements of a list using for, we have seen

this before using range.

someIntegers = [1, 3, 10]

for integer in someIntegers:
print integer,

1 3 10

What happens here?
for integer in someIntegers:

integer = integer*2

2: Functions and lists 2-42

Looping over elements

Using enumerate, we can loop over both element and index at the same

time.

myList = [1, 2, 4]

for index, elem in enumerate(myList):
print ’{0}) {1}’.format(index, elem)

0) 1
1) 2
2) 4

2: Functions and lists 2-43

Map

We can apply a function to all elements of a list using map

l = range(4)
print map(lambda x: x*x*x, l)
[0, 1, 8, 27]

2: Functions and lists 2-44

Filter

We can also filter elements of a list using filter

l = range(8)

print filter(lambda x: x % 2 == 0, l)
[0, 2, 4, 6]

2: Functions and lists 2-45

List comprehensions

A very powerful and concise way to create lists is using list

comprehensions

print [i**2 for i in range(5)]
[0, 1, 4, 9, 16]

This is often more readable than using map or filter

2: Functions and lists 2-46

List comprehensions

ints = [1, 3, 10]

[i * 2 for i in ints]
[2, 6, 20]

[[i, j] for i in ints for j in ints if i != j]
[[1, 3], [1, 10], [3, 1], [3, 10], [10, 1], [10, 3]]

[(x, y) for x in xrange(3) for y in xrange(x+1)]
...

Note how we can have a lists as elements of a list!

2: Functions and lists 2-47

List comprehensions

ints = [1, 3, 10]

[i * 2 for i in ints]
[2, 6, 20]

[[i, j] for i in ints for j in ints if i != j]
[[1, 3], [1, 10], [3, 1], [3, 10], [10, 1], [10, 3]]

[(x, y) for x in xrange(3) for y in xrange(x+1)]
...

Note how we can have a lists as elements of a list!

2: Functions and lists 2-48

Implementing map using list comprehensions

Let’s implement map using list comprehensions

def my_map(f, xs):
return [f(x) for x in xs]

Implement filter by yourself in one of the exercises.

2: Functions and lists 2-49

Implementing map using list comprehensions

Let’s implement map using list comprehensions

def my_map(f, xs):
return [f(x) for x in xs]

Implement filter by yourself in one of the exercises.

2: Functions and lists 2-50

Contents

Functions

Lists

Exercises

2: Functions and lists 2-51

Exercises

See course website for exercises for this week.

Get to know the person next to you and do them in pairs!

Let me know if you have any question

Class ends at 5:35pm.

2: Functions and lists 2-52

