
CME 193: Introduction to Scientific Python

Lecture 7: Recursion, Exception handling

Sven Schmit

stanford.edu/~schmit/cme193

7: Recursion, Exception handling 7-1

stanford.edu/~schmit/cme193

Contents

Recursion

Exception handling

Exercises

7: Recursion, Exception handling 7-2

Back to control flow

To execute repetitive code, we have relied on for and while loops.

Furthermore, we used if statements to handle conditional statements.

These statements are rather straightforward and easy to understand.

7: Recursion, Exception handling 7-3

Recursion

Recursive function solve problems by reducing them to smaller problems

of the same form.

This allows recursive functions to call themselves...

New paradigm

Powerful tool

Divide-and-conquer

Beautiful solutions

7: Recursion, Exception handling 7-4

Recursion

Recursive function solve problems by reducing them to smaller problems

of the same form.

This allows recursive functions to call themselves...

New paradigm

Powerful tool

Divide-and-conquer

Beautiful solutions

7: Recursion, Exception handling 7-5

First example

Let’s consider a trivial problem:

Suppose we want to add two positive numbers a and b, but we can only

add/subtract one.

7: Recursion, Exception handling 7-6

First example

Non-recursive solution:

def add(a, b):
while b > 0:

a += 1
b -= 1

return a

7: Recursion, Exception handling 7-7

First example

Recursive solution:

Simple case: b = 0, return a

Else, we can return 1 + add(a, b-1)

def add(a, b):
if b == 0:

base case
return a

recursive step
return add(a, b-1) + 1

7: Recursion, Exception handling 7-8

First example

Recursive solution:

Simple case: b = 0, return a

Else, we can return 1 + add(a, b-1)

def add(a, b):
if b == 0:

base case
return a

recursive step
return add(a, b-1) + 1

7: Recursion, Exception handling 7-9

Base case and recursive steps

Recursive functions consist of two parts:

base case The base case is the trivial case that can be dealt with

easily.

recursive step The recursive step brings us slightly closer to the base

case and calls the function itself again.

7: Recursion, Exception handling 7-10

Reversing a list

How can we recursively reverse a list ([1, 2, 3] → [3, 2, 1]).

If list is empty or has one element, the reverse is itself

Otherwise, reverse elements 2 to n, and append the first

def reverse_list(xs):
if len(xs) <= 1:

return xs
else:

return reverse_list(xs[1:]) + [xs[0]]

7: Recursion, Exception handling 7-11

Reversing a list

How can we recursively reverse a list ([1, 2, 3] → [3, 2, 1]).

If list is empty or has one element, the reverse is itself

Otherwise, reverse elements 2 to n, and append the first

def reverse_list(xs):
if len(xs) <= 1:

return xs
else:

return reverse_list(xs[1:]) + [xs[0]]

7: Recursion, Exception handling 7-12

Palindromes

A palindrome is a word that reads the same from both ways, such as

radar or level.

Let’s write a function that checks whether a given word is a palindrome.

7: Recursion, Exception handling 7-13

The recursive idea

Given a word, such as level, we check:

whether the first and last character are the same

whether the string with first and last character removed are the same

7: Recursion, Exception handling 7-14

Base case

What’s the base case in this case?

The empty string is a palindrome

Any 1 letter string is a palindrome

7: Recursion, Exception handling 7-15

Base case

What’s the base case in this case?

The empty string is a palindrome

Any 1 letter string is a palindrome

7: Recursion, Exception handling 7-16

Implementation

def is_palin(s):
’’’returns True iff s is a palindrome’’’
if len(s) <= 1:

return True
return s[0] == s[-1] and is_palin(s[1:-1])

What is an iterative solution?

7: Recursion, Exception handling 7-17

Implementation

def is_palin(s):
’’’returns True iff s is a palindrome’’’
if len(s) <= 1:

return True
return s[0] == s[-1] and is_palin(s[1:-1])

What is an iterative solution?

7: Recursion, Exception handling 7-18

Numerical integration

Suppose we want to numerically integrate some function f :

A =
∫ b

a
f (x)dx

Trapezoid rule:

A =
∫ b

a
f (x)dx

=
∫ r1

a
f (x)dx +

∫ r2

r1

f (x)dx + . . . +
∫ b

rn−1

f (x)dx

≈ h
2 ((f (a) + f (r1)) + h(f (r1) + f (r2)) + . . . + (f (b) + f (rn−1)))

= h
2 (f (a) + f (b)) + h(f (r1) + f (r2) + . . . + f (rn−1))

7: Recursion, Exception handling 7-19

Numerical integration

Suppose we want to numerically integrate some function f :

A =
∫ b

a
f (x)dx

Trapezoid rule:

A =
∫ b

a
f (x)dx

=
∫ r1

a
f (x)dx +

∫ r2

r1

f (x)dx + . . . +
∫ b

rn−1

f (x)dx

≈ h
2 ((f (a) + f (r1)) + h(f (r1) + f (r2)) + . . . + (f (b) + f (rn−1)))

= h
2 (f (a) + f (b)) + h(f (r1) + f (r2) + . . . + f (rn−1))

7: Recursion, Exception handling 7-20

Trapezoid rule

def trapezoid(f, a, b, N):
’’’integrates f over [a,b] using N steps’’’
if a > b:

a, b = b, a
step size
h = float(b-a)/N
running sum
s = h/2 * (f(a) + f(b))
for k in xrange(1, N-1):

s += h * f(a + h*k)
return s

Forget the math / code: This function approximates the area under f

between a and b using N points.

7: Recursion, Exception handling 7-21

Key point

If function is flat, then we don’t need many points.

If function is very wiggly, we need a lot of points.

So:

How many points do we need?

What if function is flat in some areas, wiggly in others?

7: Recursion, Exception handling 7-22

Adaptive integration

Idea: Adaptively space points based on local curvature of function.

Areas where function is flat: few points, areas where function is wiggly:

many points.

def ada_int(f, a, b, tol=1.0e-6, n=5, N=10):
area = trapezoid(f, a, b, N)
check = trapezoid(f, a, b, n)
if abs(area - check) > tol:

bad accuracy, add more points to interval
m = (b + a) / 2.0
area = ada_int(f, a, m) + ada_int(f, m, b)

return area

Note: we do not need to use trapezoid rule.

7: Recursion, Exception handling 7-23

Adaptive integration

Idea: Adaptively space points based on local curvature of function.

Areas where function is flat: few points, areas where function is wiggly:

many points.

def ada_int(f, a, b, tol=1.0e-6, n=5, N=10):
area = trapezoid(f, a, b, N)
check = trapezoid(f, a, b, n)
if abs(area - check) > tol:

bad accuracy, add more points to interval
m = (b + a) / 2.0
area = ada_int(f, a, m) + ada_int(f, m, b)

return area

Note: we do not need to use trapezoid rule.

7: Recursion, Exception handling 7-24

Pitfalls

Recursion can be very powerful, but there are some pitfalls:

Have to ensure you always reach the base case.

Each successive call of the algorithm must be solving a simpler

problem

The number of function calls shouldn’t explode. (see exercises)

An iterative algorithm is always faster due to overhead of function

calls. (However, the iterative solution might be much more complex)

7: Recursion, Exception handling 7-25

Contents

Recursion

Exception handling

Exercises

7: Recursion, Exception handling 7-26

Wordcount

Recall the wordcount exercise:

Write a function that takes a filename, and returns the 20 most common

words.

7: Recursion, Exception handling 7-27

Suppose we have written a function topkwords(filename, k)

Instead of entering filename and value of k in the script, we can also run

it from the terminal.

7: Recursion, Exception handling 7-28

Parse input from command line

The sys module allows us to read the terminal command that started

the script:

import sys

print sys.argv

sys.argv holds a list with command line arguments passed to a Python

script.

7: Recursion, Exception handling 7-29

Parse input from command line

The sys module allows us to read the terminal command that started

the script:

import sys

print sys.argv

sys.argv holds a list with command line arguments passed to a Python

script.

7: Recursion, Exception handling 7-30

Back to the wordcount example

import sys

def topkwords(filename, k):
Returns k most common words in filename
pass

if __name__ == "__main__":
filename = sys.argv[1]
k = int(sys.argv[2])
print topkwords(filename, k)

Issues?

7: Recursion, Exception handling 7-31

Back to the wordcount example

import sys

def topkwords(filename, k):
Returns k most common words in filename
pass

if __name__ == "__main__":
filename = sys.argv[1]
k = int(sys.argv[2])
print topkwords(filename, k)

Issues?

7: Recursion, Exception handling 7-32

Issues

What if the file does not exist?

What if the second argument is not an integer?

What if no command line arguments are supplied?

All result in errors:

IOError

ValueError

IndexError

7: Recursion, Exception handling 7-33

Issues

What if the file does not exist?

What if the second argument is not an integer?

What if no command line arguments are supplied?

All result in errors:

IOError

ValueError

IndexError

7: Recursion, Exception handling 7-34

Issues

What if the file does not exist?

What if the second argument is not an integer?

What if no command line arguments are supplied?

All result in errors:

IOError

ValueError

IndexError

7: Recursion, Exception handling 7-35

Exception handling

What do we want to happen when these errors occur? Should the

program simply crash?

No, we want it to gracefully handle these

IOError: Tell the user the file does not exist.

ValueError, IndexError: Tell the user what the format of the

command line arguments should be.

7: Recursion, Exception handling 7-36

Exception handling

What do we want to happen when these errors occur? Should the

program simply crash?

No, we want it to gracefully handle these

IOError: Tell the user the file does not exist.

ValueError, IndexError: Tell the user what the format of the

command line arguments should be.

7: Recursion, Exception handling 7-37

Try ... Except

import sys

if __name__ == "__main__":
try:

filename = sys.argv[1]
k = int(sys.argv[2])
print topkwords(filename, k)

except IOError:
print "File does not exist"

except (ValueError, IndexError):
print "Error in command line input"
print "Run as: python wc.py <filename> <k>"
print "where <k> is an integer"

7: Recursion, Exception handling 7-38

Try ... Except

The try clause is executed

If no exception occurs, the except clause is skipped

If an exception occurs, the rest of the try clause is skipped. Then if

the exception type is matched, the except clause is executed. Then

the code continues after the try statement

If an exception occurs with no match in the except clause, execution

is stopped and we get the standard error

7: Recursion, Exception handling 7-39

Try ... Except

The try clause is executed

If no exception occurs, the except clause is skipped

If an exception occurs, the rest of the try clause is skipped. Then if

the exception type is matched, the except clause is executed. Then

the code continues after the try statement

If an exception occurs with no match in the except clause, execution

is stopped and we get the standard error

7: Recursion, Exception handling 7-40

Try ... Except

The try clause is executed

If no exception occurs, the except clause is skipped

If an exception occurs, the rest of the try clause is skipped. Then if

the exception type is matched, the except clause is executed. Then

the code continues after the try statement

If an exception occurs with no match in the except clause, execution

is stopped and we get the standard error

7: Recursion, Exception handling 7-41

A naked except

We can have a naked except that catches any error:

try:
t = 3.0 / 0.0

except:
handles any error
print ’There was some error’

Use this with extreme caution though, as genuine bugs might be

impossible to correct!

7: Recursion, Exception handling 7-42

Try Except Else

Else clause after all except statements is executed after successful

execution of the try block (hence, when no exception was raised)

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print ’cannot open’, arg
else:

print arg, ’has’, len(f.readlines()), ’lines’
f.close()

from Python docs

Why? Avoids catching exception that was not protected

E.g. consider f.readlines raising an IOError

7: Recursion, Exception handling 7-43

Raise

We can use Raise to raise an exception ourselves.

>>> raise NameError(’Oops’)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: Oops

7: Recursion, Exception handling 7-44

Finally

The finally statement is always executed before leaving the try

statement, whether or not an exception has occured.

def div(x, y):
try:

return x/y
except ZeroDivisionError:

print ’Division by zero!’
finally:

print "Finally clause"

print div(3,2)
print div(3,0)

Useful in case we have to close files, closing network connections etc.

7: Recursion, Exception handling 7-45

Finally

The finally statement is always executed before leaving the try

statement, whether or not an exception has occured.

def div(x, y):
try:

return x/y
except ZeroDivisionError:

print ’Division by zero!’
finally:

print "Finally clause"

print div(3,2)
print div(3,0)

Useful in case we have to close files, closing network connections etc.

7: Recursion, Exception handling 7-46

Raising our own exceptions: Rational class

Recall the Rational class we considered a few lectures ago:

class Rational:
def __init__(self, p, q=1):

g = gcd(p, q)
self.p = p / g
self.q = q / g

What if q = 0?

7: Recursion, Exception handling 7-47

Rational class

a = Rational(1,3)
b = Rational(2,3)
c = Rational(2,0)

print ’a*b = {}’.format(a*b) # 2/9
print ’a*c = {}’.format(a*c) # 1/0
print ’a/b = {}’.format(a/b) # 1/2
print ’a/c = {}’.format(a/c) # 0
print ’c/a = {}’.format(c/a) # 1/0

... Not really anything!

Rational class: https://gist.github.com/schmit/875840d1a231526b572e

7: Recursion, Exception handling 7-48

https://gist.github.com/schmit/875840d1a231526b572e

Making the necessary change

If q = 0, then raise an exception!

Which one?

class Rational:
def __init__(self, p, q=1):

if q == 0:
raise ZeroDivisionError(’denominator is zero’)

g = gcd(p, q)
self.p = p / g
self.q = q / g

In the above example, where is the exception raised?

7: Recursion, Exception handling 7-49

Making the necessary change

If q = 0, then raise an exception!

Which one?

class Rational:
def __init__(self, p, q=1):

if q == 0:
raise ZeroDivisionError(’denominator is zero’)

g = gcd(p, q)
self.p = p / g
self.q = q / g

In the above example, where is the exception raised?

7: Recursion, Exception handling 7-50

Contents

Recursion

Exception handling

Exercises

7: Recursion, Exception handling 7-51

Exercises

See course website for exercises for this week.

Get to know the person next to you and do them in pairs!

Let me know if you have any question

Class ends at 5:35pm.

7: Recursion, Exception handling 7-52

